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Abstract

This paper investigates projective invariants of geometric configurations in 3
dimensional projective space P3, and most particularly the computation of in-
variants from two or more independent images. A basic tool in this investigation
is the essential matrix defined by Longuet-Higgins ([10]), for this matrix de-
scribes the epipolar correspondence between image pairs. It is proven that once
the epipolar geometry is known, the configurations of many geometric struc-
tures (for instance sets of points or lines) are determined up to a collineation of
P3by their projection in two independent images. This theorem is the key to a
method for the computation of invariants of the geometry. Invariants of 6 points
in P3and of four lines in P3are defined and discussed in detail. An example with
real images shows that they are effective in distinguishing different geometrical
configurations.

Since the essential matrix is a fundamental tool in the computation of these
invariants, new methods of computing the essential matrix from 7 point cor-
respondences in two images, 6 point correspondences in 3 images or 13 line
correspondences in three images are described.

1 Introduction

Projective invariants of geometrical configurations in space have recently re-
ceived much attention because of their application to vision problems ([12]).
Although invariants of a wide range of objects in the 3-dimensional projective
space P3do exist ([1]), one is restricted in the field of vision to considering those
that may be computed from two-dimensional projections (images). For point
sets and more structured geometrical objects lying in planes in P3, many invari-
ants exist ([5]) which can be computed from a single view. Unfortunately, it has
been shown in [4] that no invariants of arbitrary point sets in 3-dimensions may
be computed from a single image. One is led either to consider constrained sets
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of points, or else to allow two independent views of the object. An example of
the first approach is contained in [15] which considers solids of revolution. This
paper takes the second course and considers invariants that can be derived from
two views of an object. Very little previous work has been done in this area.
A previous paper of Barrett et al. ([3]) contains a beginning to the investiga-
tion of this subject. One of the results of that paper is presented rather more
simply in this paper (Theorem below). Another paper is in preparation ([16])
considering geometrical structures satisfying various constraints. The present
paper considers invariants of unstructured lines and points in P3, and shows
that under certain circumstances, invariants may be computed.

It has been shown by Longuet-Higgins ([10]) that for calibrated cameras, the
relative locations of a set of points in P3may be computed from two views
using a non-iterative algorithm. This is not quite true of uncalibrated cameras.
Theorem 4.10 of this paper shows, however, that the point locations may be
computed up to collineation of P3, as long as sufficiently many points (at least
8) are given. This is one of the basic results of this paper, since it allows us to
compute invariants of point sets in P3from two views 2 .

For sets of lines, the situation is not quite so favourable. It may be seen that
virtually no information can be got from two views of a set of lines in space.
This is because given two images of a line and two arbitrary cameras, there is
always a line in space which corresponds to the two images. In other words,
two images of an unknown line do not in any way constrain the cameras. This
point is discussed in [14]. On the other hand, if sufficiently many point matches
are known as well, then it is possible to determine the locations of the lines,
once more up to a collineation of P3. This paper discusses an invariant of four
lines in space and how it may be computed. The invariants of four lines may
be defined either in algebraic or geometric terms, and greater insight into the
properties of the invariants is achieved by considering both styles of definition.

The invariant described in the previous paragraph can not be computed from
two views given line matches alone. It is shown in [14] that three views of a set
of thirteen lines are sufficient to determine the placement of calibrated cameras,
given at least 13 lines. As with Longuet-Higgins results, this result may be
extended also to the case of uncalibrated cameras as is shown in section 8 of this
paper. The cameras and the corresponding point locations may be computed up
to a projective transformation of P3. This allows the computation of invariants
of sets of 13 or more lines appearing in three or more views.

Finally, to obtain invariants of point sets in P3, from two views, it is necessary
to have at least eight matching points, so as to be able to compute the essen-
tial matrix defined by Longuet-Higgins ([10]). On the other hand, projective
invariants for sets of 6 points in P3may be defined – they just may not be com-
puted from two views. It is shown, however that from three views of six points
invariants may be defined.

One further topic discussed in this paper is the “transfer” problem (section 3).
This problem was discussed in [3]. Given a set of eight points as seen in three

2This theorem was discovered at about the same time and independently by Faugeras ([6])
and by the present author ([9]). The two proofs were given within three weeks of each other
at separate conferences.
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images, and one further point seen in just two of the images, it is possible to
compute its position in the third image. I give a somewhat simpler formulation
of the method derived in [3] as well as showing how the construction may be
generalized to the case where only seven (instead of eight) point matches are
known.

1.1 Notation

Consider a set of points {xi} as seen in two images. Normally, unprimed quan-
tities will be used to denote data associated with the first image, whereas
primed quantities will denote data associated with the second image.

The set of points {xi} will be visible at image locations {ui} and {u′i} in the
two images. In normal circumstances, the correspondence {ui} ↔ {u′i} will be
known, but the location of the original points {xi} will be unknown.
Since all vectors are represented in homogeneous coordinates, their values may
be multiplied by any arbitrary non-zero factor. The notation ≈ is used to
indicate equality of vectors or matrices up to multiplication by a scale factor.

Given a vector, t = (tx, ty, tz)� it is convenient to introduce the skew-symmetric
matrix

[t]× =


 0 −tz ty
tz 0 −tx
−ty tx 0


 (1)

This definition is motivated by the fact that for any vector v we have [t]×v =
t × v and v[t]× = v × t. For any non-zero vector t, matrix [t]× has rank 2.
Furthermore, the null-space of [t]× is generated by the vector t. This means
that t�[t]× = [t]×t = 0 and that any other vector annihilated by [t]× is a scalar
multiple of t.

The notation A∗ represents the adjoint of a matrix A, that is, the matrix of
cofactors. If A is an invertible matrix, then A∗ ≈ (A�)−1.

1.2 Camera Models

Nothing will be assumed about the calibration of the two cameras that create
the two images. The camera model will be expressed in terms of a general pro-
jective transformation from three-dimensional real projective space, P3, known
as object space, to the two-dimensional real projective space P2known as image
space. The transformation may be expressed in homogeneous coordinates by
a 3 × 4 matrix P known as a camera matrix and the correspondence between
points in object space and image space is given by ui = Pxi.

For convenience it will be assumed throughout this paper that the camera place-
ments are not at infinity, that is, that the projections are not parallel projections.
In this case, a camera matrix may be written in the form

P = (M | −Mt)

whereM is a 3×3 non-singular matrix and t is a column vector t = (tx, ty, tz)�

representing the location of the camera in object space.
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2 The Essential Matrix

For sets of points viewed from two cameras, Longuet-Higgins [10] introduced a
matrix that has subsequently become known as the essential matrix. In Longuet-
Higgins’s treatment, the two cameras were assumed to be calibrated, meaning
that the internal cameras parameters were known. It is not hard to show, as
was done explicitly in [8] that most of the results also apply to uncalibrated
cameras of the type considered in this paper.

2.1 Existence and Characterization

The following basic theorem is proven in [10].

Theorem (Longuet-Higgins) Given a set of image correspondences {ui} ↔
{u′i} there exists a 3× 3 real matrix Q such that

u′i
�Qui = 0

for all i.

Notice that each image correspondence gives rise to a linear equation in terms
of the entries of the matrix Q. Suppose that 8 or more image correspondences
are given, then they give rise to a system of 8 or more linear equations which
may be expressed as a matrix equation

Aq = 0 (2)

where
q = (q11, q12, q13, q21, q22, q23, q31, q32, q33)� (3)

and A is a matrix with 9 columns, and one row for each image correspondence.
Specifically, writing u = (ui, vi, 1)� and u′ = (u′i, v

′
i, 1), the i-th row of the

matrix A is equal to the vector

(uiu′i, viu
′
i, u
′
i, uiv

′
i, viv

′
i, v
′
i, ui, vi, 1) . (4)

The set of image correspondences will be called non-degenerate if the rank
of the matrix A is at least 8 (that is, 8 or 9). Geometrical conditions for a
set of image correspondences to be non-degenerate were discussed in [10]. The
existence of a solution to (2) gives rise to the following observation.

Proposition (Barrett et al. [3]) Let A be the matrix derived from a set of
image correspondences {ui} ↔ {u′i}, the i-th row of A being given by (4). Then
rank(A) ≤ 8. In particular, if the number of correspondences equals 9, then
det(A) = 0.

Proof. If rank(A) > 8 then there is no non-zero solution to the equation Aq = 0.

�
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If rank(A) = 8 then there is a non-zero solution to the equation Aq = 0 unique
up to an arbitrary scale factor. In particular, a non-degenerate set of 8 image
correspondences determines a unique (up to scale) essential matrix Q. If a set of
more than 8 correspondences is given, then in general, due to numerical error,
it will not be the case that rank(A) ≤ 8. In this case, the matrix Q should be
determined by finding the least-squares solution to the equation Aq = 0. More
specifically, the problem becomes : minimize ||Aq|| subject to the condition
||q|| = 1. The solution q is the eigenvector corresponding to the least eigenvalue
of A�A.

3 Loci of Matched Points

If Q is known and u a fixed point in the first image then the equation u′�Qu = 0
may be viewed as specifying the set of possible points u′ in the second image
that are possible matches for u. This set of points is an epipolar line in the
second image. In other words, u′ is on the epipolar line corresponding to u if
and only if u′�Qu = 0. This leads to the following interpretation of the essential
matrix.

Proposition 3.1. If Q is an essential matrix corresponding to a pair of images
and u is a point in the first image, then Qu is the epipolar line in the second
image corresponding to u.

Barrett et al. [3] applied Proposition to solve the “transfer problem”. In par-
ticular, suppose that three images are given, and the essential matrices for each
of the image pairs are known. This will be the case if sufficiently many matched
points in the three images are known. Suppose that the image of a further point
is known in the first two images. Then it is possible to determine its image in
the third image. The method of Barrett et al. , though expressed differently,
reduces to the following construction. Let x be a point in space and let u and u′

be its location as seen in the first two images. Let Q13 be the essential matrices
corresponding to the first and third images and Q23 the one corresponding to
the second and third images. According to Proposition 3.1 Q13u and Q23u′ are
the epipolar lines in the third image corresponding to the points u and u′. The
intersection of these two lines is the location of the point u′′ where x is seen in
the third image. Since line intersection is given by the cross product, we have

u′′ = Q13u×Q23u′ .

This construction depends on the fact that when eight points ui in one image
are matched with their corresponding points u′i in the second image, then the
locus of the point u′ matching a further point u in the first image is a straight
line given by Proposition 3.1. Our goal in the rest of this section is, given only
seven matched points {ui} ↔ {u′i} and a further point u in the first image, to
determine the locus of the possible locations of the matching point u′ in the
second image.

In order to be able to do this, we need the following characterization of essential
matrices.
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Proposition 3.2. A 3 × 3 real matrix Q is an essential matrix if and only if
rank(Q) = 2.

A proof of Proposition 3.2 is given in [7].

Now, suppose that 7 non-degenerate image point correspondences are given and
u is an eighth point in the first image. The corresponding point u′ is unknown.
Letting u′ = (r′, s′, 1)�, writing down the equations Aq = 0 given by (3) and
(4) and solving for q = (q11, ..., q33) results in an essential matrix Q with entries
that are linear expressions in r′ and s′. Now the condition det(Q) = 0 derived
from Proposition 3.2 gives rise to a cubic equation in r′ and s′. This equation
describes the locus in the second image of all points that may correspond to u.
The form of the cubic equation is somewhat special, however, as will now be
shown.

Since multiplication ofQ by a non-zero scale factor is insignificant, and det(Q) =
0, an essential matrix Q has 7 degrees of freedom. Because of this, it is possible
to determine Q from only 7 image correspondences. A method is given in [7],
and will be briefly described here.

From 7 image correspondences, we obtain 7 linear equations in the entries of Q.
Since the scale of Q is arbitrary, a further equation q11 = 1 is available. (The
difficulty that q11 may equal zero is discussed in [7] and need not concern us
here). From these eight equations in nine variables (the entries of Q) a solution
may be found of the form

qij = aijµ+ bij (5)
where µ is unknown and each aij and bij is known. Substituting into the equa-
tion det(Q) = 0 gives rise to a cubic equation in the variable µ. This equation
has three solution, including complex solutions. Substituting the values of µ
back into (5), three possible solutions for the essential matrix Q are found.
There are two cases. Either there are three real solutions for Q, or there are one
real and two conjugate complex solutions. Let the solutions be Q0, Q1 and Q2.

Now, considering the eighth correspondence u↔ u′, it follows that u′�Qiu = 0
where Qi is one of Q0, Q1 and Q2. Multiplying these relationships together
gives an equation

(u′�Q0u)(u′�Q1u)(u′�Q2u) = 0.
This is just the cubic equation described previously, namely the locus of the
point u′. As can be seen, the cubic equation factors into linear factors over the
complex field. Either there are three real factors, or there are one real and two
conjugate complex factors. In other words, the locus of u′ is either three real
lines in the plane, or one real line and two complex lines.

Let us investigate complex lines. Writing as before u′ = (r′, s′, 1)�, consider a
line αr′ + βs′ + 1 = 0 where α and β are complex. It is easily seen that there
exists either one or no real points (r′, s′, 1)� satisfying this equation. That is, a
complex line contains at most one real point. Now we sum up this discussion.

Theorem 3.3. Let {ui} ↔ {u′} be a set of 7 non-degenerate image correspon-
dences and let u be a further point. The locus of (real) points u′ in the second
image corresponding to the point u in the first image consists either of three
straight lines, or of a single straight line and a single isolated point (counted
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twice). The single isolated point corresponds to a complex essential matrix and
is not realizable.

4 Projective Invariants

For calibrated cameras, Longuet-Higgins showed that the external camera pa-
rameters and the point placements may be determined from the essential matrix.
This is not true in the case of uncalibrated cameras. It will be shown, however,
that the camera transformation matrices and the point placements may be de-
termined up to a collineation of projective 3-space, P3.

4.1 Realization of the Essential Matrix.

First, we consider the inverse question of determining the essential matrix given
the two camera transformation matrices. The following result was proven in [8].

Proposition 4.4. The essential matrix corresponding to a pair of camera ma-
trices P = (M | −Mt) and P ′ = (M ′ | −M ′t′) is given by

Q ≈M ′∗M�[M(t′ − t)]× .

For a proof of Proposition 4.4 see [8].

Definition 4.5. A pair of camera transformations P = (M | −Mt) and P ′ =
(M ′ | −M ′t′) are called a realization of the essential matrix Q if
Q ≈M ′∗M�[M(t′ − t)]×.

Our present goal is to characterize all possible realizations of a given essential
matrix. As is indicated by Proposition 4.4, an essential matrix Q factors into a
product Q = RS, where R is a non-singular matrix and S is skew-symmetric.
The next lemma shows to what extent this factorization is unique.

Lemma 4.6. Let the 3×3 matrix Q factor in two different ways as Q ≈ R1S1 ≈
R2S2 where each Si is a non-zero skew-symmetric matrix and each Ri is non-
singular. Then S2 ≈ S1. Furthermore, if Si = [t]× then R2 ≈ R1 + at� for
some vector a.

Proof. Since R1 and R2 are non-singular, it follows that Qt = 0 if and only if
Sit = 0. From this it follows that the null-spaces of the matrices S1 and S2 are
equal, and so S1 ≈ S2. For the second statement, assume that Q = R1[t]× =
R2[t]×. Then, (R1 −R2)[t]× = 0, and so R1 −R2 = at� as required. 
�

We now prove our main theorem which indicates when two pairs of camera
matrices correspond to the same essential matrix.

Theorem 4.7. Let {P1, P
′
1} and {P2, P

′
2} be two pairs of camera transforms.

Then {P1, P
′
1} and {P2, P

′
2} correspond to the same essential matrix Q if and

only if there exists a 4 × 4 non-singular matrix H such that P1H ≈ P2 and
P ′1H ≈ P ′2.
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Proof. First we prove the if part of this theorem. To this purpose, let {xi} be
a set of at least 8 points in 3-dimensional space and let {ui} and {u′i} be the
corresponding image-space points as imaged by the two camera P1 and P ′1. By
the definition of the essential matrix, Q satisfies the condition u′i

�Qui = 0 for
all i. We may assume that the points {xi} have been chosen in such a way that
the matrix Q is uniquely defined up to scale by the above equation. The point
configurations that defeat this definition of the essential matrix are discussed
in [10]. Suppose now that there exists a 4 × 4 matrix H taking P1 to P2 and
P ′1 to P

′
2 in the sense specified by the hypotheses of the theorem. For each i let

x(2)
i = H−1xi. Then we see that

P2x(2)
i = P1HH

−1xi = P1xi = ui

and
P ′2x

(2)
i = P ′1HH

−1xi = P ′1xi = u′i .
In other words, the image points {ui} and {u′i} are a matched point set with
respect to the cameras P2 and P ′2. Thus the essential matrix for this pair
of cameras is defined by the same relationship u′i

�Qui = 0 that defines the
essential matrix of the pair P1 and P ′1. Consequently, the two camera pairs
have the same essential matrix.

Now, we turn to the only if part of the theorem and assume that two pairs of
cameras have the same essential matrix, Q. First, we consider the camera pair
{(M1 | −M1t1), (M ′1 | −M ′1t′1)}. It is easily seen that the 4× 4 matrix(

M−1
1 t1

0 1

)

transforms this pair to the camera pair

{(I | 0), (M ′1M−1
1 | −M ′1(t′1 − t1))}

where I and 0 are identity matrix and zero column vector respectively. Further-
more by the if part of this theorem (or as verified directly using Lemma 4.4),
this new camera pair has the same essential matrix as the original.

Applying this transformation to each of the camera pairs

{(M1 | −M1t1), (M ′1 | −M ′1t′1)}

and
{(M2 | −M2t2), (M ′2 | −M ′2t′2)}

we see that there is a 4 × 4 matrix transforming one pair to the other if and
only if there is such a matrix transforming

{(I | 0), (M ′1M−1
1 | −M ′1(t′1 − t1))}

to
{(I | 0), (M ′2M−1

2 | −M ′2(t′2 − t2))}
Thus, we are reduced to proving the theorem for the case where the first cam-
eras, P1 and P2 of each pair are both equal to (I | 0). Thus, let {(I | 0), (M1 |
−M1t1)} and {(I | 0), (M2 | −M2t2)} be two pairs of cameras corresponding to
the same essential matrix. According to Lemma 4.4, the Q-matrices correspond-
ing to the two pairs are M∗1 [t1]× and M∗2 [t2]× respectively, and these must be
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equal (up to scale). According to Lemma 4.6, t1 ≈ t2 and M∗2 ≈M∗1 +at1
� for

some vector a. Taking the transpose of this last relation yields

M2
−1 ≈M−1

1 + t1a� (6)

At this point we need to interpolate a lemma.

Lemma 4.8. For any column vector t and row vector a�, if I+ta� is invertible
then

(I + ta�)−1 = I − kta�
where k = 1/(1 + a�t).

Proof. The proof is done by simply multiplying out the two matrices and observ-
ing that the product is the identity. One might ask what happens if a�t = −1
in which case k is undefined. The answer is that in that case, I+ta� is singular,
contrary to hypothesis. Details are left to the reader. 
�

Now we may continue with the proof of the theorem. Referring back to (6), it
follows that

M2 ≈ (M−1
1 + t1a�)−1

≈ (M−1
1 (I +M1t1a�))−1

≈ (I − kM1t1a�)M1

≈ M1 − kM1t1(a�M1)

and

M2t1 ≈ M1t1 − kM1t1(a�M1t1)
≈ k′M1t1 ≈ M1t1 (7)

where k′ = 1−ka�M1t1. Since t2 ≈ t1 according to Lemma 4.6,M2t2 ≈M1t1.
From these results, it follows that

(M2 | −M2t2) ≈ (M1 | −M1t1)
(

I 0
ka�M1 k′′

)

for some constant k′′.

This completes the proof of the theorem. 
�

4.2 Choosing a Realization of Q.

Given a set of image correspondences ui ↔ u′i defining an essential matrix Q,
Theorem 4.7 shows that one cannot unambiguously determine the position of
the cameras, or the corresponding object-space points from Q. Since Q contains
all the information that is available from the point correspondences, it follows
that the position of the cameras and the object points can be determined only
up to a 3-dimensional projective transform as specified by the matrix H . In
order to determine the positions of the object-space points {xi} unambiguously,
it is necessary for some ground-control points to be specified as discussed in [9].
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In this paper, we will not be interested in absolute determination of the points
{xi}.
Our strategy, therefore, is to select any pair of camera placements consistent
with the essential matrix, Q.

Provided we can factor an essential matrixQ into a productQ = RS as promised
by Proposition 3.2, then we can find a realization of Q as follows:

Proposition 4.9. If Q = R [t]× is a factorization of an essential matrix into
a product of a non-singular matrix R and a skew-symmetric matrix [t]×, then
one realization of Q is given by the pair of camera matrices P = (I | 0) and
P ′ = (R∗ | −R∗t).

It is in no way intended that this should represent the true placement of the
cameras. Nevertheless, according to Theorem 4.7 it is related to the true camera
placement by a 3-dimensional projective transformation.

Thus finding a realization of Q comes down to finding a factorization. To this
purpose, suppose that the singular value decomposition ([2]) of Q is given by
Q = UDV �, where D is the diagonal matrix D = diag(r, s, 0). In a practical
case, the smallest singular value of Q will not be exactly equal to 0 because of
numerical inaccuracies. However, setting the smallest singular value to 0 gives
the matrix closest to Q in Euclidean norm that has the required rank 2. The
following factorization of Q may now be verified by inspection.

Q = RS ; R = Udiag(r, s, γ)EV � ; S = V ZV �

where

E =


 0 −1 0
1 0 0
0 0 1


 ; Z =


 0 1 0
−1 0 0
0 0 0




and γ is any non-zero number, but is best chosen to lie between r and s so that
the condition number [2] of R is as good as possible.

4.3 Computation of 3-D Points.

The point in the object space that projects on to ui = (ui, vi, 1)� and u′i =
(u′i, v

′
i, 1)

� in the two images, under the transforms P and P ′, can be computed
by solving the equations

(wiui, wivi, wi)� = P (xi, yi, zi, 1)�

(w′iu
′
i, w

′
iv
′
i, w

′
i)
� = P ′(xi, yi, zi, 1)� .

The values of ui, vi, u′i, v
′
i, P and P ′ are known, whereas xi, yi, zi, wi and

w′i are unknown. Thus we have 6 equations in 5 unknowns and the vector
xi = (xi, yi, zi)� that minimizes the error can be computed.

4.4 Definition of Invariants

Next, invariants will be considered that can be derived from a set of corre-
sponding image points. Consider a set of image correspondences {ui} ↔ {u′i}
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sufficient to allow the computation of an essential matrix Q. The Q matrix may
be obtained from 7 or 8 point correspondences, or from various other configura-
tions such as 6 points correspondences of which 4 points are in the plane ([16])
or from 13 line correspondences in 3 images (see section 8).

According to the Proposition 4.9, it is easy to find a realization of Q as a pair
of camera matrices, P0 and P ′0. Once P0 and P ′0 are given, it is an easy matter
to compute the actual coordinates of object space points xi. The computed
positions xi satisfy the equations ui = P0xi and u′i = P

′
0xi and they are uniquely

determined by these conditions as long as ui, u′i and the two camera matrices
P0 and P ′0 are given. If a different pair of camera matrices are given, then
the computed values of the points xi will change. Thus, let P1 and P ′1 be a
different realization of Q. According to Theorem 4.7 there exists a non-singular
4 × 4 matrix H such that P1 = P0H and P ′1 = P ′0H . One now verifies that
P1(H−1xi) = P0xi = ui and similarly P ′1(H−1xi) = u′i. This means that
{H−1xi} are the locations of the object space points corresponding to the new
realization of Q by P1 and P ′1. This gives the following result.

Theorem 4.10. (Faugeras [6], Hartley et al. [9]) Given a set of image
correspondences {ui} ↔ {u′i} sufficient to determine the essential matrix, the
corresponding object space coordinates {xi} may be computed up to a collineation
of projective 3-space P3.

This theorem allows us to compute projective invariants associated with the
image correspondences. The general method is as follows

1. Use the image correspondences to compute the essential matrix Q

2. Select some realization of Q by camera matrices P and P ′. The realization
given in Proposition 4.9 is a possible choice.

3. Compute the object space coordinates {xi} corresponding to the given
camera matrices using for instance the method of Section 4.3.

4. Compute a projective invariant of the points {xi} in P3.

5 Invariants of point sets in P3

In this section some of the projective invariants of point sets in P3will be inves-
tigated. In particular, a projective invariant of a set of six points {xi} in P3will
be described.

Given a set of six points {xi} in P3, a coordinate system may be selected in
which the first five points have coordinates (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�,
(0, 0, 0, 1)� and (1, 1, 1, 1)�. The coordinates of the sixth point give rise to three
independent projective invariants of the six points.

Another formulation of these invariants is given by selecting x0 and x1 as base
points. Given any other point in P3, not collinear with x0 and x1, there exists a
unique plane passing through that point and the two base points x0 and x1. In
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this way, the four points x2,x3,x4 and x5 give rise to four planes all containing
the line joining x0 to x1. From the four planes it is possible to define a cross
ratio. In particular, if λ is any line in space, skew to the line passing through
x0 and x1, then λ intersects the four planes at points p2, p3, p4 and p5. The
cross ratio of these four points on the line λ is a projective invariant of the six
original points in P3.3

This is the analogy one dimension higher of the well known invariant of 5 points
in a plane. Given 5 points xi in P2, an invariant may be defined by selecting
one of the points x0 and joining it to each of the other points in the plane.
The cross ratio of the set of four lines so formed is a projective invariant of the
original five points.

There is another way in which invariants may be defined. Five points in general
position in the plane may be used to define a unique conic. The conic may be
parametrized by a parameter θ and this parametrization may be done in such
a way that three of the points have fixed known parameter values, 0, 1 and ∞.
The parameters for the other two points may be denoted by α and β, and these
two values are independent invariants of the set of five points.

An analogous method of describing the invariants of six points in P3also holds.
In particular, given 6 points in P3in general position, there exists a unique
twisted cubic c that passes through the six points ([13]), and c may be paramet-
rized by a parameter θ in such a way that three of the points receive parameters
0, 1 and ∞. The parameters of the other three points will then be α, β and γ,
and these values are projective invariants of the set of six points.

6 Line Invariants

In this section, invariants of lines in space will be described. It will be shown that
four lines in the 3-dimensional projective plane, P3give rise to two independent
invariants under collineations of P3. Two different ways of defining invariants
will be described, one algebraic and one geometric.

6.1 Computing Lines in Space

To be able to compute invariants of lines in space, it is necessary to be able to
compute the locations of the lines in P3from their images in two views. In gen-
eral, this is impossible as remarked in [14] unless other information is available.
Therefore, it will be assumed here that the essential matrix Q corresponding
to the two images is known. This may be derived from a sufficient number of
point correspondences, or else from line correspondences, as shown in section 8.
From the matrix Q, two camera transformations M and M ′ realizing Q can be
computed as in section 4.2.

Lines in the image plane are represented as 3-vectors. For instance, a vector l =
(l,m, n)� represents the line in the plane given by the equation lu+mv+nw =

3Both these definitions of invariants fail if three of the points happen to be collinear,
however, this case will be ignored for the sake of simplicity.

12



0. Similarly, planes in 3-dimensional space are represented in homogeneous
coordinates as a 4-dimensional vector π = (p, q, r, s)�.

The relationship between lines in the image space and the corresponding plane
in object space is given by the following lemma.

Lemma 6.11. Let λ be a line in P3and let the image of λ as taken by a camera
with transformation matrix P be l. The locus of points in P3that are mapped
onto the image line l is a plane, π, passing through the camera centre and
containing the line λ. It is given by the formula π = P�l.

Proof. A point x lies on π if and only if it is mapped to a point on the line l by
the action of the transformation matrix. This means that Px lies on the line l,
and so

l�Px = 0 . (8)
On the other hand, a point x lies on the plane π if and only if π�x = 0.
Comparing this with (8) lead to the conclusion that π� = l�P or π = P�l as
required. 
�

Now, given two images l and l′ of a line λ in space as taken by two cameras with
camera matrices P and P ′, the line λ is the intersection of the planes P�l and
P ′�l′. This line was computed assuming a particular realization of the essential
matrix Q by P and P ′. As with points, the choice of a different realization of
Q will correspond to a collineation of P3. The positions of a set of lines seen in
the two images will be determined by Q up to a collineation.

6.2 Algebraic Invariant Formulation

Consider four lines λi in space. A line may be given by specifying either two
points on the line or dually, two planes that meet in the line. It does not matter
in which way the lines are described. For instance, in the formulae (10) and
(11) below certain invariants of lines are defined in terms of pairs of points on
each line. The same formulae could be used to define invariants in which lines
are represented by specifying a pair of planes that meet along the line. Since
the method of determining lines in space from two view given in section 6.1
gives a representation of the line as an intersection of two planes, the latter
interpretation of the formulae is most useful.

Nevertheless, in the following description, of algebraic and geometric invariants
of lines, lines will be represented by specifying two points, since this method
seems to allow easier intuitive understanding. It should be borne in mind,
however, that the dual approach could be taken with no change whatever to the
algebra, or geometry.

In specifying lines, each of two points on the line will be given as a 4-tuple of
homogeneous coordinates, and so each line λi is specified as a pair of 4-tuples

λi =
(
(ai1, ai2, ai3, ai4)(bi1, bi2, bi3, bi4)

)
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Now, given two lines λi and λj , one can form a 4× 4 determinant, denoted by

|λiλj | = det



ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 . (9)

Finally, it is possible to define two independent invariants of the four lines by

I1(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ3| |λ2λ4|

(10)

and

I2(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ4| |λ2λ3|

. (11)

It is necessary to prove that the two quantities so defined are indeed invariants
under collineations of P3. First, it must be demonstrated that the expressions
do not depend on the specific formulation of the lines. That is, there are an
infinite number of ways in which a line may be specified by designating two
points lying on it, and it is necessary to demonstrate that choosing a different
pair of points to specify a line does not change the value of the invariants. To
this end, suppose that (ai1, ai2, ai3, ai4)� and (bi1, bi2, bi3, bi4)� are two distinct
points lying on a line λi, and that (a′i1, a

′
i2, a

′
i3, a

′
i4)
� and (b′i1, b

′
i2, b

′
i3, b

′
i4)
� are

another pair of points lying on the same line. Then, there exists a 2× 2 matrix
Di such that(

a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4

)
= Di

(
ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4

)
.

Consequently,

ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 =

(
Di 0
0 Dj

)
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4
a′j1 a′j2 a′j3 a′j4
b′j1 b′j2 b′j3 b′j4


 .

Taking determinants, it is seen that the net result of choosing a different rep-
resentation of the lines λi and λj is to multiply the value of |λiλj | by a factor
det(Di) det(Dj). Since each of the lines λi appears in both the numerator and
denominator of the expressions (10) and (11), the factors will cancel and the
values of the invariants will be unchanged.

Next, it is necessary to consider the effect of a change of projective coordinates.
If H is a 4 × 4 invertible matrix representing a coordinate transformation of
P3, then it may be applied to each of the points used to designate the four
lines. The result of applying this transformation is to multiply the determinant
|λiλj | by a factor det(H). The factors on the top and bottom cancel, leaving
the values of the invariants (10) and (11) unchanged. This completes the proof
that I1 and I2 defined by (10) and (11) are indeed projective invariants of the
set of four lines.

An alternative invariant may be defined by

I3(λ1, λ2, λ3, λ4) =
|λ1λ4| |λ2λ3|
|λ1λ3| |λ2λ4|

. (12)
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It is easily seen, that I3 = I1/I2. However, if |λ1λ2| vanishes, then both I1 and
I2 are zero, but I3 is in general non-zero. This means that I3 can not always
be deduced from I1 and I2. A preferable way of defining the invariants of four
lines is as a homogeneous vector

I(λ1, λ2, λ3, λ4) = (|λ1λ2| |λ3λ4| , |λ1λ3| |λ2λ4| , |λ1λ4| |λ2λ3|) . (13)

Two such computed invariant values are deemed equal if they differ by a scalar
factor. Note that this definition of the invariant avoids problems associated with
vanishing or near-vanishing of the denominator in (10) or (11).

The definitions of I1 and I2 are similar to the definition of the cross-ratio of
points on a line. It is well known that for four points on a line, there is only one
independent invariant. It may be asked whether I1 may be obtained from I2 by
some simple arithmetic combination. This is not the case, as will become clearer
when the connection of these algebraic invariants with geometric invariants is
shown.

6.3 Degenerate Cases

The determinant |λiλj | as given in (9) will vanish if and only if the four points
involved are coplanar, that is, exactly when the two lines are coincident (meet
in space). If all three components of the vector I(λ1, λ2, λ3, λ4) given by (13)
vanish, then the invariant is undefined. Enumeration of cases indicates that
there are two essentially different configurations of lines in which this occurs.

1. Three of the lines lie in a plane.

2. One of the lines meets all the other three.

The configuration where one line meets two of the other lines is not degenerate,
but does not lead to very much useful information, since two of the components
of the vector vanish. Up to scale, the last component may be assumed to equal
1, which means that two such configurations can not be distinguished. In fact
any two such configurations are equivalent under collineation.

6.4 Geometric Invariants of Lines

Consider four lines λi in general position (which means that they are not coinci-
dent) in P3. It will be shown that there exist exactly two further lines τ1 and τ2,
called transversals, which meet each of the four lines. Once this is established,
it is easy to define invariants.

The points of intersection of each of the four lines λi with one of the transversals
τj constitute a set of four points on a line in P3. The cross ratio of these points
is an invariant of the four lines λi. In this way, two invariants may be defined,
one for each of the two transversals.

Invariants may be defined in a dual manner as follows. Given a transversal, τj ,
meeting each of the lines λi, there exists, for each λi a plane denoted < τj , λi >,
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containing τj and λi. This gives rise to a set of four planes meeting in a common
line τj . The cross-ratio of this set of planes is an invariant of the lines λi.

It is easy to see that this dual construction does not give rise to any new invari-
ant. Specifically, consider the cross-ratio of the four planes meeting at τ1. The
cross-ratio of four planes meeting along a line is equal to the cross-ratio of the
points of intersection of the planes with any other non-coincident line in space.
The line τ2 is such a line. Hence, the cross ratio of the planes < τ1, λi > is equal
to the cross-ratio of the points < τ1, λi > ∩ τ2, where the symbol ∩ denotes the
point of intersection. However, plane < τ1, λi > meets τ2 in the point λi ∩ τ2.
In other words, the cross-ratio of the four planes meeting along τ1 is equal to
the cross-ratio of the four points along τ2, and vice-versa.

6.5 Existence of Transversals

To prove the existence of transversals, we start by considering three lines in
space.

Lemma 6.12. There exists a unique quadric surface containing three given lines
λ1, λ2 and λ3 in general position in P3.

Proof. For a reference to properties of quadric surfaces, the reader is referred to
[13]. It is shown there that a quadric surface is a doubly ruled surface containing
two families of lines A and B. Two lines from the same set A or B do not meet,
whereas any two lines chosen one from each set will always meet. Assuming
that the lines λi lie on a quadric surface, since they do not meet, they must
all come from the same family, which we assume to be A. Now consider any
point x on the quadric surface. There is a unique line passing through x and
belonging to the class B. This line must meet each of the lines λi, which belong
to class A.

We are led therefore to consider the locus of all points x in P3for which there
exists a line passing through x meeting all the lines λi. To this end, let x =
(x, y, z, t)� be a point on this locus. For each of the lines λi we may define
a plane πi passing through x and λi. The condition that there exists a line
passing through x meeting each λi means that the three planes πi meet along
that line.

Next, we formulate this last condition algebraically and give a method of com-
puting the formula for the quadric surface. As before, letting (ai1, ai2, ai3, ai4)�

and (bi1, bi2, bi3, bi4)� be two points on the line λi, the plane πi passing through
x = (x, y, z, t)� and the line λi may be computed as follows. Consider the
matrix 

 ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
x y z t


 (14)

The plane πi is given by the homogeneous vector (pi1, pi2, pi3, pi4)� where
(−1)jpij is the determinant of the 3 × 3 matrix obtained by deleting the j-
th column of (14). Consequently, each pij is a homogeneous linear expression in
x, y, z and t. Furthermore, since point (x, y, z, t)� lies on this plane it follows
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that
xpi1 + ypi2 + zpi3 + tpi4 = 0 . (15)

Now the fact that the three planes πj meet along a common line translates into
the algebraic fact that the rank of the matrix

P =


 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34




is 2. This is equivalent to the condition

det
(
P (j)

)
= 0 for all j , (16)

where P (j) is the matrix obtained by removing the j-th column of P . Since
each entry pij of P is a linear homogeneous expression in the variables x, y, z
and t, the determinant det

(
P (j)

)
is a cubic homogeneous polynomial. A point

on the required locus must satisfy the condition det
(
P (j)

)
= 0 for j = 1, . . . , 4.

However, because of condition (15) these four equations are not independent.
In particular, if pj represents the j-th column of P , then (15) implies a relation

xp1 + yp2 + zp3 + tp4 = 0

Then
xdet

(
P (4)

)
= xdet (p1 p2 p3)
= det (xp1 p2 p3)
= det (−yp2 − zp3 − tp4 p2 p3)
= det (−tp4 p2 p3)
= −t det (p2 p3 p4)
= −t det

(
P (1)

)
.

(17)

This equation implies that x divides det(P (1)) and t divides det(P (4)). Fur-
thermore, applying the same argument to other coordinates gives rise to an
equation

det(P (1))/x = − det(P (2))/y = det(P (3))/z = − det(P (4))/t = R(x, y, z, t)

where R(x, y, z, t) is some homogeneous degree-2 polynomial. Then the defining
equations (16) of the locus become

xR(x, y, z, t) = yR(x, y, z, t) = zR(x, y, z, t) = tR(x, y, z, t) = 0 . (18)

This implies that either R(x, y, z, t) = 0 or x = y = z = t = 0. The latter
condition can be discounted, since (0, 0, 0, 0) is not a valid set of homogeneous
coordinates. Consequently, the desired locus is described by the degree-2 poly-
nomial equation R(x, y, z, t) = 0, and is therefore a quadric surface. Since it is
easily verified that the four original lines λi lie on this surface, the proof of the
lemma is complete. 
�

It is now a simple matter to prove the existence of transversals.

Theorem 6.13. There exist exactly two transversals to four lines in general
position in P3.
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Proof. We choose three of the lines λ1, λ2 and λ3 and construct the quadric
surface S that they all line on. Let x1 and x2 be the two points of intersection of
the fourth line λ4 with the quadric surface. The construction of S in Lemma 6.12
shows that any transversal to lines λ1, λ2 and λ3 must lie on S. Further, the
lines λ1, λ2 and λ3 all belong to one of the families, A, of ruled lines on the
quadric surface, S. Let τ1 and τ2 be the lines in the other family B passing
through x1 and x2. Then τ1 and τ2 are the two transversals to all four lines. 
�

Of course, it is possible that λ4 does not meet the surface S in any real point, or
is tangent to S. The statement of the theorem must be interpreted as allowing
complex or double solutions. In the case of four real lines in space, there are
either two real transversals or two conjugate complex traversals. In the case of
complex traversals, there is no conceptual difficulty in defining the invariants
as in the real case. The cross-ratio of points of intersections of the lines with
the two conjugate transversals will result in two invariants which are complex
conjugates of each other.

Various degenerate sets of lines also allow two transversals. For instance suppose
that λ1 and λ2 are coincident, and so are λ3 and λ4. One transversal to the four
lines passes through the two points of intersection of the pairs of lines. The other
transversal is the line of intersection of the two planes defined by λ1, λ2 and by
λ3, λ4. The cross-ratio invariant corresponding to the first transversal is zero,
but the invariant corresponding to the second transversal is in general non-zero
and is a useful invariant for this geometric configuration. This is similar to what
happens for the algebraically defined invariants (see Section 6.2).

6.6 Independence and Completeness

I shall now show that the two geometrically defined invariants are independent
and together completely characterize the set of four lines up to a collineation of
P3.

To show independence, we start by selecting τ1 and τ2, two arbitrary non-
intersecting lines in space to serve as transversals. Next, we mark off points
a1, a2, a3 and a4 along τ1 in such a way that their cross ratio is equal to any
arbitrarily chosen invariant value. Similarly, mark off along τ2 points b1, b2,
b3 and b4 having another arbitrarily chosen cross-ratio invariant value. Now,
joining ai to bi for each i gives a set of four lines having the two arbitrarily
chosen invariants.

Next, it will be shown that the two invariants completely characterize the set
of four lines up to a collineation. Consequently, let four lines in space have
two given cross-ratio invariant values with respect to transversals τ1 and τ2
respectively. Let the points of intersection of the four lines with τ1 be a1, a2, a3

and a4 and the intersection points with τ2 be b1, b2, b3 and b4. Let a second set
of lines with the same invariants be given, with transversals τ ′j and intersection
points a′i and b′i. Our goal is to demonstrate that there is a collineation taking
τj to τ ′j for j = 1, 2, taking points ai to a′i and bi to b′i for i = 1, . . . 4. It will
follow that the collineation takes one set of lines λi onto the other set.

Choosing two points on each of τ1 and τ2, four points in all, and two points on
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each of τ ′1 and τ
′
2 a further four points, there exists a collineation taking the

first set of four points to the second set, and hence taking τ1 to τ ′1 and τ2 to
τ ′2. Suppose that this collineation takes ai to a′′i and bi to b′′i , it remains to
be shown that there exists a collineation preserving τ ′1 and τ

′
2 and taking a′′i to

a′i and b′′i to b′i. Without loss of generality it may be assumed that τ
′
1 is the

line x = y = 0 and that τ ′2 is the line z = t = 0. With this choice, we see that

a collineation of P3represented by a matrix of the form
(
H1 0
0 H2

)
, where

each Hj is a 2×2 block, maps each τ ′j to itself. Furthermore each Hj represents
a homography of the line τ ′j . Since the points a′i and a′′i on τ

′
1 have the same

cross-ratio, there is a homography of τ ′1 taking a′i to a′′i for i = 1, . . . , 4, and
the same can be said for the points b′i and b′′i on τ2. Hence by independent
choice of the two 2× 2 matrices H1 and H2, both mappings can be carried out
simultaneously and the proof is complete.

6.7 Existence of an Isotropy

Four lines in P3can be represented by a total of 16 independent parameters. On
the other hand, there are 15 degrees of freedom for collineations of P3. This
suggests that there should be only one invariant for four lines in space, but we
have seen that there are two. The discrepancy arises because of the existence
of an isotropy ([11]). To understand this, we need to determine the subgroup of
all collineations of P3that fix four given lines. Any such collineation will also fix
the two transversals as well as the four points of intersection of the lines with
each transversal. Since four points on each transversal are fixed, every point
on the transversal must be fixed. This shows that a collineation of P3fixes four
given lines if and only if it fixes the two transversals pointwise. Assuming as
before that the two transversals are the lines x = y = 0 and z = t = 0, it is
easily seen that a collineation fixes the transversals pointwise if and only if it
is represented by a matrix of the form diag(k1, k1, k2, k2) where k1 and k2 are
two independent constants. Allowing for an arbitrary scale factor in the matrix,
this implies that there is a one-parameter subgroup of collineations fixing the
four lines. This reduces the number of degrees of freedom of the group action
of collineations of P3on sets of four lines in space to 14, and explains why there
are two independent invariants.

6.8 Relationship of Geometric to Algebraic Invariants

The fact that for real lines the algebraic invariants defined in Section 6.2 must
be real whereas the geometric invariants may be complex indicates that they
are not the same. However, since the geometric invariants completely determine
the four lines up to collineation, it must be possible to determine the algebraic
invariants given the values of the geometric ones. Consider four lines with
geometric invariants α and β. We desire to determine the values of the algebraic
invariants given by (13). To this end, we may assume that the transversals are
the lines x = y = 0 and z = t = 0 and that the points of intersections of the
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four lines with the transversals have coordinates

a2 = (0, 0, 0, 1)�

a1 = (0, 0, α, 1)�

a3 = (0, 0, 1, 1)�

a4 = (0, 0, 1, 0)�

and
b2 = (0, 1, 0, 0)�

b1 = (β, 1, 0, 0)�

b3 = (1, 1, 0, 0)�

b4 = (1, 0, 0, 0)� .

These points have cross-ratio invariants α and β on the transversal lines x =
y = 0 and z = t = 0 respectively.

From this it is easy to compute the value of the invariant (13) to be

I = (αβ, 1, 1 + αβ − α− β) . (19)

Hence, it is easy to compute the algebraic invariants from the geometric ones.
Similarly, given I, it is easy to solve (19) for α and β, which indicates that the
algebraic invariant (13) is complete.

7 Other Configurations

Since projective invariants exist for six points in P3, it would be convenient
if such invariants could be computed from just two view of six points. The
method described requires the computation of the essential matrix in order to
compute invariants of point configurations. The computation of the essential
matrix requires eight points, or at the very least seven points, with possible
ambiguity as described in section 3. This does not mean that invariants can not
be computed in other ways. This question will be investigated now.

We begin by considering six points viewed in a single image. Let the points in
space be denoted x1, . . . ,x6, and their coordinates in the image be u1, . . . ,u6.
If the camera matrix is given by P , then the basic relationship is ui = Pxi. We
assume that ui = (wiui, wivi, wi)� where each ui and vi is known, but wi is
not. Further, let the rows of P be vectors p1

�, p2
� and p3

�. Each point gives
rise to three equations

wiui = p1
�xi

wivi = p2
�xi

wi = p3
�xi .

Cancelling wi in the usual way leads to two equations

uip3
�xi = p1

�xi
vip3

�xi = p2
�xi .

(20)

These equations are linear in the entries of P , and so six points generate a set
of 12 equations in 12 unknowns which may be written in the form Ap = 0. The
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vector p is made up of the entries of the matrix P , and the coefficient matrix A
has entries which are linear expressions in the coordinates (xi, yi, zi, ti)�) of the
various points xi. Since this system of equations must have a non-zero solution
for p, it follows that det(A) = 0. This gives rise to a polynomial of degree 12
in the xi, yi, zi and ti. Any set of points which are mapped onto the observed
image points by an unknown camera must satisfy this polynomial equation.

Now, by an appropriate choice of projective coordinates, it may be assumed that
the first five points xi have coordinates (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�,
(0, 0, 0, 1)� and (1, 1, 1, 1)�. The position of the sixth point x6 = (x, y, z, t)�

is not determined. The equation det(A) = 0 now reduces to a second degree
polynomial. This proves the following result.

Proposition 7.14. Suppose a set of six points xi are mapped to points ui in
an image. If projective coordinates are chosen for P3such that points x1, . . . ,x5

have given canonic coordinates, then the sixth point must lie on a quadric sur-
face, determined only by the coordinates of the image points ui.

If the set of points are seen in two views, then in a canonic coordinate system,
the sixth point must lie on the intersection of two quadric surfaces, which in
general will be a fourth-degree curve. For three views, the sixth point must lie
on the intersection of three quadric surfaces. In general three quadric surfaces
will meet in 8 points, including complex points. The points can be computed
by solving a set of three simultaneous second degree equations. This gives the
following corollary to Proposition 7.14.

Proposition 7.15. The spatial locations of almost all sets of six points in P3,
can be determined up to collineations of P3and up to 8-fold ambiguity by their
locations in three images.

Once the points xi are determined, equations (20) can be used to solve for the
camera matrices, and then the essential matrices for each pair can be computed
from Theorem 4.4.

7.1 Degrees of Freedom

The previous argument can be formulated in terms of degrees of freedom. Sup-
pose that the images of n points are known in k views. As was shown above,
this gives rise to 2nk equations. On the other hand, up to collineations of P3,
n points in space have a total of 3n − 15 degrees of freedom. In addition, the
k views have 11k degrees of freedom. In order for the positions of the points to
be determined, we need more equations than degrees of freedom. In summary :

# D.O.F = 3n− 15 + 11k ,
# equations = 2nk .

To solve for the point locations,

2nk ≥ 3n+ 11k − 15 . (21)
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Particular cases show that with n = 7 points, k = 2 views will suffice, for n = 6
points, k = 3 views are sufficient. and for n = 5 no solution is possible however
many views are given. These results confirm the previous results of this paper.

For lines, the situation is not so favourable. Suppose that n lines are visible
in k views. As with points, each line in each view gives rise to two equations.
In particular, suppose λ is a line in P3and l is the image of that line as seen
by a camera with camera matrix P . Let x be a point on λ, then as shown in
(8) lPx = 0. Since the line λ can be specified by two points, two independent
equations arise.

On the other hand, each line in P3has four degrees of freedom, so up to
collineations, n lines have a total of 4n − 15 degrees of freedom, as long as
n ≥ 5.4 In summary :

# D.O.F = 4n− 15 + 11k ,
# equations = 2nk .

To solve for the point locations,

2nk ≥ 4n+ 11k − 15 . (22)

In particular for 6 lines at least 9 views are necessary. On the other hand, for
just 3 views, at least 9 lines are necessary.

As with points, once the lines are known, the camera matrices may be com-
puted using (8), and the essential matrices of each pair may be computed using
Theorem 4.4.

I have shown that being able to compute locations of points and lines up to
collineation of P3is equivalent to being able to compute the essential matrix
for each pair of views. Consequently the bounds given in (21) and (22) are
minimum requirements for the computation of the essential matrices of all the
views. The necessity for at least 9 lines in 3 views just demonstrated should
be compared with section 8 in which a linear method is given for computing Q
from 13 lines in 3 views.

8 Determination of the Essential Matrix from
Line Correspondences

This section will investigate the computation of the essential matrix of an uncal-
ibrated camera from a set of line correspondences in three views. As discussed
in [14], no information whatever about camera placements may be derived from
any number of line-to-line correspondences in two views. In [14] the motion
and structure problem from line correspondences is considered. An assumption
made in that paper is that the camera is calibrated so that a pixel in each im-
age corresponds to a uniquely specified ray in space relative to the location and
placement of the camera. It will be shown in this section that this assumption
is not necessary and that in fact the same approach can be adapted to apply to
the computation of the essential matrix for uncalibrated cameras.

4As shown in section 6.7 four lines have two degrees of freedom
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It will be assumed that three different views are taken of a set of fixed lines in
space. That is, it is assumed that the cameras are moving and the lines are fixed,
which is opposite to the assumption made in [14]. It will not even be assumed
that the images are taken with the same camera. Thus the three cameras
are uncalibrated and possibly different. The notation used in this section will
be similar to that used in [14]. Since we are now considering three cameras,
the different cameras will be distinguished using subscripts rather than primes.
Consequently, the three cameras will be represented by matrices

(M0 | 0) , (M1 | −M1t1) and (M2 | −M2t2)

where t1 and t2 are the positions of the cameras with respect to the position of
the zero-th camera, andMi is a non-singular matrix for each i. For convenience,
the coordinate system has been chosen so that the origin is at the position of
the zero-th camera, and so t0 = 0.

Now, consider a line in space passing through a point x and with direction given
by a vector 0. Let Ni be the normal to the plane passing through the center of
the i-th camera and the line. Then, Ni is given by the expression

Ni = (x− ti)× 0 = x× 0− ti × 0 .

Then for i = 1, 2,

N0 ×Ni = (x× 0)× (x× 0− ti × 0)
= −(x× 0)× (ti × 0)
= −((x× 0) . 0)ti − ((x× 0) .ti) 0)
= (N0.ti) 0

(23)

However, for i = 1, 2,

Ni.ti = ((x − ti)× 0) .ti
= (x× 0) .ti − (ti × 0) .ti
= N0.ti

Combined with the result of (23) this yields the expression

N0 ×Ni = (Ni.ti) 0 (24)

for i = 1, 2. From this it follows, as in [14] that

(N2.t2)N0 ×N1 = (N1.t1)N0 ×N2 (25)

Now, let ni be the representation in homogeneous coordinates of the image of
the line 0 in the i-th view. According to Lemma 6.11, Ni is the normal to the
plane (Mi | −Miti)�ni. Consequently,

Ni =Mi
�ni .

Applying this to (25) lead to

(n2
�M2t2)(M0

�n0 ×M1
�n1) = (n1

�M1t1)(M0
�n0 ×M2

�n2) (26)

We now state without proof a simple formula concerning cross products :
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Lemma 8.16. If M is any 3× 3 matrix, and u and v are column vectors, then

(Mu)× (Mv) =M∗(u× v) . (27)

Applying (27) to each of the two cross products in (26) leads to

M−1
0 (n2

�M2t2)(n0 ×M∗0M1
�n1) =M−1

0 (n1
�M1t1)(n0 ×M∗0M2

�n2) . (28)

Now, cancelling M−1
0 from each side and combining the two cross products into

one gives

n0 ×
(
(n2
�M2t2)M∗0M1

�n1 − (n1
�M1t1)M∗0M2

�n2

)
= 0 . (29)

As in [14], we write

B = (n2
�M2t2)M∗0M1

�n1 − (n1
�M1t1)M∗0M2

�n2 (30)

then n0 ×B = 0. Now, writing

M∗0M1
� =


 r1

�

r2
�

r3
�




M∗0M2
� =


 s1

�

s2
�

s3
�




M1t1 = t
M2t2 = u

(31)

vector B can be written in the form

B =


 n1

�(r1u� − ts1
�)n2

n1
�(r2u� − ts2

�)n2

n1
�(r3u� − ts3

�)n2


 =


 n1

�En2

n1
�Fn2

n1
�Gn2


 . (32)

Where E, F and G are defined by this formula. Therefore, we have the basic
equation

n0 ×


 n1

�En2

n1
�Fn2

n1
�Gn2


 = 0 . (33)

This is essentially the same as equation (2.13) in [14], derived here, however, for
the case of uncalibrated cameras. As remarked in [14], for each line 0, equation
(33) gives rise to two linear equations in the entries of E, F and G. Given 13
lines it is possible to solve for E, F and G, up to a common scale factor.

We now define a matrix Q01 by

Q01 = (t× r1, t× r2, t× r3)

This may be written as Q01 = [t]× (r1, r2, r3). Then, we see that

Q01
� = −


 r1

�

r2
�

r3
�


[t]×

and in view of the definitions of ri and t given in (31), we have

Q01
� =M∗0M1

�[M1t1]×
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from which it follows, using Proposition 4.4 that Q01 is the essential matrix
corresponding to the (ordered) pair of transformation matrices (M0 | 0) and
(M1 | −M1t1).

From the definition of E = r1u�− ts1
� it follows that E�(t×r1) = 0. If E has

rank 2, then (t × r1) can be determined up to an unknown scale factor. If the
same way, if F and G have rank 2, then (t × ri) can be similarly determined.
Since these three vectors are the columns of the essential matrix Q01, it means
that Q01 can be determined up to individually scaling its columns. How to
handle the case where E, F or G does not have rank 2 is discussed in [14].

Now, by interchanging the roles of the first and second cameras in this analysis,
it is possible to determine the matrixQ10 up to individual scalings of its columns.
However, since Q01 = Q10

� the matrix Q01 can be determined up to scale.

9 Experimental Results

Three images of a pair of wooden blocks representing houses were acquired
and vertices and edges were extracted. The images are shown in Figures 1, 2,
and 3. Corresponding edges and vertices were selected by hand from among
those detected automatically. The edges and vertices shown in Fig. 4 were
chosen. There were 13 edges and 15 lines extracted from each of the images.
The dotted edges were not visible in all images and were not chosen. Vertices
are represented by numbers and edges by letters in the figure. Because of the
way edges and vertices were found by the segmentation algorithm, the edges do
not always pass precisely through the indicated vertices, but sometimes through
a closely neighboring vertex. On other occasions, the full edge was not detected
as a single, but was broken into several pieces. This is usual with most edge
detection algorithms, and is a source of error in the computation of invariants.

The essential matrices Q12 for the first and second images and Q23 for the
second and third images were computed from the point matches.

9.1 Comparison of Invariant Values

The invariants described in this paper are represented as homogeneous vectors.
Two such vectors are considered equivalent if they differ by a non-zero scale
factor. Because of arithmetic error and image noise, two computed invariant
values will rarely be exactly proportional. In order to compare two such com-
puted invariant values (perhaps when attempting to match an object with a
reference object), each homogeneous vector is multiplied by a scale factor cho-
sen to normalize its length to 1. This normalization determines the vector up
to a multiplication by a factor ±1. Two such normalized homogeneous vector
invariants v1 and v2 are deemed close if v1 is close to v2 or to −v2 using a
Euclidean norm. Correspondingly, a metric may be defined by

d(v1,v2) =
(
1−

∣∣∣∣ v1.v2

||v1|| ||v2||

∣∣∣∣
)1/2

. (34)

For any v1 and v2, distance d(v1,v2) lies between 0 and 1.
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9.2 Invariants of 6 points

The invariants of six points {x1,x2, . . .x6} were computed by finding a pro-
jective coordinate frame in which the points x1, . . . ,x5 have coordinates
(1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�, (0, 0, 0, 1)� and (1, 1, 1, 1)� respectively.
The homogeneous coordinates or the sixth point, x6 in that frame are the de-
sired invariants of the original set of points. Two points are compared using the
metric (34). Six sets of six points were chosen for computation of invariants.
The sets of points were chosen arbitrarily by hand. The six sets of six lines
chosen as in the following table which shows the indices of the lines as given in
Fig. 4.

S1 = {1, 2, 3, 6, 9, 10} ,
S2 = {2, 4, 6, 8, 10, 12} ,
S3 = {1, 3, 5, 7, 9, 11} ,
S4 = {1, 2, 3, 6, 7, 8} ,
S5 = {1, 4, 7, 10, 13, 12} ,
S6 = {2, 5, 8, 11, 12, 13}

Table (35) shows the invariant of the sets of six points as computed from the
first and second and from the second and third images.

0.0266367 0.970462 0.975994 0.619897 0.847914 0.823575
0.995416 0.0155304 0.0648768 0.841029 0.252926 0.548214
0.967114 0.066834 0.0136234 0.863063 0.276384 0.516868
0.617346 0.830651 0.873538 0.0166752 0.704992 0.752215
0.861618 0.238502 0.289846 0.708237 0.00561718 0.590905
0.828638 0.54423 0.519272 0.719518 0.574651 0.0263892

(35)

The (i, j)-th entry of the table shows the distance according to the metric (34)
between the invariant of set Si as computed from images 1 and 2 with that of
set Sj as computed from images 2 and 3. The diagonal entries of the matrix
(in bold) should be close to 0.0, which indicates a match. The matrix should
be approximately symmetric, which is in fact the case.

The off-diagonal entries are not close to zero, except for the (2, 3) entry – but
even that entry is greater than the diagonal entries. This indicates that the
six-point invariant is very good at discriminating between sets of points with
different geometrical structure. Evidently, sets of points S2 and S3 are quite
similar in arrangement, at least up to collineation.

9.3 Invariants of 4 lines

The same experiment was carried out with six sets of four lines. First the
essential matrices were computed using point matches and then the line invariant
(13) was computed for each pair of line sets and compared using the metric (34).
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The sets of lines chosen are given in the following table (refer to Fig. 4).

S1 = {B,C, J,K}
S2 = {B,G, J,N}
S3 = {A,B,H, I}
S4 = {B,D,E,G}
S5 = {A,C,O, J}
S6 = {B, I, L,N}

Table (36 shows the results. The only bad entry in this matrix is in the position
(4, 4). This is because of the fact that the four lines chosen contained three
coplanar lines (lines B, D and E). This causes the values of the invariant to be
indeterminate (that is (0, 0, 0)), and shows that such instances must be detected
and avoided.

0.0128906 0.674135 0.302728 0.688589 0.642501 0.449448
0.646976 0.0337898 0.741489 0.83827 0.706921 0.221636
0.0619738 0.691264 0.229193 0.707536 0.708276 0.461339
0.286604 0.607681 0.182331 0.890303 0.855833 0.383939
0.656635 0.72182 0.899625 0.718942 0.00349575 0.694361
0.473184 0.239022 0.555218 0.947915 0.719282 0.0332098

(36)

Once again, the four-line invariant is shown to be a powerful discriminator
between sets of four lines.

Acknowledgement I am indebted to Joe Mundy for introducing me to the
subject of projective invariants, and for many enlightening conversations during
the preparation of this paper.
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Figure 1. First view of houses

Figure 2. Second view of houses
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Figure 3. Third view of houses

Figure 4. Selected vertices and edges
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