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Abstract

The fundamental matrix is a basic tool in the analysis of scenes taken with two
uncalibrated cameras, and the 8-point algorithm is a frequently cited method
for computing the fundamental matrix from a set of 8 or more point matches.
It has the advantage of simplicity of implementation. The prevailing view is,
however, that it is extremely susceptible to noise and hence virtually useless for
most purposes. This paper challenges that view, by showing that by preceding
the algorithm with a very simple normalization (translation and scaling) of the
coordinates of the matched points, results are obtained comparable with the
best iterative algorithms. This improved performance is justified by theory and
verified by extensive experiments on real images.

1 Introduction

The 8-point algorithm for computing the essential matrix was introduced by
Longuet-Higgins in a now classic paper ([1]). In that paper the essential matrix
is used to compute the structure of a scene from two views with calibrated
cameras. The great advantage of the 8-point algorithm is that it is linear, hence
fast and easily implemented. If 8 point matches are known, then the solution
of a set of linear equations is involved. With more than 8 points, a linear least
squares minimization problem must be solved. The term 8-point algorithm will
be used in this paper to describe this method whether only 8 points, or more
than 8 points are used.

The essential property of the essential matrix is that it conveniently en-
capsulates the epipolar geometry of the imaging configuration. One notices
immediately that the same algorithm may be used to compute a matrix with
this property from uncalibrated cameras. In this case of uncalibrated cameras
it has become customary to refer to the matrix so derived as the fundamental
matrix. Just as in the calibrated case, the fundamental matrix may be used
to reconstruct the scene from two uncalibrated views, but in this case only up
to a projective transformation ([2, 3]). Apart from scene reconstruction, the
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fundamental matrix may also be used for many other tasks, such as image recti-
fication ([4]), computation of projective invariants ([5]), outlier detection ([6, 7])
and stereo matching ([8]);

Unfortunately, despite its simplicity the 8-point algorithm has often been
criticized for being excessively sensitive to noise in the specification of the
matched points. Indeed this belief has become the prevailing wisdom. Con-
sequently, because of its importance, many alternative algorithms have been
proposed for the computation of the fundamental matrix. See [9, 10] for a de-
scription and comparison of several algorithms for finding the fundamental ma-
trix. Without exception, these algorithms are considerably more complicated
than the 8-point algorithm. Other iterative algorithms have been described
(briefly) in [11, 12].

It is the purpose of this paper to challenge the common view that the 8-
point algorithm is inadequate and markedly inferior to the more complicated
algorithms. The poor performance of the 8-point algorithm can probably be
traced to implementations that do not take sufficient account of numerical con-
siderations, most specifically the condition of the set of linear equations being
solved. It is shown in this paper that a simple transformation (translation and
scaling) of the points in the image before formulating the linear equations leads
to an enormous improvement in the condition of the problem and hence of the
stability of the result. The added complexity of the algorithm necessary to do
this transformation is insignificant.

It is not claimed here that this modified 8-point algorithm will perform quite
as well as the best iterative algorithms. However it is shown by thousands of
experiments on many images that the difference is not very great between the
modified 8-point algorithm and iterative techiques. Indeed the 8-point algorithm
does better than some of the iterative techniques.

2 Outline of the 8-point Algorithm

Notation Vectors are represented by bold lower case letters, such as u, and all
such vectors are thought of as being column vectors unless explicitly transposed
(for instance u� is a row vector). Vectors are multiplied as if they were matrices.
In particular, for vectors u and v, the product u�v represents the inner product,
whereas uv� is a matrix. The norm of a vector f is equal to the square root
of the sum of squares of its entries, that is the Euclidean length of the vector.
Similarly, for matrices, we use the Frobenius norm, which is defined to be the
square root of the sum of squares of the entries of the matrix.

Linear solution for the fundamental matrix. The fundamental matrix
is defined by the equation

u′�Fu = 0 (1)
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for any pair of matching points u′ ↔ u in two images. Given sufficiently many
point matches u′i ↔ ui, (at least 8) this equation (1) can be used to compute the
unknown matrix F . In particular, writing u = (u, v, 1)� and u′ = (u′, v′, 1)�

each point match gives rise to one linear equation in the unknown entries of
F . The coefficients of this equation are easily written in terms of the known
coordinates u and u′. Specifically, the equation corresponding to a pair of points
(u, v, 1) and (u′, v′, 1) will be

uu′F11 +uv′F21 +uF31 +vu′F12 +vv′F22 +vF32 +u′F13 +v′F23 +F33 = 0 . (2)

The row of the equation matrix may be represented as a vector

(uu′, uv′, u, vu′, vv′, v, u′, v′, 1) . (3)

From all the point matches, we obtain a set of linear equations of the form

Af = 0 (4)

where f is a 9-vector containing the entries of the matrix F , and A is the equation
matrix. The fundamental matrix F , and hence the solution vector f is defined
only up to an unknown scale. For this reason, and to avoid the trivial solution
f , we make the additional constraint

||f || = 1 (5)

where ||f || is the norm of f1.
Under these conditions, it is possible to find a solution to the system (4)

with as few as 8 point matches. With more than 8 point matches, we have an
overspecified system of equations. Assuming the existence of a non-zero solution
to this system of equations, we deduce that the matrix A must be rank-deficient.
In other words, although A has 9 columns, the rank of A must be at most 8.
In fact, except for exceptional configurations ([13]) the matrix A will have rank
exactly 8, and there will be a unique solution for f .

This previous discussion assumes that the data is perfect, and without noise.
In fact, because of inaccuracies in the measurement or specification of the
matched points, the matrix A will not be rank-deficient – it will have rank
9. In this case, we will not be able to find a non-zero solution to the equa-
tions Af = 0. Instead, we seek a least-squares solution to this equation set. In
particular, we seek the vector f that minimizes ||Af || subject to the constraint
||f || = f�f = 1. It is well known (and easily derived using Lagrange multipliers)
that the solution to this problem is the unit eigenvector of corresponding to the
smallest eigenvalue of A�A. Note that since A�A is positive semi-definite and
symmetric, all its eigenvectors are real and positive, or zero. For convenience,
(though somewhat inexactly), we will call this eigenvector the least eigenvector
of A�A. An appropriate algorithm for finding this eigenvector is the algorithm
of Jacobi ([14]) or the Singular Value Decomposition ([14, 15]).

1An alternative is to set F33 = 1 and solving a linear least squares minimization problem.
The general conclusions of this paper are equally valid for this version of the algorithm.
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The singularity constraint. An important property of the fundamental
matrix is that it is singular, in fact of rank 2. Furthermore, the left and right
null-spaces of F are generated by the vectors representing (in homogeneous
coordinates) the two epipoles in the two images. Most applications of the fun-
damental matrix rely on the fact that it has rank 2. The matrix F found by
solving the set of linear equations (4) will not in general have rank 2, and we
should take steps to enforce this constraint. The most convenient way to enforce
this constraint is to correct the matrix F found by the solution of (4). Matrix F
is replaced by the matrix F ′ that minimizes the Frobenius norm ||F −F ′|| sub-
ject to the condition detF ′ = 0. A convenient method of doing this is to use the
Singular Value Decomposition (SVD). In particular, let F = UDV � be the SVD
of F , where D is a diagonal matrix D = diag(r, s, t) satisfying r ≥ s ≥ t. We let
F ′ = Udiag(r, s, 0)V �. This method was suggested by Tsai and Huang ([16])
and has been proven to minimize the Frobenius norm of F − F ′, as required.

Minimizing the difference between F and F ′ in Frobenius norm has little
theoretical justification, and in fact there are other methods of enforcing the
singularity constraint a posteriori which have more theoretical basis (for instance
[17]). However, as will be seen this method gives good results.

Thus, the 8-point algorithm for computation of the fundamental matrix may
be formulated as consisting of two steps, as follows.

Linear solution. Given point matches u′i ↔ ui, solve the equations u′i
�Fui =

0 to find F . The solution is the least eigenvector, f of A�A, where A is
the equation matrix.

Constraint Enforcement. Replace F by F ′, the closest singular matrix to F
under Frobenius norm. This is done using the Singular Value Decompo-
sition.

The algorithm thus stated is extremely simple, and rapid to implement,
assuming the availability of a suitable linear algebra library (for instance [14]).

3 Transformation of the Input

Image coordinates are sometimes given with the origin at the top-left of the
image, and sometimes with the origin at the centre. The question immediately
occurs whether this makes a difference to the results of the 8-point algorithm
for computing the fundamental matrix. More generally, to what extent is the
result of the 8-point algorithm dependent on the choice of coordinates in the
image. Suppose, for instance the image coordinates were changed by some
affine or even projective transformation before running the algorithm. Will this
materially change the result? That is the question that we will now consider.

Suppose that coordinates u in one image are replaced by û = Tu, and
coordinates u′ in the other image are replaced by û′ = T ′u′. Substituting in
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the equation u′�Fu = 0, we derive the equation û′�T ′−�FT−1û = 0, where
T ′−� is the inverse transpose of T ′. This relation implies that T ′−�FT−1 is the
fundamental matrix corresponding to the point correspondences û′ ↔ û. An
alternative method of finding the fundamental matrix is therefore suggested, as
follows.

1. Transform the image coordinates according to transformations ûi = Tui
and û′i = T ′u′i.

2. Find the fundamental matrix F̂ corresponding to the matches û′i ↔ ûi.

3. Set F = T ′�F̂T .

The fundamental matrix found in this way corresponds to the original un-
transformed point correspondences u′i ↔ ui. What choice should be made for
the transformations T and T ′ will be left unspecified for now. First, we need to
determine whether carrying out this transformation has any effect whatever on
the result.

As verified above, u′�Fu = û′�F̂ û, where F̂ is defined by F̂ = T ′−�FT−1.
Thus, if u′�Fu = ε, then also û′�F̂ û = ε. Thus, there is a one-to-one cor-
respondence between F and F̂ giving rise to the same error. It may appear
therefore that the matrices F and F̂ minimizing the error ε (or more exactly,
the sum of squares of errors corresponding to all points) will be related by the
formula F̂ = T ′−�FT−1, and hence one may retrieve F as the product T ′�F̂ T .
This conclusion is false however. For, although F and F̂ so defined give rise
to the same error ε, the condition ||F || = 1, imposed as a constraint on the
solution, is not equivalent to the condition ||F̂ || = 1. In particular, there is no
one-to-one correspondence between F and F̂ giving rise to the same error ε,
subject to the constraint ||F || = ||F̂ || = 1.

This is a crucial point, and so we will look at it from a different point of
view. A set of point correspondences u′i ↔ ui give rise to a set of equations of
the form Af = 0. If now we make the transformation ûi = Tui and û′i = T ′u′i,
then the set of equations will be replaced by a different set of equations of the
form Âf̂ = 0. One may verify, in particular that the matrix Â may be written
in the form Â = AS where S is a 9 × 9 matrix that may be written explicitly
in terms of the entries of T and T ′ (but it is not very important exactly how).
Therefore one is led to consider the two sets of equations Af = 0 and AS f̂ = 0.
One may guess that the least-squares solutions to these two sets of equations
will be related according to f̂ = S−1f . If this were so, then replacing f̂ by S f̂ one
once more retrieves the original solution f . The mapping f̂ �→ S f̂ corresponds
precisely to the matrix mapping F̂ �→ T ′�F̂ T .

However, things are not that simple. Perhaps the least-squares solutions to
the two sets of equations Af = 0 and AS f̂ = 0 are not so simply related. The
solution f to the system Af = 0 is the least eigenvector of the matrix A�A. Is
it so that f̂ = S−1f is the least eigenvector of (AS)�(AS) ? Letting λ be the

5



least eigenvalue of A�A, we verify :

S�A�AS f̂ = S�A�ASS−1f

= S�A�Af
= S�λf

= λS�S f̂
�= λf̂ .

Thus, in fact, S−1f is not the least eigenvector of (AS)�AS. In fact it is not an
eigenvector at all.

Let us see how significant this effect is. We take the example that T and
T ′ are simply scalings of the coordinates, in fact, multiplication of the coor-
dinates by a factor of 10. These transformations are represented by diagonal
matrices of the form T = T ′ = diag(10, 10, 1) acting on homogeneous coor-
dinates. In this case, the matrix S is also a diagonal matrix of the form
S = diag(102, 102, 10, 102, 102, 10, 10, 10, 1), assuming that the vector f repre-
sents the elements of F in the row-major order
f11, f12, f13, f21, f22, f23, f31, f32, f33. The matrix S�S equals
diag(104, 104, 102, 104, 104, 102, 102, 102, 1). In this case, we see (AS)�AS f̂ =
λS�S f̂ , and so f̂ is very far from being an eigenvector of (AS)�AS.

We conclude that the method of transformation leads to a different solution
for the fundamental matrix. This is a rather undesirable feature of the 8-point
algorithm as it stands, that the result is changed by a change of coordinates,
or even simply a change of the origin of coordinates. A similar problem was
observed by Bookstein ([18]) in the problem of fitting conics to sets of points.
To correct this, it seems advisable to normalize the coordinates of the points in
some way by expressing them in some fixed canonical frame, as yet unspecified.

4 Condition of the System of Equations

The linear method consists in finding the least eigenvector of the matrix A�A.
This may be done by expressing A�A as a product UDU� where U is orthogonal
and D is diagonal. We assume that the diagonal entries of D are in non-
increasing order. In this case, the least eigenvector of A�A is the last column
of U . Denote by κ the ratio d1/d8 (recalling that A�A is a 9× 9 matrix). The
parameter κ is the condition number2 of the matrix A�A, well known to be
an important factor in the analysis of stability of linear problems ([19]). Its
relevance to the problem of finding the least eigenvector is briefly explained
next.

2Strictly speaking, d1/d9 is the condition number, but d1/d8 is the parameter of importance
here
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The bottom right hand 2× 2 block of matrix D is of the form
(

d8 0
0 0

)
,

assuming that d9 = 0, which ideally will be the case. Now, suppose that this

block is perturbed by the addition of noise to become
(

d8 ε
ε 0

)
. In order

to restore this matrix to diagonal form we need to multiply left and right by
V � and V , where V is a rotation through an angle θ = arctan(2ε/d8) (as the
reader may verify). If ε is of the same order of magnitude as d8 then this
is a significant rotation. Looking at the full matrix, A�A = UDU�, we see
that the perturbed matrix will be written in the form UV̄ D′V̄ �U� where V̄ =(

I7×7 0
0 V

)
. Multiplying by V̄ replaces the last column of U by a combination

of the last two columns. Since the last column of U is the least eigenvector of
the matrix, this perturbation will drastically alter the least eigenvector of the
matrix A�A. Thus, changes to A�A of the order of magnitude of the eigenvalue
d8 cause significant changes to the least eigenvector. Since multiplication by an
orthogonal matrix does not change the Frobenius norm of a matrix, we see that

||A�A|| =
(∑9

i=1 d
2
i

)1/2

. If the ratio κ = d1/d8 is very large, then d8 represents
a very small part of the Frobenius norm of the matrix. A perturbation of the
order of d8 will therefore cause a very small relative change to the matrix A�A,
while at the same time causing a very significant change to the least eigenvector.
Since A�A is written directly in terms of the coordinates of the points u↔ u′,
we see that if κ is large, then very small changes to the data can cause large
changes to the solution. This is obviously very undesirable. The sensitivity
of invariant subspaces is discussed in greater detail in [19], p413, where more
specific conditions for the sensitivity of invariant subspaces are given.

We now consider how the condition number of the matrix A�A may be made
small. We consider two sorts of transformation, translation and scaling. These
methods will be given only an intuitive justification, since a complete analysis
of the condition number of the matrix is too complex to undertake here.

The major reason for the poor condition of the matrix A�A is the lack of
homogeneity in the image coordinates. In an image of dimension 200× 200, a
typical image point will be of the form (100, 100, 1). If both u and u′ are of this
form, then the corresponding row of the equation matrix will be of the form
r� = (104, 104, 102, 104, 104, 102, 102, 102, 1). The contribution to the matrix
A�A is of the form rr�, which will contain entries ranging between 108 and 1.
For instance, the diagonal entries of A�A will be
(108, 108, 104, 108, 108, 104, 104, 104, 1). Summing over all point correspondences
will result in a matrix A�A for which the diagonal entries are approximately in
this proportion.

We may now use the Interlacing Property ([19], page 411) for the eigen-
values of a symmetric matrix to get a bound on the condition number of
the matrix. Suppose that the diagonal entries of X = A�A are equal to
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(108, 108, 104, 108, 108, 104, 104, 104, 1). We denote by Xr the trailing r× r prin-
cipal submatrix (that is the last r columns and rows) of the matrix A�A, and by
λi(Xr) its i-th largest eigenvalue. Thus, X9 = A�A and κ = λ1(X9)/λ8(X9).
First we consider the eigenvalues of X2. Since the sum of the two eigenvalues
is trace(X2) = 104 + 1, we see that λ1(X2) + λ2(X2) = 104 + 1. Since the
matrix is positive semi-definite, both eigenvalues are non-negative, so we may
deduce that λ1(X2) ≤ 104 + 1. From the interlacing property, we deduce that
λ8(X9) ≤ λ7(X8) ≤ . . . λ1(X2) ≤ 104 + 1. On the other hand, also from the
interlacing property, we know that the largest eigenvalue of A�A is not less
than the largest diagonal entry. Thus, λ1(X9) ≥ 108. Therefore, the ratio
κ = λ1(X9)/λ8(X9) ≥ 108/(104 + 1). Usually, in fact λ8(X9) will be much
smaller than 104 + 1 and the condition number will be far greater.

This analysis shows that scaling the coordinate so that the homogeneous
coordinates are on the average equal to unity will improve the condition of the
matrix A�A.

Translation Consider a case where the origin of the image coordinates is at
the top left hand corner of the image, so that all the image coordinates are
positive. In this case, an improvement in the condition of the matrix may be
achieved by translating the points so that the centroid of the points is at the
origin. This claim will be verified by experimentation, but can also be explained
informally by arguing as follows. Suppose that the first image coordinates (the
u-coordinates) of a set of points are {1001.5, 1002.3, 998.7, . . .}. By translat-
ing by 1000, these numbers may be changed to {1.5, 2.3,−1.3}. Thus, in the
untranslated values, the significant values of the coordinates are obscured by
the coordinate offset of 1000. The significant part of the coordinate values is
found only in the third or fourth significant figure of the coordinates. This has a
bad effect on the condition of the corresponding matrix A�A. A more detailed
analysis of the effect of translation is not provided here.

5 Normalizing transformations

The previous sections concerned with the condition number of the matrix A�A
indicate that it is desirable to apply a transformation to the coordinates before
carrying out the 8-point algorithm for finding the fundamental matrix. This
normalization has been implemented as a prior step in the 8-point algorithm
with excellent results.

5.1 Isotropic Scaling

As a first step, the coordinates in each image are translated (by a different
translation for each image) so as to bring the centroid of the set of all points to
the origin. The coordinates are also scaled. In the discussion of scaling, it was
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suggested that the best results will be obtained if the coordinates are scaled, so
that on the average a point u is of the form u = (u, v, w)�, with each of u, v
and w having the same average magnitude. Rather than choose different scale
factors for each point, an isotropic scaling factor is chosen so that the u and v
coordinates of a point are scaled equally. To this end, we choose to scale the
coordinates so that the average distance of a point u from the origin is equal
to
√

2. This means that the “average” point is equal to (1, 1, 1)�. In summary
the transformation is as follows

1. The points are translated so that their centroid is at the origin.

2. The points are then scaled so that the average distance from the origin is
equal to

√
2.

3. This transformation is applied to each of the two images independently.

5.2 Non-isotropic Scaling

In non-isotropic scaling, the centroid of the points is translated to the origin as
before. After this translation the points form a cloud about the origin. Scaling is
then carried out so that the two principal moments of the set of points are both
equal to unity. Thus, the set of points will form an approximately symmetric
circular cloud of points of radius one about the origin.

Both translation and scaling can be done in one step as follows. Let ui =
(ui, vi, 1)� for i = 1, . . . , N and form the matrix

∑
i uiui

�. Since this matrix is
symmetric and positive definite, we may take its Choleski factorization ([15, 14])
to get

∑N
i=1 uiui

� = NKK�, where K is upper triangular. It follows that∑
iK
−1uiui�K−� = NI, where I is the identity matrix. Setting ûi = K−1ui,

we have
∑

i ûiûi
� = NI. Consequently, the set of points ûi have their centroid

at the origin and the two principal moments are both equal to unity, as desired.
Note that K−1 is upper triangular, and so it represents an affine transformation.

To summarize : the points are transformed so that

1. Their centroid is at the origin.

2. The principal moments are both equal to unity.

6 Scaling in Stage 2

So far we have discussed the effect of a normalizing transformation on the first
stage of the 8-point algorithm, namely the solution of the set of linear equa-
tions to find F . The second step of the algorithm is to enforce the singularity
constraint that detF = 0.

The method described above of enforcing the singularity constraint gives
the singular matrix F̂ nearest to F in Frobenius norm. The trouble with this
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method is that it treats all entries of the matrix equally, regardless of their
magnitude. Thus, entries of F small in absolute value may be expected to
undergo a perturbation much greater relative to their magnitude than the large
entries.

Suppose that a set of matched points is normalized so that on the average
all three homogeneous coordinates have the same magnitude. Thus, a typical
point will look like (1, 1, 1)�. The fundamental matrix computed from these
normalized coordinates may be expected to have all its entries approximately
of the same magnitude. This may not be true if applied to specific classes of
cameras, but it will be true for fundamental matrices computed from arbitrarily
selected matched points, as the following argument shows.

A permutation of the three homogeneous coordinates in either or both the
images will result in another set of realizable matched points. The corresponding
fundamental matrix will be obtained from the original one by permuting the
corresponding rows and/or columns of the matrix. In doing this, any entry
of F may be moved to any other position. This means that no entry of the
fundamental matrix is qualitatively different from any other, and hence on the
average (over all possible sets of matched points) all entries of F will have the
same average magnitude.

Now, consider what happens if we scale the coordinates of points ui and u′i
by a factor which we will assume is equal to 100. Thus, a typical coordinate
will be of the order of (100, 100, 1)�. The corresponding fundamental matrix
F will be obtained from original one by multiplying the first two rows, and
the first two columns by 10−2. Entries in the the top left 2 × 2 block will be
multiplied by 10−4. We conclude that a typical fundamental matrix derived
from coordinates of magnitude (100, 100, 1)� will have entries of the following
order of magnitude.

F =


 10−4 10−4 10−2

10−4 10−4 10−2

10−2 10−2 1


 (6)

To verify this conclusion, here is the fundamental matrix for the pair of
house images in Fig 13.

F =


 −9.796e− 08 1.473e− 06 −6.660e− 04
−6.346e− 07 1.049e− 08 7.536e− 03
8.107e− 04 −7.739e− 03 −2.364e− 02


 (7)

In comparing (7) with (6), one must bear in mind that F is defined only
up to nonzero scaling. The imbalance of the matrix (7) is even worse than
predicted by (6) because the image has dimension 512×512. Now, in taking the
closest singular matrix, all entries will tend to be perturbed by approximately
the same amount. However, the relative perturbation will be greatest for the

3The notation -9.766e-08 means −9.766× 10−8.
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smallest entries. The question arises whether the small entries in the matrix F
are important. Consider a typical point u ≈ (100, 100, 1)�. In computing the
corresponding epipolar line Fu, we see that the largest entries in the vector u
are multiplied by the smallest, and hence least relatively stable entries of the
matrix F . Thus, for computation of the epipolar line, the smallest entries in F
are the most important. We have the following undesirable condition :

The most important entries in the fundamental matrix are precisely
those that are subject to the largest relative perturbation when en-
forcing the singularity constraint without prior normalization.

This condition is corrected if normalization of the image coordinates is car-
ried out first, for then all entries of the fundamental matrix will be treated
approximately equally, and none is more important than another in computing
epipolar lines.

7 Experimental Evaluation

The 8-point algorithm with prior transformation of the coordinates, as described
here will be called the normalized 8-point algorithm. This algorithm was tested
on a large number of real images to evaluate its performance. In carrying out
these tests, the 8-point algorithm with pre-normalization as described above was
compared with several other algorithms for finding the fundamental matrix. For
the most part the implementations of these other algorithms were provided by
other researchers, whom I will acknowledge later. In this way the results were
not biased in any way by my possibly inefficient implementation of competing
algorithms. In addition, the images and matched points that I have tested the
algorithms on have been supplied to me. Methods of obtaining the matched
points therefore varied from image to image, as did methods for eliminating
bad matches (outliers). In all cases, however, the matched points were found by
automatic means, and usually some sort of outlier detection and removal was
carried out, based on least-median squares techniques (see [6, 7, 8]).

The general procedure for evaluation was as follows.

1. Matching points were computed by automatic techniques, and outliers
were detected and removed.

2. The fundamental matrix was computed using a subset of all points.

3. In the case of algorithms, such as the 8-point algorithm, that do not
automatically enforce the singularity constraint (that is the constraint
that detF = 0) this constraint was enforced a posteriori by finding the
nearest singular matrix to the computed fundamental matrix. This was
done using the Singular Value Decomposition (as in [16, 20]).
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4. For each point ui, the corresponding epipolar line Fui was computed and
distance from the line Fui from the matching point u′i was calculated.
This was done in both directions, (that is starting from points ui in the
first image and also from u′i in the second image). The average distance
of the epipolar line from the corresponding point was computed, and used
as a measure of quality of the computed Fundamental matrix. This eval-
uation was carried out using all matched points, except outliers, and not
just the ones that were used to compute F .

7.1 Other algorithms.

A brief description of the algorithms tested follows, but first some notation.
Given fundamental matrix F and point ui, the epipolar line in the sec-

ond image corresponding to point ui is Fui. Similarly, F�u′i is the epipo-
lar line corresponding to u′i. Point u′i lies on epipolar line Fui if and only if
u′i
�Fui = 0. However, the quantity u′i

�Fui does not correspond to any mean-
ingful geometric quantity, certainly not to distance between the point u′i and
the epipolar line Fui. Writing Fui = (λ, µ, ν)�, the distance d(u′i, Fui) is equal
to u′i

�Fui/
√
λ2 + ν2, provided u′i = (u′i, v

′
i, 1)

�. Similarly, denoting F�u′i by
(λ′, µ′, ν′), one has d(ui, F�u′i) = u′i

�Fui/
√
λ′2 + ν′2.

The 8-point algorithm In this algorithm, the points were used as is, without
pre-transformation to compute the fundamental matrix. The algorithm mini-
mizes the quantity

∑
i

(
u′i
�Fui

)2. The singularity constraint was enforced.

The 8-point algorithm with isotropic scaling The 8-point algorithm was
used with the translation and isotropic scaling method described in section 5.1.
The singularity constraint was enforced.

The 8-point algorithm with non-isotropic scaling This is the same as
the previous method, except that the non-isotropic scaling method described in
section 5.2 was used.

Minimizing the epipolar distances In implementation by Zhengyou Zhang
of an algorithm described in ([9, 6, 10]) was used. This is an iterative algorithm
that uses a parametrization of the fundamental matrix with 7 parameters. Thus
the singularity constraint is enforced as part of the algorithm. The cost function
being minimized is the squared sum of distances of the points from epipolar
lines. The point-line distances in both images are taken into account. Thus this
algorithm minimizes

∑
i

d(u′i, Fui)
2 + d(ui, F�u′i)

2 = (u′i
�Fui)2

(
1

λ2
i + µ2

i

+
1

λ′2i + µ′2i

)
.
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Two versions of this algorithm were tested, in which respectively the unnormal-
ized and normalized versions of the 8-point algorithm were used for initialization.

A gradient-based technique This algorithm is related to the previous method,
but it minimizes a slightly different cost function, namely

∑
i

(u′i
�Fui)2

λ2
i + µ2

i + λ′2i + µ′2i
.

This cost function is a first order approximation to the point-displacement er-
ror discussed in the next method (below). The implementation tested was by
Zhengyou Zhang, and the algorithm is discussed in ([9, 10]). Here also this
algorithm was initialized using either the normalized or unnormalized 8-point
algorithm.

Minimizing point displacement This algorithm (my own implementation)
is an iterative algorithm. It finds the fundamental matrix F , and points ûi
and û′i such that û′i

�F ûi = 0 exactly, detF = 0 and the squared pixel error∑
i d(ûi,ui)

2 + d(û′i,u′i)
2 is minimized. The details of how this is done are

described in [11, 21]. Under the assumption of gaussian noise in the placement
of the matched points (an approximation to the truth), this algorithm gives
the fundamental matrix corresponding to the most likely true placement of the
matched points (the estimated points ûi ↔ û′i). For this reason, I have generally
considered this algorithm to be the best available. The experiments generally
bear out this belief, but it is not the purpose of this paper to justify this point.
This algorithm is referred to as the “optimal algorithm” in this paper.

Approximate Calibration The results of an algorithm of Beardsley and
Zisserman ([12]) were provided for comparison. This algorithm does an approx-
imate normalization of the coordinates by selecting the origin of coordinates
at the centre of the image, and by scaling by division by the approximate fo-
cal length of the camera (measured in pixels – that is, the scaling factor in
the calibration matrix). Since this method employs a normalization similar to
the isotropic scaling algorithm, one expects it to give similar results. It does,
however rely on some approximate knowledge of camera calibration.

Iterative Linear Another algorithm provided by Beardsley and Zisserman
is representative of a general approach to improving the performance of lin-
ear algorithms. This same approach can be applied to many different linear
algorithms, such as camera pose and calibration estimation ([22]), projective
reconstruction from lines ([23]) and reconstruction of point positions in space
([24]). In this approach, the 8-point algorithm is run a first time. From this
initial solution a set of weights for the linear equations are computed. The set
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of linear equations are multiplied by these weights and the 8-point algorithm is
run again. This may be repeated several times. The weights are chosen in such
a way that the linear equations express a meaningful measurable quantity. In
this case, to minimize point-epipolar line distance, each equation u′i

�Fui = 0
is multiplied by the weight

wi =
(

1
λ2 + µ2

+
1

λ′2 + µ′2

)1/2

where the values λi, µi, λ′i and µ
′
i are computed from the previous iteration. The

advantage of this type of algorithm is that it is simple to implement compared
with iterative parameter estimation methods, such as Levenberg-Marquardt
([14]).

7.2 The Images.

The various algorithms were tried with 5 different pairs of images. The images
are presented in Figures 1 – 5 to show the diversity of image types, and the
placement of the epipoles. A few of the epipolar lines are shown in the images.
The intersection of the pencil of lines is the epipole. There was a wide varia-
tion in the accuracy of the matched points for the different images, as will be
indicated later.

Figure 1: Houses Images. The epipoles are a long way from the image centres.
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Figure 2: Statue image An outdoor scene with the epipoles well away from
the centre.

7.3 Graphical Presentation of the Results.

The following graphs show the results of several runs of the algorithms, with
different numbers of points being used. The number of points used to compute
the fundamental matrix ranged from 8 up to three-quarters of the total number
of matched points. For each value of N , the algorithms were run 100 times
using randomly selected sets of N matching points. The average error (point –
epipolar line distance) was computed using all available matched points. The
graphs show the average error over the 100 runs for each value of N . The error
shown is the average point-epipolar line distance measured in pixels.

In the graph annotations the following notation is used.

method 0 represents the unnormalized 8-point algorithm

method 1 represents the 8-point algorithm with scaling in stage 1. (For an
explanation, see below).

method 2 represents the 8-point algorithm with scaling in stage 2.

method 3 represents the normalized 8-point algorithm (mormalization in both
stages.

method 4 represents the “optimal” algorithm (minimization of point displace-
ment).
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Figure 3: Grenoble Museum The epipoles are close to the image.

Graph 1 : Effect of Normalization on the Condition Number.
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This graph shows a plot of the base-10 logarithm of the condition number
of the linear equation set in the case of the house images, for varying numbers
of points (the x-axis). The upper curve is without normalization, the lower one
with normalization. The improvement is approximately 108.

Graph 2 : Effect of normalization on the two stages of the algorithm.
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Figure 4: Corridor Scene In the corridor scene the epipoles are right in the
image.
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This plot shows the effect of normalization in the two stages of the 8-point
algorithm. To explain this, four algorithmic steps may be identified :

Normalization Transformation of the image coordinates using transforms T
and T ′.

Solution Finding matrix F by solving a set of linear equations.

Constraint enforcement Replacing F by the closest singular matrix.

17



Figure 5: Calibration Jig In this calibration jig, the matched points were
known extremely accurately.

Denormalization Replacing F by T ′�FT .

It is possible to take these steps in a different order to show the effect of
normalization on the Solution (stage 1) and Constraint enforcement (stage 2)
steps of the algorithm. Thus, the four curves shown correspond to the following
algorithm steps.

1. No normalization : Solution – Constraint enforcement.

2. Stage 1 normalization : Normalization – Solution – Denormalization –
Constraint enforcement.

3. Stage 2 normalization : Solution – Normalization – Constraint enforce-
ment – Denormalization.

4. Both stages of normalization : Normalization – Solution – Constraint
enforcement – Denormalization.

As may be seen, normalization has the greatest effect on stage 1 (the Solution
stage), but normalization for stage 2 has a significant effect as well. The best
results are had by doing normalization in both stages.

Note, how for N = 8 the normalization has no effect on stage 1, since in this
case we are finding the solution to a set of equations, and not a least-squares
solution to a redundant set. This explains why the two pairs of curves show the
same results for N = 8.

For these experiments, the house images were used.
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Graph 3 : Comparison of normalized and unnormalized 8-point algo-
rithms.
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These set of graphs show the improvement achieved by normalization. The
images used are from left-to-right and top-to-bottom : house, statue, museum,
calibration, corridor. Note the differences in Y -scale for the different plots.
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For some of the images the matched points were known with extreme accuracy
(calibration image, corridor scene), whereas for others, the matches were less
accurate (museum image). In all cases the normalized algorithm performs better
than the unnormalized algorithm. In the cases of the calibration and corridor
images the effect is not so great. In the case of the images with less accurate
matches, the advantage of normalization is dramatic.

Graph 4 : Comparison of the 8-point algorithm with the optimal
algorithm.
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This is the same as the previous set of graphs, except that it compares the
normalized 8-point algorithm with the optimal (minimized point displacement)
algorithm. In all cases the normalized 8-point algorithm performs almost as
well as the optimal algorithm.

Graph 5 : Isotropic vs. non-isotropic scaling.
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The 8-pt algorithm with isotropic and non-isotropic scaling was compared.
The two graphs are almost indistinguishable.

Graph 6 : Comparison with other algorithms
The papers ([9, 10]) gives details of several good algorithms, and the nor-

malized 8-point algorithm was carefully compared with some of these. Two
algorithms were tried :
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1. The iterative algorithm minimizing the symmetric point-epipolar line dis-
tance in the two images.

2. The gradient-based method.

See section 7.1 for more details. For the tests, mmplementations of these algo-
rithms supplied by Zhang in executable format were used. These are among the
best algorithms available for computing the fundamental matrix.

On theoretical grounds, the second of these methods may be preferable, but
in our experiments they performed almost identically. This is confirmed by
[10]. Consequently, only only the results of the comparisons with the gradient-
based method are shown in the following graphs, which compare the normalized
8-point algorithm with the gradient-based method.
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Results are shown for three of the data sets. In the other two cases (statue
and corridor) the results of the two algorithms were almost indistinguishable.
In fact, it is a curious thing that all algorithms (even the unnormalized 8-point
algorithm) give very similar performance on these two data sets. In the three
graphs shown, the normalized 8-point algorithm performs distinctly better than
the iterative algorithms on the house data set, worse on the museum data set
and just slightly worse on the calibration set. In this comparison the iterative
algorithms were initialized using the unnormalized 8-point algorithm. Com-
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parison with Graph 4 shows that they do not perform as well as the optimal
algorithm. If the normalized 8-point algorithm is used for initialization, then
the results improve and are not significantly different from those of the optimal
algorithm. Once more Zhang’s implementation was used for this test. Thus,
in carrying out an iterative algorithm to find the fundamental matrix, good
initialization seems to be more important than exactly which cost function is
being minimized.

The normalized 8-point algorithm was also compared with the Least Median
of Squares algorithm of Zhang, but the latter algorithm did not perform so
well on our tests. This is probably because it is weeding out outliers. Outlier
rejection has already been performed on the data sets using the techniques of
([7]) and all remaing points are used in evaluating the fit, including points that
Zhang’s LMedSq algorithm may have rejected.

The normalized 8-point algorithm was also compared with two algorithms
supplied by Andrew Zisserman and Paul Beardsley. These are respectively the
algorithms referred to as “Approximate Calibration” and “Iterative Linear” in
section 7.1. The results of all 3 algorithms were roughly comparable, though
insufficiently many test were run to reach a firm conclusion. The results of this
test are reported in [25].

Graph 7 : Reconstruction Error.
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To test the performance of the various algorithms for reconstruction accu-
racy experiments were done to measure the degradation of accuracy as noise
levels increase. The Calibration images (5) were used for this purpose. Since
reconstruction error is most appropriately measured in a Euclidean frame, a
Euclidean model was built for the calibration cube, initially by inspection and
then by refinement using the image data. This model served as ground truth.
Next, the image coordinates were corrected (by an average of 0.02 pixels) to
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agree exactly with the Euclidean model. Varying amounts of zero-mean gaus-
sian noise were added to the image coordinates, a projective reconstruction was
carried out, and a projective transformation was computed to bring the projec-
tive reconstruction most nearly into agreement with the model. The average 3D
displacement of the reconstructed points from the model was measured. The
plotted values are the result average over all points (128 in all) for 10 trials.
The reconstruction error is measured in units equal to the length of the side of
one of the black squares in the image.

At the left is a comparison of the unnormalized and the normalized 8-point
algorithms. In the right hand graph, the normalized 8-point and optimal algo-
rithms are shown. The result shows that the results of the normalized 8-point
algorithm is almost indistinguishable from the optimal algorithm, but that the
unnormalized algorithm performs very much worse.

8 Conclusions

With normalization of the coordinates in order to improve the condition of the
problem, the 8-point algorithm performs almost as well as the best iterative
algorithms. On the other hand, it runs about 20 times faster and is far easier to
code. There seems to be little advantage in choosing the non-isotropic scaling
scheme for the normalization transform, since the simpler isotropic scaling per-
forms just as well. Without normalization of the inputs, however, the 8-point
algorithm performs quite badly, often with errors as large as 10 pixels, which
makes it virtually useless. It would seem to follow that the reason that other
researchers have had such poor results with the 8-point algorithm is that they
have not carried out any preliminary normalization step as discussed here.

Even if extra accuracy is needed and an iterative algorithm is used, it is
best to use the normalized, rather than the unnormalized 8-point algorithm to
provide a starting point for iteration. Difficulties with stopping criteria, as well
as the risk of finding a local minimum mean that the quality of the iteratively
estimated result depends on the initial estimate.

The technique of data normalization described here is widely applicable to
other problems. Among others it is directly applicable to the following problems:
computing the projective transformations between point sets; estimating the
trifocal tensor ([26]) and determining the camera matrix of a projective camera
using the DLT algorithm ([27]).
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