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Abstract
This paper gives a new method for image rectifi-

cation, the process of resampling pairs of stereo im-
ages taken from widely differing viewpoints in order
to produce a pair of “matched epipolar projections”.
These are projections in which the epipolar lines run
parallel with the x-axis and consequently, disparities
between the images are in the x-direction only. The
method is based on an examination of the essential
matrix of Longuet-Higgins which describes the epipo-
lar geometry of the image pair. The approach taken is
consistent with that recently advocated strongly by
Faugeras ([1]) of avoiding camera calibration. The
paper uses methods of projective geometry to define
a matrix called the “epipolar transformation matrix”
used to determine a pair of 2D projective transforms
to be applied to the two images in order to match the
epipolar lines. The advantages include the simplicity
of the 2D projective transformation which allows very
fast resampling as well as subsequent simplification in
the identification of matched points and scene recon-
struction.

1 Introduction
A recent paper [4] described an approach to stereo

reconstruction that avoids the necessity for camera
calibration. In that paper it is shown that the the
3-dimensional configuration of a set of points is de-
termined up to a collineation of the 3-dimensional
projective space P3by their configuration in two in-
dependent views from uncalibrated cameras. This
calibration-free approach to the stereo reconstruction,
or structure-from-motion problem was independently
discovered and strongly advocated in [1]. The gen-
eral method relies strongly on techniques of projec-
tive geometry, in which configurations of points may
be subject to projective transformations in both 2-
dimensional image space and 3-dimensional object
space without changing the projective configuration
of the points. In [4] it is shown that the essential

matrix, Q, defined by Longuet-Higgins ([3]) is a basic
tool in the analysis of two related images. The present
paper develops further the method of applying projec-
tive geometric, calibration-free methods to the stereo
problem.
The paper [4] starts from the assumption that point

matches have already been determined between pairs
of images, concentrating on the reconstruction of the
3D point set. In the present paper the problem of
obtaining point matches between pairs of images is
considered. In particular we consider the problem of
matching images taken from very different view-points
such that perspective distortion and different view-
point make corresponding regions look very different.
The approach taken is consistent with the projective-
geometrical methods advocated in [1] and [4].
The method developed in this paper is to subject

both the images to a 2-dimensional projective trans-
formation so that the epipolar lines match up and run
horizontally straight across each image. This ideal
epipolar geometry is the one that will be produced
by a pair of identical cameras placed side-by side with
their principal axes parallel. Such a camera arrange-
ment may be called a rectilinear stereo frame. For an
arbitrary placement of cameras, however, the epipo-
lar geometry will be more complex. In effect, trans-
forming the two images by the appropriate projective
transforms reduces the problem to that of a rectilin-
ear stereo frame. Many stereo algorithms described in
previous literature have assumed a rectilinear or near-
rectilinear stereo frame.
After the 2D projective transformations have been

applied to the two images, matching points in the
two images will have the same y-coordinate, since the
epipolar lines match and are parallel to the x-axis. It is
shown that the two transformations may be chosen in
such a way that matching points have approximately
the same x-coordinate as well. In this way, the two im-
ages, if overlaid on top of each other will correspond
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as far as possible, and any disparities will be parallel
to the x-axis. Since the application of arbitrary 2D
projective transformations may distort the image sub-
stantially, a method is described for finding a pair of
transforms which subject the images to minimal dis-
tortion.
The advantages of reducing to the case of a rec-

tilinear stereo frame are two-fold. First, the search
for matching points is vastly simplified by the simple
epipolar structure and by the near-correspondence of
the two images. Second, a correlation-based match-
point search can succeed, because local neighbour-
hoods around matching pixels will appear similar and
hence will have high correlation.
The method of determining the 2D projective trans-

formations to apply to the two images is new, making
use of the essential matrixQ, and a new matrix defined
here, which may be called the epipolar transformation
matrix, denoted by M for the pair of images. If the
method described in [4] is used for the 3D reconstruc-
tion of the object, then it is not necessary to take ac-
count of the effect of the 2D transformations. In fact,
once the two images have been transformed, the orig-
inal images may be thrown away and the transforms
forgotten, since in the first instance, the object will be
reconstructed up to a 3D collineation only. As in [4]
it is necessary to use ground-control points, or some
other constraints to reconstruct the absolute config-
uration of the scene (up to a similarity transform).
Because we are effectively dealing with a rectilinear
stereo frame, the mathematics of the reconstruction
of the 3D points is extremely simple.

1.1 Preliminaries
The symbol u represents a column vector. We will

use the letters u, v and w for homogeneous coordinates
in image-space. In particular, the symbol u represents
the column vector (u, v, w)�. Object space points will
also be represented by homogeneous coordinates x, y,
z and t, or more often x, y, z and 1. The symbol x
will represent a point in three-dimensional projective
space represented in homogeneous coordinates.
Since all vectors are represented in homogeneous

coordinates, their values may be multiplied by any ar-
bitrary non-zero factor. The notation ≈ is used to
indicate equality of vectors or matrices up to multipli-
cation by a scale factor.
If A is a square matrix then its matrix of cofactors

is denoted by A∗. The following identities are well
known : A∗A = AA∗ = det(A)I where I is the identity
matrix. In particular, if A is an invertible matrix, then
A∗ ≈ (A�)−1.
Given a vector, t = (tx, ty, tz)� it is convenient to

introduce the skew-symmetric matrix

[t]× =



0 −tz ty
tz 0 −tx
−ty tx 0


 (1)

For any non-zero vector t, matrix [t]× has rank 2.
Furthermore, the null-space of [t]× is generated by
the vector t. This means that t�[t]× = [t]×t = 0 and
that any other vector annihilated by [t]× is a scalar
multiple of t.
The matrix [t]× is closely related to the cross-

product of vectors in that for any vectors s and t,
we have s�[t]× = s × t and [t]×s = t × s. A useful
property of cross products may be expressed in terms
of the matrix [t]×.

Proposition1.1. For any 3×3 matrix M and vector
t

M∗[t]× = [Mt]×M (2)

Camera Model. The general model of a per-
spective camera that will be used here is that rep-
resented by an arbitrary 3 × 4 matrix, P , known as
the camera matrix. The camera matrix transforms
points in 3-dimensional projective space to points in
2-dimensional projective space according to the equa-
tion u = Px. The camera matrix P is defined up to
a scale factor only, and hence has 11 independent en-
tries. This model allows for the modeling of several
parameters, in particular : the location and orienta-
tion of the camera; the principal point offsets in the
image space; and unequal scale factors in two orthog-
onal directions not necessarily parallel to the axes in
image space.
If the camera is not placed at infinity, then the left-

hand 3 × 3 submatrix of P is non-singular. Then P
can be written as P = (M | −Mt) where t is a vector
representing the location of the camera.

2 Epipolar Geometry
Suppose that we have two images of a common

scene and let u be a point in the first image. It is
well known that the matching point u′ in the second
image must lie on a specific line called the epipolar
line corresponding to u. The epipolar lines in the sec-
ond image corresponding to all points u in the first
image all meet in a point p′, called the epipole. The
epipole p′ is the point where the centre of projection
of the first camera would be visible in the second im-
age. Similarly, there is an epipole p in the first image
defined by reversing the roles of the two images in the
above discussion.
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Points in an image will be represented by homoge-
neous coordinates. For instance u = (u, v, w)� rep-
resents a point in the first image. Similarly, lines in
an image are represented by a homogeneous vector. A
point u lies on a line l if and only if l�u = 0. It was
shown in [3, 2, 5] that there exists a 3 × 3 matrix Q
called the essential matrix which maps points in one
image to the corresponding epipolar line in a second
image according to the mapping u �→ Qu. If ui ↔ u′i
are a set of matching points, then the fact that u′i lies
on the epipolar line Qui means that

u′i
�Qui = 0 . (3)

Given at least 8 point matches, it is possible to deter-
mine the matrix Q by solving a set of linear equations
of the form (3).
The properties of the essential matrix will be given

below in a number of theorems. For proofs, the reader
is referred to [5] or [4]. The first proposition states
some simple properties of the essential matrix.

Proposition 2.2. Suppose that Q is the essential ma-
trix corresponding to an ordered pair of images (J, J ′).

1. Matrix Q� is the essential matrix corresponding
to the ordered pair of images (J ′, J).

2. The epipole p is the unique point such that Qp =
0

3. Let u1 and u2 be points in J , neither of which is
equal to the epipole p. Points u1 and u2 are on
the same epipolar line if and only if Qu1 ≈ Qu2.

4. Q factors as a product Q = M∗[p]× for some
non-singular matrix M .

In using the phrase “unique point such that Qp =
0”, the solution p = (0, 0, 0)� is excluded as not
being a valid set of homogeneous coordinates. Fur-
ther, since we are dealing in homogeneous coordinates,
non-zero scale factors are insignificant. Note that in
part 4 of Proposition 2.2, we could equally well write
Q = M [p]× for some non-singular matrix, M . How-
ever, the form given in the proposition is preferred.
As shown by Proposition 2.2, the matrix Q determines
the epipoles in both images. Furthermore, Q provides
the map between points in one image and epipolar
lines in the other image. Proposition 2.2 shows that
this map induces a correspondence between the epipo-
lar lines in one image and the epipolar lines in the
other image. Thus, the complete geometry and cor-
respondence of epipolar lines is encapsulated in the
essential matrix.

A formula for the essential matrix may also be given
directly in terms of the two camera transformations
([5]).

Proposition2.3. The essential matrix corresponding
to a pair of cameras with transform matrices P = (K |
−Kt) and P ′ = (K ′ | −K ′t′) is given by the formula

Q ≈ (K ′K−1)∗[K(t′ − t)]× (4)

If two transform matrices P and P ′ satisfy (4) for a
given essential matrix Q, we say that Q is realized by
the pair (P, P ′). If Q is written as Q = M∗[p]× then
it is easily verified that one realization of Q is given
by the camera pair
{(I | 0), (M | −Mp)}).
The factorization of Q into a product of non-

singular and skew-symmetric matrices is not unique,
as is shown by the following proposition.

Proposition2.4. Let the 3×3 matrix Q factor in two
different ways as Q ≈ M1S1 ≈ M2S2 where each Si
is a non-zero skew-symmetric matrix and each Mi is
non-singular. Then S2 ≈ S1. Furthermore, if we write
Si = [p]× then M2 ≈M1 + ap� for some vector a.

As a consequence of Proposition 2.4, the realization
of an essential matrix is not unique. The following
theorem shows how different realizations of the same
essential matrix are related.

Theorem2.5. Let {P1, P
′
1} and {P2, P

′
2} be two pairs

of camera transforms. Then {P1, P
′
1} and {P2, P

′
2}

correspond to the same essential matrix Q if and only
if there exists a 4×4 non-singular matrix H such that
P1H ≈ P2 and P ′1H ≈ P ′2.

The following basic theorem showing that the
knowledge of the epipolar correspondence deter-
mines the reconstructed scene geometry up to a 3D
collineation follows easily from Theorem 2.5.

Theorem2.6. (Faugeras [1], Hartley et al. [4]) If
the essential matrix Q for a pair of images is known
and if ui ↔ u′i is a set of matched points, then the
locations xi of the corresponding 3D points are deter-
mined up to a collineation of P3.

3 The epipolar transform matrix
Given a factorization of an essential matrix, Q =

M [p]×, we show that the matrix M is of interest in
its own right.
The following proposition lists some of the proper-

ties of the matrix M .

Proposition3.7. Let Q be an essential matrix and
p and p′ the two epipoles. If Q factors as a product
Q =M∗[p]× then
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1. Mp = p′.

2. For any epipolar line l in the first image, M∗l is the
corresponding epipolar line in the second image.

Proof.

1. Since Q ≈ M∗[p]×, it follows that p�M�Q ≈
p�M�M∗[p]× = p�[p]× = 0. Therefore, Q�(Mp) =
0 and it follows from Proposition (2.2) that Mp ≈ p′.
2. Let u be a point in the first image and l be

the corresponding epipolar line in the second image.
Thus, l′ = Qu. The epipolar line through u in the
first image is l = p×u = [p]×u. Consequently,M∗l =
M∗[p]×u = Qu = l′ as required.

��

Thus, M maps epipoles to epipoles and M∗ maps
epipolar lines to epipolar lines. This is true whichever
matrix M is chosen as long as Q =M∗[p]×.
3.1 M as a point map
As was seen in Proposition 3.7 if M is interpreted

as a point-to-point map between images, then it maps
one epipole to the other. In this section, other prop-
erties of M as a point map will be investigated and
it will be shown that there is a natural one-to-one
correspondence between factorizations of the essential
matrix and planes in P3. This correspondence is ex-
pressed in the following theorem.

Theorem 3.8. Let Q be the essential matrix corre-
sponding to a pair of images represented by camera
transforms P and P ′. For each plane π in P3not pass-
ing through the centre of projection of either camera
there exists a factorization Q = M∗[p]× such that if
u↔ u′ is a pair of matched points corresponding to a
point x in the plane π, then u′ =Mu. Conversely, for
each factorization Q =M∗[p]× there exists a plane π
with this property.

Proof. By an appropriate choice of projective coor-
dinates, it may be assumed that the plane π is the
plane at infinity. Any point x in π is of the form
(x, y, z, 0)�. The camera matrices may be written
in the form (K | L) and (K ′ | L′), and since the
camera centres do not lie on the plane at infinity,
the matrices K and K ′ are non-singular. Accord-
ing to (4) the essential matrix is Q = (K ′K−1)∗[p]×
and so we may choose M = K ′K−1. Now, point
u = K(x, y, z)� and u′ = K ′(x, y, z)�. It follows that
u′ = K ′K−1u =Mu as required.
Conversely, suppose a factorization Q = M∗[p]×

is given. One realization of Q is given by the cam-
era pair {P1, P

′
1} = {(I | 0), (M | −Mp)}. Let

the plane π1 be the plane at infinity, and suppose

x = (x, y, z, 0)�. Then u = P1x = (x, y, z)� and
u′ = P ′1x = M(x, y, z)�, and so u′ = Mu. Now, con-
sider the camera pair {P, P ′}. According to Theorem
2.5, there exists a non-singular 4 × 4 matrix, H such
that P = P1H and P ′ = P ′1H . Then define π to be
the plane H−1π1 and consider a point H−1x in this
plane Then, PH−1x = P1HH

−1x = P1x = u, and
similarly, P ′H−1x = u′ = Mu. In other words, the
plane π satisfies the requirements of the theorem. ��

3.2 Computation of M .
We have just shown that for point sets that lie close

to a plane π and are viewed from two cameras, there
is a matrix M such that M∗ maps an epipolar line
in one image to the corresponding epipolar line in the
second image, and such that M maps points u in the
first image to a point close to the matched point u′

in the second image. For matched points u ↔ u′

corresponding to a point x on the plane π the map
u �→ Mu = u′ will be exact, whereas for points near
to π the match will be approximate.
For instance, in the standard stereo-matching prob-

lem where the task is to find a pixel u′ in a second
image to match the pixel u in the first image, a good
approximation to u′ may be given by Mu. The best
match, u′ may be found by an epipolar search centred
at the point Mu.
The goal of this section is, given a set of matched

points ui ↔ u′i, to find the epipolar transforma-
tion matrix M which most nearly approximates the
matched point correspondence. Specifically, given
an essential matrix Q computed from the correspon-
dences ui ↔ u′i, our goal is to find a projective trans-
formation given by a matrix M , such that M�Q is
skew-symmetric and such that

∑
||u′i−Mu||2 is min-

imized.
This may be considered as a constrained minimiza-

tion problem. First, we consider the constraints. The
condition that M�Q should be skew-symmetric leads
to a set of 6 equations in the 9 entries of M .

m11q11 +m21q21 +m31q31 = 0
m12q12 +m22q22 +m32q32 = 0
m13q13 +m23q23 +m33q33 = 0
m11q12 +m21q22 +m31q32 = −(m12q11 +m22q21 +m32q31)
m11q13 +m21q23 +m31q33 = −(m13q11 +m23q21 +m33q31)
m12q13 +m22q23 +m32q33 = −(m13q12 +m23q22 +m33q32)(5)

The entries qij of the matrix Q are known, so this
gives a set of 6 known constraints on the entries of
M . However, because of the fact that Q is singular
of rank 2, there is one redundant restraint as will be
shown next.
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Next, consider the minimization of the goal func-
tion. We have a set of correspondences, {ui} ↔ {u′i}
and the task is to find the M that best approximates
the correspondence. We can cast this problem in the
form of a set of linear equations in the entries ofM as
follows. Let Mi be the i-th row of M . Then the basic
equation u′ =Mu can be written as

m11ui +m12vi +m13 = w′iu
′
i

m21ui +m22vi +m23 = w′iv
′
i

m31ui +m32vi +m33 = w′i

We can substitute the third equation into the first two
to get two equations linear in the mij

m11ui +m12vi +m13 = m31uiu
′
i +m32viu

′
i +m33u

′
i

m21ui +m22vi +m23 = m31uiv
′
i +m32viv

′
i +m33v

′
i .

(6)
The method used here is essentially that described
by Sutherland [6]. It does not minimize exactly the
squared error

∑
||Mui − u′i||2, but rather a sum

weighted by w′i. However, we accept this limitation
in order to use a fast linear technique. This has not
caused any problems in practice.
Since the matrix, M is determined only up to a

scale factor, we seek an appropriately normalized so-
lution. In particular, we seek a minimize the error in
(6) subject to the constraints (5) and the condition∑
m2
ij = 1.

3.3 Solution of the constrained minimiza-
tion problem.

Writing the constraint equations as Bx = 0 and the
equations (6) asAx = 0, our task is to find the solution
x that fulfills the constraints exactly and most nearly
satisfies the conditions Ax = 0. More specifically, our
task is to minimize ||Ax|| subject to ||x|| = 1 and
Bx = 0. One method of solving this is to proceed as
follows.
Extend B to a square matrix B′ by the addition

of 3 rows of zeros. Let the Singular Value Decom-
position of B′ be B′ = UDV �, where V is a 9 × 9
orthogonal matrix and D is a diagonal matrix with
5 non-zero singular values, which may be arranged to
appear in the top left-hand corner. Writing x′ = V �x,
and x = V x′, we see that ||x|| = ||x′||. The problem
now becomes, minimize ||AV x′|| subject to UDx′ = 0
and ||x′|| = 1. The condition that UDx′ = 0 means
Dx′ = 0, and hence the first five entries of x′ are
zero, since D is diagonal with its first five entries non-
zero. Therefore, let A′′ be the matrix formed from
AV by dropping the first five columns. We now solve
the problem : minimize ||A′′x′′|| subject to ||x′′|| = 1.
This is a straightforward unconstrained minimization

problem and the solution x′′ is the singular vector cor-
responding to the smallest singular value of A′′. Once
x′′ is found, vector x′ is obtained from it by appending
5 zeros. Finally, x is found according to the equation
x = V x′.

4 Matched Epipolar Projections.
Consider the situation in which we have two im-

ages J0 and J ′0 of the same scene taken from different
unknown viewpoints. Suppose that the essential ma-
trix, Q0 and an epipolar transformation matrix M0

have been computed based on a set of image-to-image
correspondences between the two images. In general,
the epipolar lines in the two images will run in quite
different directions, and epipolar lines through differ-
ent points will not be parallel (since they meet at the
epipole). The goal in this next section is to define two
perspective transformations, F and F ′, to be applied
to the two images so that if the image J0 is trans-
formed according to the perspective transformation
F , and J ′0 is transformed according to the perspec-
tive transformation F ′, then the resulting images J1

and J ′1 correspond to each other in a particularly sim-
ple manner. In particular, the epipolar lines in the
new images will be horizontal and parallel. Further,
the resulting image-to-image transformation M1 will
be the identity mapping.
Let the epipole in the first image be p0. The epipo-

lar lines all pass through p0 and hence are not parallel.
Our goal is to transform the image so that the epipole
is moved to the point (1, 0, 0)� in homogeneous co-
ordinates. This point is the point at infinity in the
direction along the x axis. If this is the new epipole,
then the epipolar lines will all be parallel with the x
axis. Therefore, let F be a perspective transformation
that sends the point p to (1, 0, 0)�. This is not by
itself sufficient information to determine F uniquely,
and F will be more exactly determined later.

Proposition4.9. Suppose there exist two images J0

and J ′0 with corresponding essential matrix Q =
M∗[p]×. Let p and p′ be the two epipoles. Let F be a
homogeneous transformation such that Fp = (1, 0, 0)�

and let F ′ = FM−1. Then, F ′p′ = (1, 0, 0)�.

Proof. F ′p′ = F.M−1p′ = Fp = (0, 0, 1)�. ��

We now use the two projective transformations F
and F ′ to resample the two images J0 and J ′0 to give
two new images J1 and J ′1. By this is meant that J1

is related to J0 by the property that any point x in
3-space that is imaged at point u in image J0 will be
imaged at point Fu in image J1 = F (J0).
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Proposition 4.10. The essential matrix for the pair
of resampled images J1 and J ′1 obtained by resampling
according to the maps F and F ′ defined in the previous
proposition is given by

Q1 =



0 0 0
0 0 −1
0 1 0




The corresponding epipolar transformation matrix M1

is the identity matrix.

Proof. Let {ui} ↔ {u′i} be a set of image-to-image
correspondences between the images J0 and J ′0 suffi-
cient in number to determine the matrix Q0 uniquely.
Thus, u′i

�Q0ui = 0. However, in the images J1 and
J ′1, the points {Fui} correspond with points {F ′u′i}.
It follows that

u′i
�F ′�Q1Fui = 0

and hence Q0 ≈ F ′�Q1F or

Q1 = F ′∗Q0F
−1 . (7)

However, since F ′ = FM−1, we may write F ′∗ =
F ∗M�, and substituting in (7) gives

Q1 = F ∗M�Q0F
−1

= F ∗[p]×F−1 by Proposition 3.7
= F ∗F�[Fp]× by (2)
= [(1, 0, 0)�]×

which is the required matrix.
To prove the second statement, let x be a point in

space on the plane determined by the image-to-image
projective transform M in the sense that if u and u′

are the images of point x in the images J0 and J ′0,
then u′ = Mu (see Proposition 3.8). Then point x
will be seen in the images J1 and J ′1 at points Fu
and F ′u′. However, F ′u′ = F ′Mu = Fu. So, Fu
in image J1 is mapped to F ′u′ in image J ′1 by the
identity transformation. ��

4.1 Determination of the resampling
transformation.

The transformation F was described by the condi-
tion that it takes the epipole p to the point at infinity
on the x axis. This leaves many degrees of freedom
open for F , and if an inappropriate F is chosen, se-
vere projective distortion of the image can take place.
In order that the resampled image should look some-
what like one of the original images, we may put closer
restrictions on the choice of F .
One condition that leads to quite good results is to

insist that the transformation F should act as far as

possible as a rigid transformation in the neighbour-
hood of a given selected point u0 of the first image.
By this is meant that the neighbourhood of u0 may
undergo rotation and translation only, and hence will
look the same in the original and resampled image.
An appropriate choice of point u0 may be the centre
of the image. For instance, this would be a good choice
in an context of aerial photography if the first image
is known not to be excessively oblique.
A projective transformation may be determined by

specifying the destination of four points. Suppose
that the epipole is already on the x axis at location
(1, 0, f)� and that we desire the projective transfor-
mation to approximate the identity map in the local
neighbourhood of the origin (0, 0, 1)�. The desired
map may be found by specifying the destinations of
four points

(1, 0, f)� → (1, 0, 0)�

(0, 0, 1)� → (0, 0, 1)�

(δ, δ, 1)� → (δ, δ, 1)�

(δ,−δ, 1)� → (δ,−δ, 1)�
(8)

and then letting δ → 0. The correct map is found to
be expressed by the matrix




1 0 0
0 1 0
−f 0 1




It may be seen that if af << 1 then the point
(a, b, 1)� is mapped (almost) to itself by this trans-
form.

5 Scene Reconstruction
We assume that the images have been transformed,

point matches have been made and it is now required
that the 3D scene be reconstructed point by point.
Suppose a point x = (x, y, z, t)� is seen at locations
u = (u, v, 1)� in the first transformed image and at
u′ = (u+δ, v, 1)� in the second resampled image. This
is the case, since disparities are parallel to the x-axis.
It is desired to compute the coordinates of the point
x. As stated in Theorem 2.6 it is only possible to re-
construct the point up to a projective transformation
of P3. As shown in [4], a first step in the reconstruc-
tion of 3D points up to perspective transformation of
P3is to find a realization of the essential matrix Q.
In the present case, this is particularly simple. Ac-
cording to Theorem 4.10, the essential matrix for the
transformed images is or a particularly simple form,
Q = [(1, 0, 0)�]×. A realization of Q is given by Theo-
rem 3.7. The essential matrix is realized by the camera
pair

P = (I | 0) and P ′ = (I | (1, 0, 0)�) (9)
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It is easily verified that the point

x = (u, v, 1, δ)� (10)

is the 3D point mapping onto u and u′. This makes
the reconstruction of the scene almost trivial.
Looking closely at the form of the form of the recon-

structed point (10) shows a curious effect of 3D pro-
jective transformation. If the disparity δ is zero, then
the point x will be reconstructed as a point at infinity.
Furthermore, choosing the M matrix as in section 3.2
will result in points with both positive and negative
disparities. As δ changes from negative to positive,
the reconstructed point will flip from near infinity in
one direction to near infinity in the other direction.
In other words, the reconstructed scene will straddle
the plane at infinity, and if interpreted in a Euclidean
sense by dehomogenization will contain points in di-
ametrically opposite directions. This is all perfectly
normal in the context of perspective geometry, but is
a little disconcerting if one is accustomed to think in
terms of Euclidean space. In the context of absolute
stereo reconstruction, it causes no problem, since the
process of tying down to an absolute Euclidean frame
by the use of ground control points as described in [4]
is done by selecting an appropriate normalizing per-
spective transformation.
We may observe here, however, that a different re-

construction of the 3D scene is possible which avoids
points at infinity and diametrically splitting the scene.
In particular, for any number α, it may be verified us-
ing Proposition 2.3 that the pair (P, P ′) where

P =



1 0 α
0 1 0
0 0 1

∣∣∣∣∣∣
0
0
0




and P ′ = (I | (1, 0, 0)�) is a realization of Q. In this
case, the point

x = (u− α, v, 1, δ + α)� (11)

is required reconstructed 3D point. By suitable choice
of α it may be ensured that δ + α > 0 for all points.

6 Experimental results
The method was used to transform a pair of images

of the Malibu area. Two images taken from widely dif-
ferent relatively oblique viewing angles are shown in
Figures 1 and 2. A set of about 25 matched points
were selected by hand and used to compute the es-
sential matrix and epipolar transformation matrix.1

1We also have the capability of selecting matched points au-
tomatically, despite the difference in viewpoint, but this capa-
bility was not used in this particular experiment

The two 2D projective transformations necessary to
transform them to matched epipolar projections were
computed and applied to the images. Because of the
great simplicity of the transformation, the resampling
of the images may be done extremely quickly. With
carefully programming, it is possible to resample the
images in about 20 seconds each for 1024× 1024 im-
ages on a Spark station 1A. The resulting resampled
images are shown in Figures 3 and 4, which are placed
side by side. As may be discerned, any disparities be-
tween the two images are parallel with the x-axis. By
crossing the eyes it is possible to view the two images
in stereo. The perceived scene looks a little strange,
since it has undergone an apparent 3D transformation.
However, the effect is not excessive.

7 Conclusion
This paper gives a firm mathematical basis for the

treatment of stereo images taken from widely different
viewpoints. The method given avoids the necessity
for camera calibration and provides significant gains
in speed and ease of point matching. In addition, it
makes the computational of the scene geometry ex-
tremely simple. The time taken to resample the image
is negligeable compared with other processing time.
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Appendix : Analysis of constraints
The matrix of coefficients in the set of equations (5)

may written in the form



Q1 0 0
0 Q2 0
0 0 Q3

Q2 −Q1 0
−Q3 0 Q1

0 Q3 −Q2




(12)

where Qi represents the three entries q1iq2iq3i making
up the i-th column of the matrix Q. First, we con-
sider the case where Q1 = 0. Since Q has rank 2, it
can not be the case that Q2 is a multiple of Q3. In
this case, the first row of the matrix is zero, but the re-
maining five rows are linearly independent. The same
argument holds if Q2 = 0 or Q3 = 0.
Next, consider the case where Q2 = αQ1. Since Q

has rank 2, it can not be that Q3 = βQ1 or Q3 =
βQ2. In this case, the fourth row of matrix (12) is
dependent on the first two rows, but the other five
rows are linearly independent.
Finally, consider the case where no column of Q

is a simple multiple of another row, but αQ1 +
βQ2 + γQ3 = 0. Then, it may be verified
that multiplying the rows of the matrix by factors
α,−β2/α,−γ2/α, β,−γ,−βγ/α and adding results in
0. In other words, the rows are linearly dependent. On
the other hand, it can be shown by a straight-forward
argument that any five of the rows are linearly inde-
pendent.
Thus, in general, we have a set of 6 restraints on the

entries of M, only 5 of which are linearly independent.

Figure 1. First view of Malibu

Figure 2. Second view of Malibu
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Figure 3. First Resampled view of Malibu

Figure 4. Second resampled view of Malibu
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