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Abstract

This paper describes a pair of projectivity invariants of four lines in three di-
mensional projective space, P3. Invariants are derived in both algebraic and
geometric terms, and the connection between the two ways of defining the in-
variants is established. Since a count of the number of degrees of freedom would
predict the existence of a single invariant, rather that the two that are shown
to exist, an isotropy of the four lines must exist. The nature of this isotropy is
investigated.

It is shown that once the epipolar geometry is known, the invariants of four lines
may be computed from the images of the four lines in two distinct views with
uncalibrated cameras. An example with real images is computed to shows that
the invariants are effective in distinguishing different geometrical configurations
of lines.

1 Introduction

Projective invariants of geometrical configurations in space have recently re-
ceived much attention because of their application to vision problems ([11]).
Although invariants of a wide range of objects in the 3-dimensional projective
space P3do exist ([1]), one is restricted in vision applications to considering
those that may be computed from two-dimensional projections (images). For
point sets and more structured geometrical objects lying in planes in P3, many
invariants exist ([3]) which can be computed from a single view. Unfortunately,
it has been shown in [2] that no invariants of arbitrary point sets in 3-dimensions
may be computed from a single image. One is led either to consider constrained
sets of points, or else to allow two independent views of the object. An example
of the first approach is contained in [16] which considers solids of revolution.
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This paper takes the second course and considers invariants that can be derived
from two views of an object. It has been recently proven by Faugeras ([4]) and
Hartley et. al.([5]) that a 3 dimensional scene may be constructed up to a pro-
jectivity of space from two views with uncalibrated cameras. This allows us to
compute invariants of 3-dimensional configurations from two views. Invariants
of six points in space have been suggested in [4] and [5] and verified in [6] to be
useful at distinguishing different point configurations. The present paper con-
siders invariants of straight lines in P3computable from a pair of images. Since
straight lines occur commonly in man-made objects and may be effectively ex-
tracted from the image using an edge extraction algorithm, invariants of sets
of lines may prove to be more useful than invariants of point sets in object
recognition applications.

The invariants of lines in space can not be computed from two views of lines
only. It may be seen that virtually no information about the cameras can be
derived from two views of a set of lines in space. This is because given two
images of a line and two arbitrary cameras, there is always a line in space that
corresponds to the two images. In other words, two images of an unknown line
do not in any way constrain the cameras. This point is discussed in [15]. If
on the other hand the epipolar geometry of the two views (as expressed in the
essential matrix) is known, then the locations of lines may be determined up to
a projectivity of P3from their images in the two views. There are many ways of
determining the epipolar geometry from views of points or lines in two or three
images ([8, 6, 17]).

2 Line Invariants

In this section, invariants of lines in space will be described. It will be shown that
four lines in the 3-dimensional projective plane, P3give rise to two independent
invariants under projectivity of P3. Two different ways of defining invariants
will be described, one algebraic and one geometric.

2.1 Algebraic Invariant Formulation

Consider four lines λi in space. A line may be given by specifying either two
points on the line or dually, two planes that meet in the line. It does not matter
in which way the lines are described. For instance, in the formulae (2) and
(3) below certain invariants of lines are defined in terms of pairs of points on
each line. The same formulae could be used to define invariants in which lines
are represented by specifying a pair of planes that meet along the line. Since
the method of determining lines in space from two view given in section 3.3
gives a representation of the line as an intersection of two planes, the latter
interpretation of the formulae is most useful.

Nevertheless, in the following description, of algebraic and geometric invariants
of lines, lines will be represented by specifying two points, since this method
seems to allow easier intuitive understanding. It should be borne in mind,
however, that the dual approach could be taken with no change whatever to the
algebra, or geometry.
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In specifying lines, each of two points on the line will be given as a 4-tuple of
homogeneous coordinates, and so each line λi is specified as a pair of 4-tuples

λi =
(
(ai1, ai2, ai3, ai4)(bi1, bi2, bi3, bi4)

)
Now, given two lines λi and λj , one can form a 4× 4 determinant, denoted by

|λiλj | = det




ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 . (1)

Finally, it is possible to define two independent invariants of the four lines by

I1(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ3| |λ2λ4|

(2)

and

I2(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ4| |λ2λ3|

. (3)

It is necessary to prove that the two quantities so defined are indeed invariant
under projectivities of P3. First, it must be demonstrated that the expressions
do not depend on the specific formulation of the lines. That is, there are an
infinite number of ways in which a line may be specified by designating two
points lying on it, and it is necessary to demonstrate that choosing a different
pair of points to specify a line does not change the value of the invariants. To
this end, suppose that (ai1, ai2, ai3, ai4)� and (bi1, bi2, bi3, bi4)� are two distinct
points lying on a line λi, and that (a′i1, a′i2, a′i3, a′i4)

� and (b′i1, b′i2, b′i3, b′i4)
� are

another pair of points lying on the same line. Then, there exists a 2× 2 matrix
Di such that(

a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4

)
= Di

(
ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4

)
.

Consequently,



ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 =

(
Di 0
0 Dj

)



a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4
a′j1 a′j2 a′j3 a′j4
b′j1 b′j2 b′j3 b′j4


 .

Taking determinants, it is seen that the net result of choosing a different rep-
resentation of the lines λi and λj is to multiply the value of |λiλj | by a factor
det(Di) det(Dj). Since each of the lines λi appears in both the numerator and
denominator of the expressions (2) and (3), the factors will cancel and the values
of the invariants will be unchanged.

Next, it is necessary to consider the effect of a change of projective coordinates.
If H is a 4 × 4 invertible matrix representing a coordinate transformation of
P3, then it may be applied to each of the points used to designate the four
lines. The result of applying this transformation is to multiply the determinant
|λiλj | by a factor det(H). The factors on the top and bottom cancel, leaving
the values of the invariants (2) and (3) unchanged. This completes the proof
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that I1 and I2 defined by (2) and (3) are indeed projective invariants of the set
of four lines.

An alternative invariant may be defined by

I3(λ1, λ2, λ3, λ4) =
|λ1λ4| |λ2λ3|
|λ1λ3| |λ2λ4|

. (4)

It is easily seen, that I3 = I1/I2. However, if |λ1λ2| vanishes, then both I1 and
I2 are zero, but I3 is in general non-zero. This means that I3 can not always
be deduced from I1 and I2. A preferable way of defining the invariants of four
lines is as a homogeneous vector

I(λ1, λ2, λ3, λ4) = (|λ1λ2| |λ3λ4| , |λ1λ3| |λ2λ4| , |λ1λ4| |λ2λ3|) . (5)

Two such computed invariant values are deemed equal if they differ by a scalar
factor. Note that this definition of the invariant avoids problems associated with
vanishing or near-vanishing of the denominator in (2) or (3).

The definitions of I1 and I2 are similar to the definition of the cross-ratio of
points on a line. It is well known that for four points on a line, there is only one
independent invariant. It may be asked whether I1 may be obtained from I2 by
some simple arithmetic combination. This is not the case, as will become clearer
when the connection of these algebraic invariants with geometric invariants is
shown.

2.2 Degenerate Cases

The determinant |λiλj | as given in (1) will vanish if and only if the four points
involved are coplanar, that is, exactly when the two lines are coincident (meet
in space). If all three components of the vector I(λ1, λ2, λ3, λ4) given by (5)
vanish, then the invariant is undefined. Enumeration of cases indicates that
there are two essentially different configurations of lines in which this occurs.

1. Three of the lines lie in a plane.

2. One of the lines meets all the other three.

The configuration where one line meets two of the other lines is not degenerate,
but does not lead to very much useful information, since two of the components
of the vector vanish. Up to scale, the last component may be assumed to equal
1, which means that two such configurations can not be distinguished. In fact
any two such configurations are equivalent under projectivity.

2.3 Geometric Invariants of Lines

Consider four lines λi in general position (which means that they are not coinci-
dent) in P3. It will be shown that there exist exactly two further lines τ1 and τ2,
called transversals, which meet each of the four lines. Once this is established,
it is easy to define invariants.
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The points of intersection of each of the four lines λi with one of the transversals
τj constitute a set of four points on a line in P3. The cross ratio of these points
is an invariant of the four lines λi. In this way, two invariants may be defined,
one for each of the two transversals.

Invariants may be defined in a dual manner as follows. Given a transversal, τj ,
meeting each of the lines λi, there exists, for each λi a plane denoted < τj , λi >,
containing τj and λi. This gives rise to a set of four planes meeting in a common
line τj . The cross-ratio of this set of planes is an invariant of the lines λi.

It is easy to see that this dual construction does not give rise to any new invari-
ant. Specifically, consider the cross-ratio of the four planes meeting at τ1. The
cross-ratio of four planes meeting along a line is equal to the cross-ratio of the
points of intersection of the planes with any other non-coincident line in space.
The line τ2 is such a line. Hence, the cross ratio of the planes < τ1, λi > is equal
to the cross-ratio of the points < τ1, λi > ∩ τ2, where the symbol ∩ denotes the
point of intersection. However, plane < τ1, λi > meets τ2 in the point λi ∩ τ2.
In other words, the cross-ratio of the four planes meeting along τ1 is equal to
the cross-ratio of the four points along τ2, and vice-versa.

2.4 Existence of Transversals

To prove the existence of transversals, we start by considering three lines in
space.

Lemma2.1. There exists a unique quadric surface containing three given lines
λ1, λ2 and λ3 in general position in P3.

Proof. For a reference to properties of quadric surfaces, the reader is referred to
[12]. It is shown there that a quadric surface is a doubly ruled surface containing
two families of lines A and B. Two lines from the same set A or B do not meet,
whereas any two lines chosen one from each set will always meet. Assuming
that the lines λi lie on a quadric surface, since they do not meet, they must
all come from the same family, which we assume to be A. Now consider any
point x on the quadric surface. There is a unique line passing through x and
belonging to the class B. This line must meet each of the lines λi, which belong
to class A.

We are led therefore to consider the locus of all points x in P3for which there
exists a line passing through x meeting all the lines λi, i = 1, . . . , 3. To this
end, let x = (x, y, z, t)� be a point on this locus. For each of the lines λi we
may define a plane πi passing through x and λi. The condition that there exists
a line passing through x meeting each λi means that the three planes πi meet
along that line.

Next, we formulate this last condition algebraically and give a method of com-
puting the formula for the quadric surface. As before, letting (ai1, ai2, ai3, ai4)�

and (bi1, bi2, bi3, bi4)� be two points on the line λi, the plane πi passing through
x = (x, y, z, t)� and the line λi may be computed as follows. Consider the
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matrix 
 ai1 ai2 ai3 ai4

bi1 bi2 bi3 bi4
x y z t


 (6)

The plane πi is given by the homogeneous vector (pi1, pi2, pi3, pi4)� where
(−1)jpij is the determinant of the 3 × 3 matrix obtained by deleting the j-
th column of (6). Consequently, each pij is a homogeneous linear expression in
x, y, z and t. Furthermore, since point (x, y, z, t)� lies on this plane it follows
that

xpi1 + ypi2 + zpi3 + tpi4 = 0 . (7)
Now the fact that the three planes πj meet along a common line translates into
the algebraic fact that the rank of the matrix

P =


 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34




is 2. This is equivalent to the condition

det
(
P (j)

)
= 0 for all j , (8)

where P (j) is the matrix obtained by removing the j-th column of P . Since
each entry pij of P is a linear homogeneous expression in the variables x, y, z
and t, the determinant det

(
P (j)

)
is a cubic homogeneous polynomial. A point

on the required locus must satisfy the condition det
(
P (j)

)
= 0 for j = 1, . . . , 4.

However, because of condition (7) these four equations are not independent. In
particular, if pj represents the j-th column of P , then (7) implies a relation

xp1 + yp2 + zp3 + tp4 = 0

Then
xdet

(
P (4)

)
= xdet (p1 p2 p3)
= det (xp1 p2 p3)
= det (−yp2 − zp3 − tp4 p2 p3)
= det (−tp4 p2 p3)
= −t det (p2 p3 p4)
= −t det

(
P (1)

)
.

(9)

This equation implies that x divides det(P (1)) and t divides det(P (4)). Fur-
thermore, applying the same argument to other coordinates gives rise to an
equation

det(P (1))/x = − det(P (2))/y = det(P (3))/z = − det(P (4))/t = R(x, y, z, t)

where R(x, y, z, t) is some homogeneous degree-2 polynomial. Then the defining
equations (8) of the locus become

xR(x, y, z, t) = yR(x, y, z, t) = zR(x, y, z, t) = tR(x, y, z, t) = 0 . (10)

This implies that either R(x, y, z, t) = 0 or x = y = z = t = 0. The latter
condition can be discounted, since (0, 0, 0, 0) is not a valid set of homogeneous
coordinates. Consequently, the desired locus is described by the degree-2 poly-
nomial equation R(x, y, z, t) = 0, and is therefore a quadric surface. Since it is
easily verified that the three original lines λi lie on this surface, the proof of the
lemma is complete. ��
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It is now a simple matter to prove the existence of transversals.

Theorem2.2. There exist exactly two transversals to four lines in general po-
sition in P3.

Proof. We choose three of the lines λ1, λ2 and λ3 and construct the quadric
surface S that they all line on. Let x1 and x2 be the two points of intersection of
the fourth line λ4 with the quadric surface. The construction of S in Lemma 2.1
shows that any transversal to lines λ1, λ2 and λ3 must lie on S. Further, the
lines λ1, λ2 and λ3 all belong to one of the families, A, of ruled lines on the
quadric surface, S. Let τ1 and τ2 be the lines in the other family B passing
through x1 and x2. Then τ1 and τ2 are the two transversals to all four lines. ��

Of course, it is possible that λ4 does not meet the surface S in any real point, or
is tangent to S. The statement of the theorem must be interpreted as allowing
complex or double solutions. In the case of four real lines in space, there are
either two real transversals or two conjugate complex traversals. In the case of
complex traversals, there is no conceptual difficulty in defining the invariants
as in the real case. The cross-ratio of points of intersections of the lines with
the two conjugate transversals will result in two invariants which are complex
conjugates of each other.

Various degenerate sets of lines also allow two transversals. For instance suppose
that λ1 and λ2 are coincident, and so are λ3 and λ4. One transversal to the four
lines passes through the two points of intersection of the pairs of lines. The other
transversal is the line of intersection of the two planes defined by λ1, λ2 and by
λ3, λ4. The cross-ratio invariant corresponding to the first transversal is zero,
but the invariant corresponding to the second transversal is in general non-zero
and is a useful invariant for this geometric configuration. This is similar to what
happens for the algebraically defined invariants (see Section 2.1).

2.5 Independence and Completeness

I shall now show that the two geometrically defined invariants are independent
and together completely characterize the set of four lines up to a projectivity of
P3.

To show independence, we start by selecting τ1 and τ2, two arbitrary non-
intersecting lines in space to serve as transversals. Next, we mark off points
a1, a2, a3 and a4 along τ1 in such a way that their cross ratio is equal to any
arbitrarily chosen invariant value. Similarly, mark off along τ2 points b1, b2,
b3 and b4 having another arbitrarily chosen cross-ratio invariant value. Now,
joining ai to bi for each i gives a set of four lines having the two arbitrarily
chosen invariants.

Next, it will be shown that the two invariants completely characterize the set
of four lines up to a projectivity. Consequently, let four lines in space have
two given cross-ratio invariant values with respect to transversals τ1 and τ2

respectively. Let the points of intersection of the four lines with τ1 be a1, a2, a3

and a4 and the intersection points with τ2 be b1, b2, b3 and b4. Let a second set
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of lines with the same invariants be given, with transversals τ ′j and intersection
points a′i and b

′
i. Our goal is to demonstrate that there is a projectivity taking

τj to τ ′j for j = 1, 2, taking points ai to a′i and bi to b
′
i for i = 1, . . . 4. It will

follow that the projectivity takes one set of lines λi onto the other set.

Choosing two points on each of τ1 and τ2, four points in all, and two points on
each of τ ′1 and τ ′2 a further four points, there exists a projectivity taking the
first set of four points to the second set, and hence taking τ1 to τ ′1 and τ2 to
τ ′2. Suppose that this projectivity takes ai to a

′′
i and bi to b

′′
i , it remains to

be shown that there exists a projectivity preserving τ ′1 and τ ′2 and taking a′′i to
a′i and b

′′
i to b

′
i. Without loss of generality it may be assumed that τ ′1 is the

line x = y = 0 and that τ ′2 is the line z = t = 0. With this choice, we see that

a projectivity of P3represented by a matrix of the form
(

H1 0
0 H2

)
, where

each Hj is a 2×2 block, maps each τ ′j to itself. Furthermore each Hj represents
a homography of the line τ ′j . Since the points a

′
i and a

′′
i on τ ′1 have the same

cross-ratio, there is a homography of τ ′1 taking a
′
i to a

′′
i for i = 1, . . . , 4, and

the same can be said for the points b′i and b
′′
i on τ2. Hence by independent

choice of the two 2× 2 matrices H1 and H2, both mappings can be carried out
simultaneously and the proof is complete.

2.6 Existence of an Isotropy

Four lines in P3can be represented by a total of 16 independent parameters. On
the other hand, there are 15 degrees of freedom for projectivities of P3. This
suggests that there should be only one invariant for four lines in space, but we
have seen that there are two. The discrepancy arises because of the existence of
an isotropy ([10]). To understand this, we need to determine the subgroup of all
projectivities of P3that fix four given lines. Any such projectivity will also fix
the two transversals as well as the four points of intersection of the lines with
each transversal. Since four points on each transversal are fixed, every point on
the transversal must be fixed. This shows that a projectivity of P3fixes four
given lines if and only if it fixes the two transversals pointwise. Assuming as
before that the two transversals are the lines x = y = 0 and z = t = 0, it is
easily seen that a projectivity fixes the transversals pointwise if and only if it
is represented by a matrix of the form diag(k1, k1, k2, k2) where k1 and k2 are
two independent constants. Allowing for an arbitrary scale factor in the matrix,
this implies that there is a one-parameter subgroup of projectivities fixing the
four lines. This reduces the number of degrees of freedom of the group action of
projectivities of P3on sets of four lines in space to 14, and explains why there
are two independent invariants.

2.7 Relationship of Geometric to Algebraic Invariants

The fact that for real lines the algebraic invariants defined in Section 2.1 must
be real whereas the geometric invariants may be complex indicates that they
are not the same. However, since the geometric invariants completely determine
the four lines up to projectivity, it must be possible to determine the algebraic
invariants given the values of the geometric ones. Consider four lines with
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geometric invariants α and β. We desire to determine the values of the algebraic
invariants given by (5). To this end, we may assume that the transversals are
the lines x = y = 0 and z = t = 0 and that the points of intersections of the
four lines with the transversals have coordinates

a2 = (0, 0, 0, 1)�

a1 = (0, 0, α, 1)�

a3 = (0, 0, 1, 1)�

a4 = (0, 0, 1, 0)�

and
b2 = (0, 1, 0, 0)�

b1 = (β, 1, 0, 0)�

b3 = (1, 1, 0, 0)�

b4 = (1, 0, 0, 0)� .

These points have cross-ratio invariants α and β on the transversal lines x =
y = 0 and z = t = 0 respectively.

From this it is easy to compute the value of the invariant (5) to be

I = (αβ, 1, 1 + αβ − α− β) . (11)

Hence, it is easy to compute the algebraic invariants from the geometric ones.
Similarly, given I, it is easy to solve (11) for α and β, which indicates that the
algebraic invariant (5) is complete.

3 Computation of Line Invariants

It will be shown in this section that invariants of lines in space may be com-
puted from two images with uncalibrated cameras, provided that the epipolar
correspondence is known (in the sense to be explained below).

3.1 Camera Models

Nothing will be assumed about the calibration of the two cameras that create
the two images. The camera model will be expressed in terms of a general pro-
jective transformation from three-dimensional real projective space, P3, known
as object space, to the two-dimensional real projective space P2known as image
space. The transformation may be expressed in homogeneous coordinates by
a 3 × 4 matrix P known as a camera matrix and the correspondence between
points in object space and image space is given by ui ≈ Pxi where the symbol
≈ means equal up to multiplication by a non-zero scalar factor.
For convenience it will be assumed that the camera placements are not at in-
finity, that is, that the projections are not parallel projections. In this case, a
camera matrix may be written in the form

P = (M | −Mt)

where M is a 3×3 non-singular matrix and t is a column vector t = (tx, ty, tz)�

representing the location of the camera in object space.
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3.2 The Essential Matrix

Consider a set of points {xi} as seen in two images. The set of points {xi}
will be visible at image locations {ui} and {u′i} in the two images. In normal
circumstances, the correspondence {ui} ↔ {u′i} will be known, but the location
of the original points {xi} will be unknown. As shown in [8] there exists a
matrix Q, called the essential matrix, such that

u′i
�Qui = 0 for all i . (12)

Given at least 8 point correspondences, the matrix Q may be computed from
(12). Longuet-Higgins ([8]) suggested a linear solution of the equations (12).
Other methods ([9, 14, 13]) have been suggested relying on properties of the
essential matrix.

Although the essential matrix was originally defined for calibrated cameras, it
may also be defined for uncalibrated cameras using the same equation (12).
Methods of computing the essential matrix for uncalibrated cameras have been
suggested using point correspondences ([4]) or line-correspondences ([7]).

For calibrated cameras, the essential matrix determines the camera matrices
uniquely, up to a scaled Euclidean transformation2. For uncalibrated cameras,
this in not the case. The connection between essential matrix and camera
matrices for uncalibrated cameras will be explained below. For proofs of the
following theorems, see [5].

Given a vector, t = (tx, ty, tz)� it is convenient to introduce the skew-symmetric
matrix

[t]× =


 0 −tz ty

tz 0 −tx
−ty tx 0


 . (13)

Theorem3.3. If Q is an essential matrix corresponding to a pair of uncali-
brated cameras, then Q factors as a product Q = P [t]× for some vector t and
non-singular matrix P . Then, one possible choice of camera matrices consistent
with Q is given by

M = (I | 0) , M ′ = (P ∗| − P ∗t)

where P ∗ is the inverse transpose of P .

Given a pair of camera matrices and some image correspondences ui ↔ u′i it is
easy to compute the corresponding object points xi by the solution of a set of
linear equations (in effect by triangulation). The pair of camera matrices given
in Theorem 3.3 is not necessarily the correct pair, and hence the reconstructed
set of object points will not necessarily be correct. However, the following
theorem shows that the points are nevertheless correct up to a projectivity of
P3.

Theorem3.4. Suppose Q is an essential matrix and M and M ′ are any pair of
camera matrices consistent with Q. Let ui ↔ u′i be corresponding points in the

2Strictly speaking there are four possible solutions
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two images and {xi} be a set of object points such that ui ≈Mxi and u′i ≈M ′xi.
Now let M̂ and M̂ ′ be a different pair of camera matrices consistent with Q and
let {x̂i} be the respective set of object points. Then there is a projectivity h of
P3taking each xi to x̂i.

The algorithm for computing invariants may now be formulated in broad terms
as follows.

1. Compute the essential matrix from image correspondences using any avail-
able algorithm.

2. Select a pair of camera matrices M and M ′ according to Theorem 3.3.

3. Reconstruct the scene geometry using the chosen camera matrices.

4. Compute invariants of the scene.

3.3 Computing Lines in Space

To be able to compute invariants of lines in space, it is sufficient to be able to
compute the locations of the lines in P3from their images in two views (step 3
of the above algorithm outline).

Lines in the image plane are represented as 3-vectors. For instance, a vector l =
(l, m, n)� represents the line in the plane given by the equation lu+mv+nw =
0. Similarly, planes in 3-dimensional space are represented in homogeneous
coordinates as a 4-dimensional vector π = (p, q, r, s)�.

The relationship between lines in the image space and the corresponding plane
in object space is given by the following lemma.

Lemma3.5. Let λ be a line in P3and let the image of λ as taken by a camera
with transformation matrix M be l. The locus of points in P3that are mapped
onto the image line l is a plane, π, passing through the camera centre and
containing the line λ. It is given by the formula π = M�l.

Proof. A point x lies on π if and only if it is mapped to a point on the line l by
the action of the transformation matrix. This means that Mx lies on the line
l, and so

l�Mx = 0 . (14)
On the other hand, a point x lies on the plane π if and only if π�x = 0.
Comparing this with (14) lead to the conclusion that π� = l�M or π = M�l
as required. ��

Now, given two images l and l′ of a line λ in space as taken by two cameras with
camera matrices M and M ′, the line λ is the intersection of the planes M�l
and M ′�l′.
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4 Experimental Results

Three images of a pair of wooden blocks representing houses were acquired and
vertices and edges were extracted. The images are shown in Figures 1, 2, and
3. Corresponding edges and vertices were selected by hand from among those
detected automatically. The edges and vertices shown in Fig. 4 were chosen.
There were 13 edges and 15 lines extracted from each of the images. The dotted
edges were not visible in all images and were not chosen. Vertices are represented
by numbers and edges by letters in the figure. Because of the way edges and
vertices were found by the segmentation algorithm, the edges do not always
pass precisely through the indicated vertices, but sometimes through a closely
neighboring vertex. On other occasions, the full edge was not detected as a
single edge, but was broken into several pieces. This is usual with most edge
detection algorithms, and is a source of error in the computation of invariants.

The essential matrices Q12 for the first and second images and Q23 for the
second and third images were computed from the point matches. Compatible
set of camera matrices were computed, the locations of the lines in P3were
reconstructed and invariants (5) were computed algebraically.

4.1 Comparison of Invariant Values

The invariant (5) is represented as homogeneous vectors. Two such vectors
are considered equivalent if they differ by a non-zero scale factor. Because of
arithmetic error and image noise, two computed invariant values will rarely be
exactly proportional. In order to compare two such computed invariant values
(perhaps when attempting to match an object with a reference object), each
homogeneous vector is multiplied by a scale factor chosen to normalize its length
to 1. This normalization determines the vector up to a multiplication by a factor
±1. Two such normalized homogeneous vector invariants v1 and v2 are deemed
close if v1 is close to v2 or to −v2 using a Euclidean norm. Correspondingly, a
metric may be defined by

d(v1,v2) =
(
1−

∣∣∣∣ v1.v2

||v1|| ||v2||

∣∣∣∣
)1/2

. (15)

For any v1 and v2, distance d(v1,v2) lies between 0 and 1. A value close to 0
means a very good match, whereas values close to 1 are mismatches.

4.2 Invariants of 4 lines

Six sets of four lines were chosen as in the following table, which shows the
labels of the lines as given in Fig. 4).

S1 = {B, C, J, K}
S2 = {B, G, J, N}
S3 = {A, B, H, I}
S4 = {B, D, E, G}
S5 = {A, C, O, J}
S6 = {B, I, L, N}
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Table (16 shows the results. The (i, j)-th entry of the table shows the distance
according to the metric (15) between the invariant of set Si as computed from
the first image pair with that of set Sj as computed from the second image
pair. The diagonal entries of the matrix (in bold) should be close to 0.0, which
indicates that the invariants had the same value when computed from different
pairs of views.

The only bad entry in this matrix is in the position (4, 4). This is because of
the fact that the four lines chosen contained three coplanar lines (lines B, D
and E). This causes the values of the invariant to be indeterminate (that is
(0, 0, 0)), and shows that such instances must be detected and avoided. The
entry in position (3, 3) is also shows instability for similar reasons.

0.0128906 0.674135 0.302728 0.688589 0.642501 0.449448
0.646976 0.0337898 0.741489 0.83827 0.706921 0.221636
0.0619738 0.691264 0.229193 0.707536 0.708276 0.461339
0.286604 0.607681 0.182331 0.890303 0.855833 0.383939
0.656635 0.72182 0.899625 0.718942 0.00349575 0.694361
0.473184 0.239022 0.555218 0.947915 0.719282 0.0332098

(16)

One concludes from this experiment that the four-line invariant is a powerful
discriminator between sets of four lines, but care must be taken to detect and
exclude degenerate and near-degenerate cases.

Acknowledgement I am indebted to Joe Mundy for introducing me to the
subject of projective invariants, and for many enlightening conversations during
the preparation of this paper.
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Figure 1. First view of houses

Figure 2. Second view of houses
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Figure 3. Third view of houses

Figure 4. Selected vertices and edges
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