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Abstract

This paper investigates projective reconstruction of geometric configurations
seen in two or more perspective views, and the computation of projective invari-
ants of these configurations from their images. A basic tool in this investigation
is the fundamental matrix which describes the epipolar correspondence between
image pairs. It is proven that once the epipolar geometry is known, the config-
urations of many geometric structures (for instance sets of points or lines) are
determined up to a collineation of projective 3-space P3by their projection in
two independent images. This theorem is the key to a method for the computa-
tion of invariants of the geometry. Invariants of 6 points in P3and of four lines
in P3are defined and discussed in detail. An example with real images shows
that they are effective in distinguishing different geometrical configurations.

Since the fundamental matrix is a basic tool in the computation of these invari-
ants, new methods of computing the fundamental matrix from 7 point corre-
spondences in two images or 6 point correspondences in 3 images are given.

1 Introduction

Projective invariants of geometrical configurations in space have recently re-
ceived much attention because of their application to vision problems ([11]).
Although invariants of a wide range of objects in the 3-dimensional projective
space P3do exist ([1]), one is restricted in the field of vision to considering those
that may be computed from two-dimensional projections (images). For point
sets and more structured geometrical objects lying in planes in P3, many invari-
ants exist ([3]) which can be computed from a single view. Unfortunately, it has
been shown in [8] that no invariants of arbitrary point sets in 3-dimensions may
be computed from a single image. One is led either to consider constrained sets
of points, or else to allow two independent views of the object. An example of

�The research described in this paper has been supported by DARPA Contract #MDA972-
91-C-0053



the first approach is contained in [17] which considers solids of revolution. This
paper takes the second course and considers invariants that can be derived from
two views of an object. Very little previous work has been done in this area.

It has been shown by Longuet-Higgins ([9]) that for calibrated cameras, the
relative locations of a set of points in P3may be computed from two views
using a non-iterative algorithm. This is not quite true of uncalibrated cameras.
Theorem 3.5 of this paper shows, however, that the point locations may be
computed uniquely up to collineation of P3, as long as sufficiently many points
(at least 8) are given. This is one of the basic results of this paper, since it
allows us to compute invariants of point sets in P3from two views 2.

As examples of invariants that may be computed from multiple views, invariants
of six points and of four lines in P3 are defined. Experiments are carried out
with real images to determine their effectiveness at distinguishing projectively
different configurations.

Notation : Vectors are usually represented in homogeneous coordinates, and
may be considered as elements of projective 2-space, P2 or projective 3-space,
P3. Projective transformations are represented by matrices. Two homogeneous
vectors, or transformation matrices that differ by a non-zero constant factor are
considered to be the same.

Consider a set of points {xi} in space, visible at image locations {ui} and {u′i}
in two images. In normal circumstances, the correspondence {ui} ↔ {u′i} will
be known, but the location of the original points {xi} will be unknown.

Nothing will be assumed about the calibration of the two cameras that create
the two images. The camera model will be expressed in terms of a general pro-
jective transformation from three-dimensional real projective space, P3, known
as object space, to the two-dimensional real projective space P2known as image
space. The transformation may be expressed in homogeneous coordinates by
a 3 × 4 matrix P known as a camera matrix and the correspondence between
points in object space and image space is given by ui = Pxi. It is often conve-
nient to write a camera matrix in the form P = (M | t) where M is a 3× 3 and
t is a column vector.

2 The Fundamental Matrix

For sets of points viewed from two cameras, Longuet-Higgins [9] introduced a
matrix that has subsequently become known as the essential matrix. In Longuet-
Higgins’s treatment, the two cameras were assumed to be calibrated, meaning
that the internal cameras parameters were known. It is not hard to show (for
instance, see [6]) that this matrix may also be defined for uncalibrated cam-
eras, in which context it is usually referred to as the fundamental matrix. The
following basic theorem is proven in [9].

2This theorem was discovered at about the same time and independently by Faugeras ([4])
and by the present author ([5]).
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Theorem (Longuet-Higgins) Given a set of image correspondences {ui} ↔
{u′i} there exists a 3× 3 real matrix F of rank 2 such that u′i

�Fui = 0 for all i.

Notice that each image correspondence gives rise to a linear equation in terms
of the entries of the matrix F . If 8 or more image correspondences are known,
then they lead to a system of 8 or more homogeneous linear equations in the
entries of F , from which F may be computed up to an insignificant scale factor.

Factorization of the fundamental matrix : Suppose that the singular
value decomposition ([2]) of F is given by F = UDV �, where D is the diagonal
matrix D = diag(r, s, 0). The following factorization of F may now be verified
by inspection.

F = SM ; S = UZU� ; M = UEdiag(r, s, α)V �

where

E =


 0 −1 0

1 0 0
0 0 1


 ; Z =


 0 1 0
−1 0 0

0 0 0




and α is an arbitrary number. The matrix S is skew-symmetric.

Any arbitrary 3× 3 skew-symmetric matrix is of the form

 0 −t3 t2

t3 0 −t1
−t2 t1 0


 (1)

and it will be convenient to denote this matrix as [t]×, where t is the vector
t = (t1, t2, t3)�. This notation is motivated by the fact that for any vector v
we have [t]×v = t× v (the cross product) and v[t]× = v× t. For any non-zero
vector t, matrix [t]× has rank 2. Furthermore, the null-space of [t]× is generated
by the vector t. This means that t�[t]× = [t]×t = 0 and that any other vector
annihilated by [t]× is a scalar multiple of t.

It is evident since α may be arbitrarily chosen that the factorization of F as a
product [t]×M is not unique. The following lemma makes this fact clearer.

Lemma2.1. Let the fundamental matrix F factor in two different ways as F =
[t]×M = [t′]×M ′. Then t = t′ and M ′ = M + ta� for some vector a.

Proof. First, note that tF = t[t]×M = 0, and similarly, t′F = 0. Since F has
rank 2, it follows that t = t′ as required. Next, from [t]×M = [t]×M ′ = F
it follows that [t]×(M ′ −M) = 0, and so M ′ −M = ta� for some a. Hence,
M ′ = M + ta� as required. �	

3 Projective Reconstruction

For calibrated cameras, Longuet-Higgins showed that the external camera pa-
rameters and the point placements may be determined from the fundamental
matrix. This is not true in the case of uncalibrated cameras. A basic result of
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this paper, however, is that the camera transformation matrices and the point
placements may be determined up to a collineation of projective 3-space, P3.

A matrix F is said to be the fundamental matrix corresponding to a pair of
camera matrices P and P ′ if for every point x in space with corresponding
image points u = Px and u′ = P ′x the equation u′�Fu = 0 is satisfied.
Written in terms of the original point x, this gives x�P ′�FPx = 0. Since this
relationship must hold for all x we have the following criterion.

Lemma3.2. The matrix F is the fundamental matrix corresponding to a pair
of camera matrices P and P ′ if and only if P ′�FP is skew-symmetric.

Under this condition we say that the pair (P, P ′) is a realisation of the funda-
mental matrix F .

Two camera matrices P and P ′ with different centres of projection, uniquely
determine the fundamental matrix F , since one can choose sufficiently many
points xi not in a critical configuration ([10]). The matrix F is then determined
by the equation u′i

�Fui = 0 where ui = Pxi and u′i = P ′xi. This may also be
deduced explicitly from the condition in Lemma 3.2.

On the other hand, given matrix F , the matrices P and P ′ are not uniquely
determined. Specifically, if H is a non-singular 4×4 matrix, and P ′�FP is skew-
symmetric, then so is H�P ′�FPH . This shows that (P, P ′) and (P ′H,PH)
are both realizations of the matrix F . It will be shown that this is the only
ambiguity in the realization of a fundamental matrix. Before showing this we
need to find explicitly at least one realization of a fundamental matrix F . This
is given by the following result

Proposition3.3. The fundamental matrix corresponding to a pair of camera
matrices P = (I | 0) and P ′ = (M | t) is F = [t]×M .

Proof. One simply verifies that

P ′�FP =
(

M�

t�

)
[t]×M(I | 0) =

(
M�[t]×M 0

0 0

)

is skew symmetric. �	

We now prove our main theorem which indicates when two pairs of camera
matrices correspond to the same fundamental matrix.

Theorem3.4. Let (P1, P
′
1) and (P2, P

′
2) be two pairs of camera transforms.

Then (P1, P
′
1) and (P2, P

′
2) correspond to the same fundamental matrix F if and

only if there exists a 4 × 4 non-singular matrix H such that P1H = P2 and
P ′1H = P ′2.

Proof. The if part of this theorem has already been proven, so we turn to the
only if part. Since each of the matrices P1 and P2 has rank 3, we can multiply
them (on the right) by suitable matrices H1 and H2 to transform them each to
the matrix (I | 0). If the matrices P ′1 and P ′2 are also multiplied by H1 and H2
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respectively, then the fundamental matrix corresponding to the camera matrix
pairs are unchanged, as seen previously. Thus, we have reduced the problem to
the case where P1 = P2 = (I | 0).
Suppose therefore, that P1 = P2 = (I | 0) and that P ′1 = (M ′1 | t′1) and
P ′2 = (M ′2 | t′2). By proposition 3.3 we have F = [t′1]×M

′
1 = [t′2]×M

′
2. According

to 2.1 this implies that t′1 = t′2 = t and that M ′2 = M ′1 + ta� for some vector a.

Let H be the matrix
(

I 0
a� 1

)
. Then one verifies that (I | 0) = (I | 0)H , so

P2 = P1H . Furthermore, P ′1H = (M ′1 | t)H = (M ′1 + ta� | t) = (M ′2 | t) = P ′2.
Thus H is the matrix required for the conclusion of theorem 3.4. �	

3.1 Point set reconstruction

Given a pair of camera matrices P and P ′ and a pair of matched points u↔ u′

it is evident that the space point x that gives rise to the two matching image
points is uniquely defined, and may be obtained by intersecting two rays from
the camera centres. Here is a simple way of computing the point x.

Suppose that the fundamental matrix factors as as F = [t′]×M ′, and let P =
(I | 0) and P ′ = (M ′ | t′) be a realization of the matrix F . Let u ↔ u′ be a
pair of matched points in the two images. We wish to find a point x in space
such that u = Px and u′ = P ′x. From the relation u′�Fu = u′�[t′]×M ′u =
u′�(t′ ×M ′u) = 0, it follows that u′, M ′u and t′ are linearly dependent. If in
particular M ′u = βu′−αt′ then we define the corresponding object space point

x to be the point
(

u
α

)
. It is now easily verified that Px = (I | 0)x = u and

P ′x = (M ′ | t′)x = M ′u+ αt′ = u′ This verifies that the given values of P , P ′

and xi constitute a projective reconstruction of the data.

As shown, x is determined by the two camera matrices P and P ′ and the
matched points u ↔ u′. If we choose a different pair of camera matrices PH
and P ′H realizing the same fundamental matrix F , then in order to preserve
the same pair of matched image points, the point x must be replaced by H−1x.
Thus, changing to a different realization of F results in a projective transfor-
mation (namely H−1) of the scene. This proves the following theorem

Theorem3.5. (Faugeras [4], Hartley et al. [5]) Given a set of image cor-
respondences {ui} ↔ {u′i} sufficient to determine the fundamental matrix, the
corresponding object space coordinates {xi} may be computed up to a collineation
of projective 3-space P3.

3.2 Refinement of the Reconstruction

The linear techniques described here for projective reconstruction do not give
optimal results, and are sensitive to noise. If better accuracy is required, then
the linear solution may be refined using iterative techniques to find an optimal
reconstruction. The method used is to use Levenberg-Marquardt iteration ([13])
to minimize the sum-of-square difference between the measured image coordi-
nates ui and u′i, and the predicted values, ûi = Pxi and û′i = Pxi. The entries
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of the matrix P ′ as well as the image coordinates xi are treated as variable
parameters in seeking this best fit, but P is held equal to (I | 0). Under an
assumption of zero-mean Gaussian noise in measurement of image coordinates,
this gives the maximum likelihood reconstruction.

For the most efficient implementation, it is important to take advantage of the
block structure of the normal equations to separate the estimation of incremental
changes to point coordinates from the estimation of the changes to the camera
matrices. This technique is described in [15], and gives an enormous speed
increase, particularly when there are many matched points. Convergence of
this algorithm is rapid and reliable given an initial guess derived from the linear
solution.

4 Reconstruction from Other Configurations

Suppose that the images of n points are known in k views. Since each image
point provides two constraints on the location of the object points, this gives a
total of 2nk constraints. On the other hand, up to collineations of P3, n points
in space have a total of 3n − 15 degrees of freedom. In addition, the k views
have 11k degrees of freedom. In order for the positions of the points and the
cameras to be determined, we need more equations than degrees of freedom. In
summary :

# D.O.F = 3n− 15 + 11k ,
# constraints = 2nk .

To solve for the point locations,

2nk ≥ 3n+ 11k − 15 . (2)

Particular cases show that with n = 7 points, k = 2 views will suffice, for n = 6
points, k = 3 views are sufficient. and for n = 5 no solution is possible however
many views are given. We will now consider the former two cases, and give
specific algorithms.

4.1 Seven Points in Two Views

Since multiplication of F by a non-zero scale factor is insignificant, and det(F ) =
0, a fundamental matrix F has 7 degrees of freedom. Because of this, it is
possible to determine F from only 7 image correspondences.

From 7 image correspondences, we obtain a set of 7 homogeneous linear equa-
tions in the entries of F . The solution of these equations has the form

qij = aijµ+ bijν (3)

where µ and ν are unknown and each aij and bij is known. Substituting into
the equation det(F ) = 0 gives rise to a homogeneous cubic equation in the
variables µ and ν. Up to scale, this equation has three solution, including
complex solutions. Substituting the values of µ and ν back into (3), three
possible solutions for the fundamental matrix F are found. Either there are
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three real solutions for F , or there are one real and two conjugate complex
solutions.

An alternative solution to the problem of 7 points in two images was given
in [16], but this solution seems simpler. An implementation and results of
reconstruction from seven points has been reported recently in [12].

4.2 Six points in three views.

We begin by considering six points viewed in a single image. Let the points in
space be denoted x1, . . . ,x6, and their coordinates in the image be u1, . . . ,u6.
If the camera matrix is given by P , then the basic relationship is ui = Pxi. We
assume that ui = (wiui, wivi, wi)� where each ui and vi is known, but wi is
not. Further, let the rows of P be vectors p1

�, p2
� and p3

�. Each point gives
rise to three equations

wiui = p1
�xi ; wivi = p2

�xi ; wi = p3
�xi .

Cancelling wi in the usual way leads to two equations

uip3
�xi = p1

�xi ; vip3
�xi = p2

�xi . (4)

These equations are linear in the entries of P , and so six points generate a set
of 12 equations in 12 unknowns which may be written in the form Ap = 0. The
vector p is made up of the entries of the matrix P , and the coefficient matrix A
has entries which are linear expressions in the coordinates (xi, yi, zi, ti)�) of the
various points xi. Since this system of equations must have a non-zero solution
for p, it follows that det(A) = 0. This gives rise to a polynomial of degree 12
in the xi, yi, zi and ti. Any set of points which are mapped onto the observed
image points by an unknown camera must satisfy this polynomial equation.

Now, by an appropriate choice of projective coordinates, it may be assumed that
the first five points xi have coordinates (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�,
(0, 0, 0, 1)� and (1, 1, 1, 1)�. The position of the sixth point x6 = (x, y, z, t)�

is not determined. The equation det(A) = 0 now reduces to a second degree
polynomial. This proves the following result.

Proposition4.6. Suppose a set of six points xi are mapped to points ui in an
image. If projective coordinates are chosen for P3such that points x1, . . . ,x5

have given canonic coordinates, then the sixth point must lie on a quadric sur-
face, determined only by the coordinates of the image points ui.

Given three views, the location of the point x6 is determined as the intersection
of three quadric surfaces. There may be as many as 8 solutions. It has been
remarked recently by Quan [14] and by Ponce [12] that five of these solutions
are the points x1, . . . ,x5, so that there are in fact only three possible solutions
for x6. Results of reconstruction from 6 points in three views are reported in
[12, 14].

Once the points xi are determined, equations (4) can be used to solve for the
camera matrices, and then the fundamental matrices for each pair can be com-
puted from Theorem 3.3.

7



5 Projective Invariants of Point Sets

As has been shown, although it is impossible to determine the exact geome-
try of a scene from multiple views, it is in general possible to reconstruct the
scene up to an unknown projective transformation of space. Suppose that some
mathematical quantity, defined as a function of the scene geometry, may be com-
puted, and that this quantity is unchanged under projective transformations in
P3. Such a quantity is called a projective invariant of the scene geometry. If this
quantity is computed from a projective reconstruction of the scene, as discussed
in this paper, then it will have the same value as if it were constructed from the
actual scene. Such projective invariants do not include such scene properties as
angles and length ratios, which are not invariant under projective transforma-
tions of the scene. There are, however several projective invariants of certain
3D geometrical configurations, as will be seen shortly. Such invariants may be
computed from two or more views of the scene and used for object recognition or
for distinguishing between different objects. The general strategy of computing
these invariants is as follows.

1. Use image correspondences to compute the fundamental matrix F . Then
find a factorization F = [t]×M , and hence two camera matrices P = (I | 0)
and P ′ = (M | t).

2. Compute the projective reconstruction of the scene, using for instance the
method of Section 3.1.

3. Compute a projective invariant of the reconstructed scene in P3.

5.1 An invariant of 6 points

Given a set of six points {xi} in P3, a coordinate system may be selected in
which the first five points have coordinates (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�,
(0, 0, 0, 1)� and (1, 1, 1, 1)�. The coordinates of the sixth point give rise to three
independent projective invariants of the six points.

Another formulation of these invariants is given by selecting x0 and x1 as base
points. Given any other point in P3, not collinear with x0 and x1, there exists a
unique plane passing through that point and the two base points x0 and x1. In
this way, the four points x2,x3,x4 and x5 give rise to four planes all containing
the line joining x0 to x1. From the four planes it is possible to define a cross
ratio. In particular, if λ is any line in space, skew to the line passing through
x0 and x1, then λ intersects the four planes at points p2, p3, p4 and p5. The
cross ratio of these four points on the line λ is a projective invariant of the six
original points in P3. Different invariants result from different choices of x0 and
x1.

Both these definitions of invariants fail if three of the points happen to be
collinear, however, this case will be ignored for the sake of simplicity.
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6 Projective Invariants of Lines

In this section, invariants of lines in space will be described. It will be shown that
four lines in the 3-dimensional projective plane, P3give rise to two independent
invariants under collineations of P3. Two different ways of defining invariants
will be described, one algebraic and one geometric.

6.1 Computing Lines in Space

To be able to compute invariants of lines in space, it is necessary to be able
to compute the location of a line in P3from its images in two or more views;
Lines in the image plane are represented as 3-vectors. For instance, a vector
λ = (λ, µ, ν)� represents the line in the plane given by the equation λu+ µv +
νw = 0. Similarly, a plane in 3-dimensional space is represented in homogeneous
coordinates as a 4-dimensional vector. The relationship between lines in the
image space and corresponding planes in object space is given by the following
lemma.

Lemma6.7. The set of all points in P3that are mapped by a camera with matrix
P onto a line λ in the image is the plane π with coordinates P�λ.

Proof. A point x lies on π if and only if Px lies on the line λ, and so λ�Px = 0.
On the other hand, a point x lies on the plane π if and only if π�x = 0.
Comparing these two conditions leads to the conclusion that π� = λ�P or
π = P�λ as required. �	

If a line in space is seen in two or more views, then it may be found by computing
the intersection of the corresponding planes in space.

6.2 Algebraic Invariant Formulation

Consider four lines λi in space. A line may be given by specifying either two
points on the line or dually, two planes that meet in the line. It does not matter
in which way the lines are described. For instance, in the formulae (6) and
(7) below certain invariants of lines are defined in terms of pairs of points on
each line. The same formulae could be used to define invariants in which lines
are represented by specifying a pair of planes that meet along the line. Since
the method of determining lines in space from two view given in section 6.1
gives a representation of the line as an intersection of two planes, the latter
interpretation of the formulae is most useful.

Nevertheless, in the following description, of algebraic and geometric invariants
of lines, lines will be represented by specifying two points, since this method
seems to allow easier intuitive understanding. It should be borne in mind,
however, that the dual approach could be taken with no change whatever to the
algebra, or geometry.
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In specifying lines, each of two points on the line will be given as a 4-tuple of
homogeneous coordinates, and so each line λi is specified as a pair of 4-tuples

λi =
(
(ai1, ai2, ai3, ai4)(bi1, bi2, bi3, bi4)

)
Now, given two lines λi and λj , one can form a 4× 4 determinant, denoted by

|λiλj | = det




ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 . (5)

Finally, it is possible to define two independent invariants of the four lines by

I1(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ3| |λ2λ4|

(6)

and

I2(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ4| |λ2λ3|

. (7)

It is necessary to prove that the two quantities so defined are indeed invariants
under collineations of P3. First, it must be demonstrated that the expressions
do not depend on the specific formulation of the lines. That is, there are an
infinite number of ways in which a line may be specified by designating two
points lying on it, and it is necessary to demonstrate that choosing a different
pair of points to specify a line does not change the value of the invariants. To
this end, suppose that (ai1, ai2, ai3, ai4)� and (bi1, bi2, bi3, bi4)� are two distinct
points lying on a line λi, and that (a′i1, a

′
i2, a

′
i3, a

′
i4)
� and (b′i1, b

′
i2, b

′
i3, b

′
i4)
� are

another pair of points lying on the same line. Then, there exists a 2× 2 matrix
Di such that

(
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4

)
= Di

(
ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4

)
.

Consequently,



ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 =

(
Di 0
0 Dj

)
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4
a′j1 a′j2 a′j3 a′j4
b′j1 b′j2 b′j3 b′j4


 .

Taking determinants, it is seen that the net result of choosing a different rep-
resentation of the lines λi and λj is to multiply the value of |λiλj | by a factor
det(Di) det(Dj). Since each of the lines λi appears in both the numerator and
denominator of the expressions (6) and (7), the factors will cancel and the values
of the invariants will be unchanged.

Next, it is necessary to consider the effect of a change of projective coordinates.
If H is a 4 × 4 invertible matrix representing a coordinate transformation of
P3, then it may be applied to each of the points used to designate the four
lines. The result of applying this transformation is to multiply the determinant
|λiλj | by a factor det(H). The factors on the top and bottom cancel, leaving
the values of the invariants (6) and (7) unchanged. This completes the proof
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that I1 and I2 defined by (6) and (7) are indeed projective invariants of the set
of four lines.

An alternative invariant may be defined by

I3(λ1, λ2, λ3, λ4) =
|λ1λ4| |λ2λ3|
|λ1λ3| |λ2λ4|

. (8)

It is easily seen, that I3 = I1/I2. However, if |λ1λ2| vanishes, then both I1 and
I2 are zero, but I3 is in general non-zero. This means that I3 can not always
be deduced from I1 and I2. A preferable way of defining the invariants of four
lines is as a homogeneous vector

I(λ1, λ2, λ3, λ4) = (|λ1λ2| |λ3λ4| , |λ1λ3| |λ2λ4| , |λ1λ4| |λ2λ3|) . (9)

Two such computed invariant values are deemed equal if they differ by a scalar
factor. Note that this definition of the invariant avoids problems associated with
vanishing or near-vanishing of the denominator in (6) or (7).

6.3 Degenerate Cases

The determinant |λiλj | as given in (5) will vanish if and only if the four points
involved are coplanar, that is, exactly when the two lines are coincident (meet
in space). If all three components of the vector I(λ1, λ2, λ3, λ4) given by (9)
vanish, then the invariant is undefined. Enumeration of cases indicates that
there are two essentially different configurations of lines in which this occurs.

1. Three of the lines lie in a plane.

2. One of the lines meets all the other three.

The configuration where one line meets two of the other lines is not degenerate,
but does not lead to very much useful information, since two of the components
of the vector vanish. Up to scale, the last component may be assumed to equal
1, which means that two such configurations can not be distinguished. In fact
any two such configurations are equivalent under collineation.

6.4 Geometric Invariants of Lines

It is also possible to define projective invariants of sets of four lines geometrically.
In particular, given four lines in space in general position, there will exist exactly
two transverse lines that meet all four of these lines. The cross ratio of the points
of intersection of lines with each of the transverse lines give two independent
projective invariants of the set of four lines. These invariants may take real or
complex values. The relationship of these invariants to the algebraic invariants
is clarified in [7]. In particular, it is shown that there are just two independent
projective invariants of four lines in space.
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7 Experimental Results

Three images of a pair of wooden blocks representing houses were acquired and
vertices and edges were extracted. The images are shown in Fig 1. Corre-
sponding edges and vertices were selected by hand from among those detected
automatically. There were 13 edges and 15 lines extracted from each of the
images. The dotted edges were not visible in all images and were not chosen.
Vertices are represented by numbers and edges by letters in the figure. Because
of the way edges and vertices were found by the segmentation algorithm, the
edges do not always pass precisely through the indicated vertices, but some-
times through a closely neighboring vertex. On other occasions, the full edge
was not detected as a single, but was broken into several pieces. This is usual
with most edge detection algorithms, and is a source of error in the computation
of invariants.

The fundamental matrices F12 for the first and second images and F23 for the
second and third images were computed from the point matches.

7.1 Comparison of Invariant Values

The invariants described in this paper are represented as homogeneous vectors.
Two such vectors are considered equivalent if they differ by a non-zero scale
factor. Because of arithmetic error and image noise, two computed invariant
values will rarely be exactly proportional. In order to compare two such com-
puted invariant values (perhaps when attempting to match an object with a
reference object), each homogeneous vector is multiplied by a scale factor cho-
sen to normalize its length to 1. This normalization determines the vector up
to a multiplication by a factor ±1. Two such normalized homogeneous vector
invariants v1 and v2 are deemed close if v1 is close to v2 or to −v2 using a
Euclidean norm. Correspondingly, a metric may be defined by

d(v1,v2) =
(
1−

∣∣∣∣ v1.v2

||v1|| ||v2||

∣∣∣∣
)1/2

. (10)

For any v1 and v2, distance d(v1,v2) lies between 0 and 1.

7.2 Invariants of 6 points

The invariants of six points {x1,x2, . . .x6} were computed by finding a pro-
jective coordinate frame in which the points x1, . . . ,x5 have coordinates
(1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�, (0, 0, 0, 1)� and (1, 1, 1, 1)� respectively.
The homogeneous coordinates or the sixth point, x6 in that frame are the de-
sired invariants of the original set of points. Two points are compared using the
metric (10). Six sets of six points were chosen for computation of invariants.
The sets of points were chosen arbitrarily by hand. The six sets of six points
chosen as in the following table which shows the indices of the lines as given in
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Fig. 1.

S1 = {1, 2, 3, 6, 9, 10} , S2 = {2, 4, 6, 8, 10, 12} ,
S3 = {1, 3, 5, 7, 9, 11} , S4 = {1, 2, 3, 6, 7, 8} ,
S5 = {1, 4, 7, 10, 13, 12} , S6 = {2, 5, 8, 11, 12, 13}

Table (11) shows the invariant of the sets of six points as computed from the
first and second and from the second and third images.

0.0266367 0.970462 0.975994 0.619897 0.847914 0.823575
0.995416 0.0155304 0.0648768 0.841029 0.252926 0.548214
0.967114 0.066834 0.0136234 0.863063 0.276384 0.516868
0.617346 0.830651 0.873538 0.0166752 0.704992 0.752215
0.861618 0.238502 0.289846 0.708237 0.00561718 0.590905
0.828638 0.54423 0.519272 0.719518 0.574651 0.0263892

(11)

The (i, j)-th entry of the table shows the distance according to the metric (10)
between the invariant of set Si as computed from images 1 and 2 with that of
set Sj as computed from images 2 and 3. The diagonal entries of the matrix
(in bold) should be close to 0.0, which indicates a match. The matrix should
be approximately symmetric, which is in fact the case.

The off-diagonal entries are not close to zero, except for the (2, 3) entry – but
even that entry is greater than the diagonal entries. This indicates that the
six-point invariant is very good at discriminating between sets of points with
different geometrical structure. Evidently, sets of points S2 and S3 are quite
similar in arrangement, at least up to collineation.

7.3 Invariants of 4 lines

The same experiment was carried out with six sets of four lines. First the
fundamental matrices were computed using point matches and then the line
invariant (9) was computed for each pair of line sets and compared using the
metric (10).

The sets of lines chosen are given in the following table (refer to Fig. 1).

S1 = {B,C, J,K} , S2 = {B,G, J,N}
S3 = {A,B,H, I} , S4 = {B,D,E,G}
S5 = {A,C,O, J} , S6 = {B, I, L,N}

Table (12 shows the results. The only bad entry in this matrix is in the position
(4, 4). This is because of the fact that the four lines chosen contained three
coplanar lines (lines B, D and E). This causes the values of the invariant to be
indeterminate (that is (0, 0, 0)), and shows that such instances must be detected
and avoided.
0.0128906 0.674135 0.302728 0.688589 0.642501 0.449448
0.646976 0.0337898 0.741489 0.83827 0.706921 0.221636
0.0619738 0.691264 0.229193 0.707536 0.708276 0.461339
0.286604 0.607681 0.182331 0.890303 0.855833 0.383939
0.656635 0.72182 0.899625 0.718942 0.00349575 0.694361
0.473184 0.239022 0.555218 0.947915 0.719282 0.0332098

(12)
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Figure 1: Three views of houses, and numbered selected vertices and lines

Once again, the four-line invariant is shown to be a powerful discriminator
between sets of four lines.

Acknowledgement I am indebted to Joe Mundy for introducing me to the
subject of projective invariants, and for many enlightening conversations during
the preparation of this paper.
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