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1 Introduction

A typical system for the construction of 3-D models from stereo imagery operates in three

phases. In the first phase a set of match points (i.e., pixels in the two views that are the

images of the same point in the real world, also referred to as tie points), are established

between the two images. In order for the matching procedure to succeed, several restrictions

are placed on the imagery, principally to ensure that the corresponding areas and features in

the two images are nearly identical. Without these restrictions, most area and feature based

correlation techniques perform poorly while attempting to determine match points between

images. In the second phase, the computed match points are used to derive the relative

locations, orientations and other parameters of the cameras. This process usually requires

iterative solution of a set of non-linear equations. With the information about the cameras

known, one can analyze the disparity arising because of different elevations of various points

and assign them a relative 3-D coordinate. In a third phase the actual locations of points

are computed.

This paper describes a methodology for epipolar matching and stereo information ex-

traction from a set of two or more images of a scene without placing any restrictions on the

imagery, and at the same time, avoiding any assumptions about the camera model. We al-

low image pairs which may be only partially overlapping, scaled, rotated, taken from oblique

viewing angles, or otherwise transformed with respect to each other. These factors generally

result in imagery in which corresponding areas in different views do not look identical.

1.1 Camera Model

The general model of a perspective camera that will be used here is that represented by an

arbitrary 3×4 matrix, P , known as the camera matrix. The camera matrix transforms points

in 3-dimensional projective space to points in 2-dimensional projective space according to

the equation

ũ = P x̃

where ũ = (u, v, w)T and x̃ = (x, y, z, 1)T . The camera matrix P is defined up to a scale

factor only, and hence has 11 independent entries. This was the representation of the imaging

process considered by Strat [?]. As shown by Strat, this model allows for the modeling of

several parameters, in particular,

1. the location and orientation of the camera,
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2. the principal point offsets in the image space, and

3. unequal scale factors in two directions parallel to the axes in image space.

This accounts for 10 of the total 11 entries in the camera matrix. It may be seen that if

unequal stretches in two directions not aligned with the image axes are allowed, then further

11-th camera parameter may be defined. Thus, the imaging model considered here is quite

general. In practical cases, the focal length (magnification) of the camera may not be known,

and neither may be the principal point offsets. Strat [?] gives an example of an image where

the camera parameters take on surprising values. Our purpose in treating general camera

transforms is to avoid the necessity for arbitrary assumptions about the image.

The matrix P representing a general camera transformation may be factored into a

product P = KL, where L is a 3×4 matrix representing the so-called “external parameters”
of the camera and K is a 3 × 3 upper-triangular matrix representing so-called “internal
parameters”. The task of determining the internal parameters of the camera is known as

“calibration”. The matrix L of external parameters represents a simple pinhole camera

model. If the camera is located at a point T with orientation represented by the rotation

matrix R, then a simple pinhole camera model will take a point (x, y, z, 1)T to (u, v, w)T =

R∗(X−T ). This is represented in matrix form as (u, v, w)T = (R|−RT )(x, y, z, 1)T . Matrix
L is the matrix (R| − RT ). In general, therefore, the camera matrix will be written in the
form (M | −MT ) where M is a non-singular 3× 3 matrix and T is a vector representing the
location of the camera.

In the usual approach to stereo, camera parameters for the two cameras involved are

derived from a set of match points in the two images. Longuet-Higgins [?] gave a method

for computing the relative locations and orientations of the cameras in the case where the

internal parameters are all known. (More precisely, [?] assumes a mapping from object

space coordinates to image space coordinates, which, if the internal camera model is known,

reduces to the simple pinhole model.)

Out interest is in the case where the internal camera parameters are unknown. In this

case, it is impossible to compute the camera model from a set of match points only. We

prove there is an ambiguity represented by a general 3-dimensional projective transform of

the cameras and the object-space points corresponding to the match points. The ambiguity

may be resolved by the use of ground control points, or by placing restrictions on the camera

model.

Previously known methods for solving the camera calibration and placement to take

proper account of both ground-control points and image correspondences are unsatisfactory

2



in requiring either iterative methods or model restrictions. Purely non-iterative methods (e.g.

those by Sutherland [?] or Longuet-Higgins [?]) are not able to handle ground-control and

match-points simultaneously. In our approach, we avoid the actual computation of internal

or external camera parameters as far as possible. In fact the geometry of the object-space

points is determined without the need for the camera parameters to be computed, though

they are easily obtained if needed. In fact, the method given in section 3 of this paper

provides a non-iterative method for solving camera parameters given matched points and

ground control points.

1.2 Overview

In order to handle image pairs that may be locally distorted with respect to each other, an

image to image transformation, designated byMI , is used. For any given pixel ũ = [u, v, 1]
T ,

which is the image of a point P in the first image, MI computes the vicinity in which the

image of P would lie in the second image. This accelerates the search for match points. In

addition, since areas in one image are transformed via MI before comparing them with the

areas in the second image, MI also has the effect of undoing local distortions and registering

the images with respect to each other, making feasible area-based correlation for finding the

match points. As more and more match points are found,MI can be made better and better

in a bootstrapped fashion.

It has been known for some time that for two match points ũ and ũ′, expressed in

homogeneous coordinates, there exists a 3× 3 matrix Q, also known as the essential matrix,
such that ũ

′TQũ = 0 [?, ?]. As shown in [?], [r, s, t]T = Qũ is the equation of the epipolar

line corresponding to ũ, in the second image. (The line [r, s, t]T in homogeneous coordinates

corresponds to the line equation ru+ sv + t = 0, in the image-space.)

A key contribution of this paper is to show thatMI andQ can be computed in conjunction

thus making MI respect the epipolar constraint. In other words, not only is the transformed

point MI ũ close to its match point in the second image, it also lies on the epipolar line.

It should be emphasized that the epipolar constraint is enforced without computing

the relative camera location, orientation, or any other camera parameters such as scale or

principal point offset in the camera model. In fact, in [?] it is shown that the transformation

Q contains all the information about relative camera parameters for completely uncalibrated

cameras (i.e., cameras about which nothing is known) that can be derived from a set of

match points.
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Once a sufficient number of match points have been found, the analysis of their rela-

tive disparities to compute their relative 3-D location can start using the transformation

Q which contains the relative information about the cameras. Unfortunately, as shown in

Lemma 2, from a given set of correspondences between the two images, and the Q-matrix, it

is impossible to determine uniquely all the camera parameters and the position of points in

object-space that are compatible with the given data. However, we prove (see Theorem 1)

that the various solutions (i.e., the 3-D location of points and the camera transformations

matrices) that are compatible with the given set of match points are related with each other

via a 3-dimensional projective transformationH . We show how one can compute two camera

transformations P1 and P2, which are obviously not unique, from Q and use them to find

a set of points locations in 3-D. Since both P1 and P2, and the set of points may be off by

an unknown projective transformation H , ground control points are used to compute the

absolute 3-D location of the points.

The techniques presented in this paper have been implemented and tested by augmenting

the STEREOSYS testbed developed by Marsha Jo Hanna of SRI [?, ?]. Our experiments

reveal that these techniques result in faster processing and increased number of match points.

1.3 Notation

The symbol ũ represents a column vector. We will use the letters u, v and w for homoge-

neous coordinates in image-space In particular, the symbol ũ represents the column vector

(u, v, w)T . Object space points will also be represented by homogeneous coordinates x, y, z

and t, or more often x, y, z and 1. The symbol x̃ will represent a point in three-dimensional

projective plane represented in homogeneous coordinates. In general, unprimed image coor-

dinates lie in the first or the reference image while the primed image coordinates lie in the

target or the second image.

When a vector is represented by a single letter (for example a), it is assumed to be a

column vector. The corresponding row vector is written aT . On the other hand, (a1, a2, a3)

represents a row vector. The corresponding column vector is denoted by (a1, a2, a3)
T .

Since all vectors are represented in homogeneous coordinates, their values may be multi-

plied by any arbitrary non-zero factor. The notation ≈ is used to indicate equality of vectors
or matrices up to multiplication by a scale factor.
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2 Processing Steps

As a preprocessing step, an image hierarchy or pyramid is constructed in order to accelerate

the computation of match points. This is accomplished by successively reducing both images

in the stereo pair to half their size (and resolution) via subsampling using gaussian convo-

lution. The matching process begins at the bottom of the pyramid and works its way up to

images with higher and higher resolution. During preprocessing, a set of “interesting points”

are also computed in one of the images. The matching process attempts to match only the

points in this set with their corresponding points in the other image. These preprocessing

steps are largely the same as those in STEREOSYS testbed and the reader is referred to

[?, ?, ?] for details.

2.1 Image to Image Transformation.

As mentioned earlier, our system can take as input oblique, rotated, and partially overlap-

ping imagery. We overcome the problems arising because of these effects via a 2D perspective

transformation MI that maps a point ũ in the first image, to the neighborhood of its cor-

responding match point ũ′ in the second image. The following observation establishes the

existence of such a transformation.

Observation 1 Let ũi = [ui, vi, 1]
T and ũ′i = [u

′
i, v
′
i, 1]

T be the images of points pi, i = 1 . . . n,

in the given image pair. Each ũi in the first image can be transformed to its corresponding

match point ũ′i in the second image via a 2-dimensional perspective transformation if all pis

lie in a plane.

Proof: For all match points [ui, vi, 1] and [u
′
i, v
′
i, 1] which are images of points pi in a plane,

we have to show the existence of a 3× 3 matrix MI = [mij ] such that



w′iu

′
i

w′iv
′
i

w′i


 =



m11 m12 m13

m21 m22 m23

m31 m32 m33






wiui

wivi

wi


 . (1)

Without loss of generality, assume the all pis lie in the X-Y plane (i.e. the plane z = 0) and

the camera matrices are denoted by P1 and P2. The image coordinates of each pi = [xi, yi, 0],

in the two images, are given by

[wiui, wivi, wi]
T = P1[xi, yi, 0, 1]

T (2)
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[w′iu
′
i, w

′
iv
′
i, w

′
i]
T = P2[xi, yi, 0, 1]

T (3)

Equations (2) and (3)) can be rewritten as

[wiui, wivi, wi]
T = P̂1[xi, yi, 1]

T (4)

[w′iu
′
i, w

′
iv
′
i, w

′
i]
T = P̂2[xi, yi, 1]

T (5)

where P̂i is the 3×3 matrix formed by deleting the third column of Pi. From these relations

it follows that

[w′iu
′
i, w

′
iv
′
i, w

′
i]
T = P̂2P̂

−1
1 [wiui, wivi, wi]

T (6)

as required. ✷

The problem of computing MI can be stated as that of minimizing the sum of errors εi

in the following, possibly overconstrained, system of equations.

[u′i, v
′
i, w

′
i]
T =MI [ui, vi, 1]

T + εi. (7)

Each match point leads to two equations:

m11ui +m12vi +m13 − u′i(m31ui +m32vi +m33) = 0

m21ui +m22vi +m23 − u′i(m31ui +m32vi +m33) = 0 (8)

This system of equation can be cast as a minimum least-square error solution to Ax = 0,

where x is a 9 dimensional vector containing the entries of MI , and A is 2n × 9 matrix of
known coefficients with n being the number of available tie points. Since the entries of MI

are only determined up to a constant multiplier, the constraint ||x|| = 1 can be imposed to

avoid the all-zero solution.

In practice, since pis do not lie in a plane, there would be deviation in the values computed

using MI . Let P be the plane that fits pis the best. MI would account for all disparities

arising because of the change in viewpoint except the deviations which are related to a point’s

distance from P.

A rough, initial transformation is first computed based on user-provided tie points be-

tween the two images. As few as four tie points are sufficient to start the process. Using

this rough transformation, unconstrained hierarchical matching, as described in [?, ?], can

proceed. Since the computation of MI is rather fast, only requiring solution to a linear

system of equations given in Eq. (7), MI can be refined at any intermediate point during the

hierarchical matching process as more match points become available.
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2.2 Computation of Q

The essential matrix Q corresponding to the matching points was defined by Longuet-Higgins

[?] to be a 3 × 3 matrix defined by the relation ũ′Ti Qũi = 0 for all i. In addition, it was

shown in [?], and generalized in [?] for any arbitrary camera pairs, that Q can be factorized

as RS, where R is a rotation matrix and S is a skew-symmetric matrix. In other words, for

any stereo pair of images, one can find qij such that for all match point pairs [uk, vk, 1] and

[u′k, v
′
k, 1],

[
u′k v′k 1

]


q11 q12 q13

q21 q22 q23

q31 q32 q33






uk

vk

1


 = 0. (9)

In order to compute the entries qij with the help of match points computed earlier,

Eq. (9) can be posed as a (possibly overconstrained) system of equations, one equation

for each pair of match points. This system of equations has the form Bx = 0 where x is

the 9 dimensional vector of qijs. Thus x (equivalently, Q) can be computed using linear,

non-iterative techniques, if the constraint ||x|| = 1 is imposed to avoid the trivial solution.

It can be shown that the Q matrix computed above must have two non-zero singular

values that are equal, and the third singular value equal to zero, if the two cameras have

magnifications equal to unity and zero principal point offsets (i.e., the K matrix describing

the internal calibration is an identity matrix) [?]. The non-zero singular values of Q need

not be equal for cameras about which the assumptions concerning the principal point off-

sets and magnifications do no hold. In practice, because of the round-off errors and other

approximations involved, a computed Q would rarely satisfy this constrain. However, one

can use this result to improve the value of Q as follows. Let Q = UDV T be the singular

value decomposition of Q with D = diagonal(λ1, λ2, λ3), and λ1 ≥ λ2 ≥ λ3. Replace D

with D′ = diagonal(λ1+λ2

2
, λ1+λ2

2
, 0) (in general, D′ = diagonal(λ1, λ2, 0)) and recompute

Q = UD′V T . It is shown in [?] that this gives the best approximation.

For any point x = [u, v, 1]T in the first image, [r, s, t]T = Qx represents the equation of

the epipolar line on which the match point of x would lie in the second image.

2.3 Recomputation of MI

It is well known that the search for a match point can be made more efficient by constraining

it to the epipolar line in the second image. Epipolar searching can be performed by trans-

forming a point ũ to MI ũ and searching along the line given by Qũ. However, a difficulty
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arises at this point. Even though both MI and Q are computed using the same set of tie

points, there is no guarantee that MI ũ actually lies on the line Qũ. We now describe a

method for recomputing MI so that it satisfies the epipolar constraint.

The problem of recomputing such an MI can be stated as follows: Find MI and Q such

that:

1. For all ũi, the corresponding ũ
′
i in the second image lies on the epipolar line given by

Q, i.e., ∀i, ũ′Ti Qũi = 0.

2. MI transforms all ũis so that the overall error between ũ
′
i and MI ũi is as small as

possible, i.e., find MI such that εi = (ũ
′
i −MI ũi) results in minimum

∑
εi.εi.

3. For all points ũ in the first image, MI ũ lies on the epipolar line Qũ. Note that this is

a condition on all ũ and not just those that are included in the match points obtained

so far.

In the previous section, we showed how to compute a Q that satisfies the first condition

for all match points. So it only remains to compute an MI that is compatible with this Q.

The minimization problem in (2.) can once again be stated as that of solving an over-

constrained system of equations, MI ũi = ũ′i with minimum least-squared error (see Eq. (8)).

In other words, we have to solve equations of the form Ax = 0, where x contains the mijs,

under the constraint given in (3.) above.

The third condition, viz., for all points ũ in the first image, MI ũ must lie on the epipolar

line Qũ, dictates that (MIu)
TQu = 0, ∀u. Equivalently,

∀u, uT (MT
I Q)u = 0. (10)

It can be shown that Eq. (10) can be satisfied if and only if MT
I Q is skew-symmetric. This

leads of six linear constraints, given below, on the entries of MI .

m11q11 +m21q21 +m31q31 = 0

m12q12 +m22q22 +m32q32 = 0

m13q13 +m23q23 +m33q33 = 0

m11q12 +m21q22 +m31q32 = −(m12q11 +m22q21 +m32q31)

m11q13 +m21q23 +m31q33 = −(m13q11 +m23q21 +m33q31)

m12q13 +m22q23 +m32q33 = −(m13q12 +m23q22 +m33q32) (11)
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Here the qij are known and the mij are to be determined. Thus the overall problem becomes:

Solve Ax = 0 subject to the condition Bx = 0, where B is a 6× 9 coefficient matrix given
by Eq. (11) and x = [m11, m12, . . . , m33] is the vector of unknowns. In order to avoid the

trivial solution x = [0, . . . , 0], we impose the further constraint that ||x|| = 1.

The problem of minimizing ||Ax|| subject to Bx = 0 and ||x|| = 1 is a fairly standard

problem in linear algebra and there are several ways that it may be done. We describe one

way based on the singular value decomposition. In the particular case that we consider here,

A represents a set of equations in 9 unknowns, the entries of the matrix MI , whereas B is a

set of 6 equations in the 9 unknowns. As shown below, not all the constraints in Eq. 11 are

independent.

Observation 2 The coefficient matrix B in the constraint equations Bx = 0 given by

Eq. (11) has rank 5.

Proof: Note that B is entirely made up of the elements of Q. The result follows from the

fact that Q has rank 2. This can be used to show that there is one redundant equation. The

details are left to the reader. ✷

Let B = UDV T be the singular value decomposition of B, which yields UDV Tx = 0

as the set of constraints. There will be one singular value equal to zero, since B has rank

5. We assume that the last element in the diagonal of D is zero. Now, write x′ = V Tx

(equivalently, x = V x′). Our new task then is to minimize ||AV x′|| subject to UDx′ = 0 and
||x′|| = 1 (since ||x|| = ||x′||). Now, the solution to UDx′ = 0 is the same as the solution to

Dx′ = 0 and is equal to x′1 = x′2 = . . . = x′5 = 0. Setting the first five entries of x′ to zero, we

form a new problem : Minimize ||A′x′′|| subject to ||x′′|| = 1, where A′ is the matrix formed

from AV by deleting the first 5 columns, and x′′ is a vector of length 4.

To solve the problem : Minimize ||A′x′′|| subject to ||x′′|| = 1, once more we take the Sin-
gular Value Decomposition of A′ = U ′D′V T . The solution is then given by x′′ = V (0, 0, 0, 1)T

assuming that the last diagonal entry of D′ is the smallest.

Once x′′ is found, we extend it to a 9-vector x′ by adding 5 leading zeros. Then finally,

the solution to the original problem is x = V x′. The entries of x can be written as a 3× 3
matrix to yield MI . Q and MI , computed as above, have the desired property that MI ũ lies

on the line Qũ and epipolar matching can proceed.
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2.4 Relative Placement of Cameras and Points

For cameras with known internal calibration Q can be separated into a product RS(T ) [?],

where R is a rotation matrix and S(T ), for some T = (tx, ty, tz)
T is a skew symmetric matrix

of the form

S =



0 −tz ty

tz 0 −tx
−ty tx 0


 (12)

It is also possible to accomplish such a factorization for completely uncalibrated cameras

[?]. In this case, S is still skew-symmetric, however, R is a non-singular (not necessarily a

rotation) matrix. The procedure for factorization of Q into R and S matrices is beyond the

scope of this paper; the reader is referred to [?] for details.

Because of the form of S, it is convenient to use the following notation. If T = (tx, ty, tz)
T

is a column vector, then by S(T ) is meant the skew-symmetric matrix:



0 −tz ty

tz 0 −tx
−ty tx 0




Matrix S(T ) is a singular matrix of rank 2, unless T = 0. Furthermore, the null-space of

S(T ) is generated by the vector T. This means that T T .S(T ) = S(T ).T = 0 and that any

other vector annihilated by S(T ) is a scalar multiple of T .

We are interested in computing X = [x, y, z]T for each pair of match points ũ = [u, v, 1]T

and ũ′ = [u′, v′, 1]T . There are two cases. If the factorization of Q into unique R and

S is known because of some prior knowledge about the cameras — for example, the focal

lengths of the two cameras may be known a priori — then the computation of x̃, as described

in [?], is relatively straightforward. In the absence of any prior information, for completely

uncalibrated cameras, it will be shown that an infinite number of solutions exist. Fortunately,

it is still possible to find the actual 3-D points if a minimum of 8 ground control points are

given.

We consider a general pair of camera matrices represented by P1 = (M1 | −M1T1) and

P2 = (M2 | −M2T2). (By completely general we mean that M1 and M2 are not restricted to

be pure rotations.) We will determine the form of the matrix Q in terms of P1 and P2.

Lemma 1 The essential matrix corresponding to the pair of camera matrices (M1 | −M1T1)

and (M2 | −M2T2) is given by

Q ≈M∗2MT
1 S(M1(T2 − T1)).

10



Here A∗ represents the adjoint of a matrix A, that is, the matrix of cofactors. If A is an

invertible matrix, then A∗ ≈ (AT )−1.

As is indicated by the previous lemma, an essential matrix Q factors into a product

Q = RS, where R is a non-singular matrix and S is skew-symmetric. The next lemma shows

to what extent this factorization is unique.

Lemma 2 Let the 3× 3 matrix Q factor in two different ways as Q ≈ R1S1 ≈ R2S2 where

each Si is a non-zero skew-symmetric matrix and each Ri is non-singular. Then S2 ≈ S1.

Furthermore, if Si = S(t̃) then R2 = R1 + ãt̃
T for some vector ã.

Proof: Since R1 and R2 are non-singular, it follows that Qt̃ = 0 if and only if Sit̃ = 0.

From this it follows that the null-spaces of the matrices S1 and S2 are equal, and so S1 ≈ S2.

Matrices R1 and R2 must both be solutions of the linear equation Q ≈ RS. Consequently,

they differ by the value ã.t̃T as required. (Notice that ã.t̃T , the product of column ã and row

t̃T , is a 3× 3 matrix.) ✷

We now prove a theorem which indicates when two pairs of camera matrices correspond

to the same essential matrix.

Theorem 1 Let {P1, P2} and {P ′1, P ′2} be two pairs of camera transforms. Then {P1, P2}
and {P ′1, P ′2} correspond to the same essential matrix Q if and only if there exists a 4 × 4
non-singular matrix H such that P1H = P ′1 and P2H = P ′2.

Proof : First we prove the if part of this theorem. To this purpose, let {x̃i} be a set of at
least 8 points in 3-dimensional space and let {ũi} and {ũ′i} be the corresponding image-space
points as imaged by the two camera P1 and P2. By the definition of the essential matrix Q

satisfies the condition

ũTi Qũ
′
i = 0

for all i. We may assume that the points {x̃i} have been chosen in such a way that the
matrix Q is uniquely defined up to scale by the above equation. The point configurations

that defeat this definition of the Q matrix are discussed in [?]. Suppose now that there exists

a 4 × 4 matrix H taking P1 to P
′
1 and P2 to P

′
2 in the sense specified by the hypotheses of

the theorem. For each i let x′i = H−1xi. Then we see that

P ′1x
′
i = P1HH

−1xi = P1xi = ui, and,
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P ′2x
′
i = P2HH

−1xi = P2xi = u′i

In other words, the image points {ũi} and {ũ′i} are a matching point set with respect to the
cameras P ′1 and P

′
2. Thus the essential matrix for this pair of cameras is defined by the same

relationship ũTi Qũi = 0 that defines the essential matrix of the pair P1 and P2. Consequently,

the two camera pairs have the same essential matrix.

Now, we turn to the only if part of the theorem and assume that two pairs of cameras

have the same essential matrix, Q. First, we consider the camera pair {(M1 | −M1T1), (M2 |
−M2T2)}. It is easily seen that the 4× 4 matrix


 M−1

1 T1

0 1




transforms this pair to the camera pair {(I | 0), (M2M
−1
1 | −M2(T2 − T1))} where I and

0 are identity matrix and zero column vector respectively. Furthermore by the if part of

this theorem (or as verified directly using Lemma 1), this new camera pair has the same

Q-matrix as the original.

Applying this transformation to each of the camera pairs

{(M1 | −M1T1), (M2 | −M2T2)}and{(M ′1 | −M ′1T ′1), (M ′2 | −M ′2T ′2)}

we see that there is 4 × 4 matrix transforming one pair to the other if and only if there is
such a matrix transforming

{(I | 0), (M2M
−1
1 | −M2(T2 − T1))}to{(I | 0), (M ′2M ′−1

1 | −M ′2(T ′2 − T ′1))}

Thus, we are reduced to proving the theorem for the case where the first cameras, P1 and

P ′1 of each pair are both equal to (I | 0). Thus, let {(I | 0), (M | −MT )} and {(I | 0), (M ′ |
−M ′T ′)} be two pairs of cameras corresponding to the same essential matrix. According
to Lemma 1, the Q-matrices corresponding to the two pairs are M∗S(T ) and M ′∗S(T ′)

respectively, and these must be equal (up to scale). According to lemma 2, T ≈ T ′. Further,

M ′∗ =M∗ + ãT T

for some vector ã. Taking the transpose of this last relation yields

M ′
−1
=M−1 + T ãT (13)

At this point we need to interpolate a lemma.
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Lemma 3 For any column vector t̃ and row vector ãT , if I − t̃ãT is invertible then

(I − t̃ãT )−1 = I + k.t̃ãT

where k = 1/(1− ãT t̃).

Proof : The proof is done by simply multiplying out the two matrices and observing

that the product is the identity. One might ask what happens if ãT t̃ = 1 in which case k

is undefined. The answer is that in that case, I − t̃ãT is singular, contrary to hypothesis.
Details are left to the reader. ✷

Now we may continue with the proof of the theorem. Referring back to Eq. 13, it follows

that

M ′ = (M−1 + T ãT )−1

= (M−1(I +MTãT ))−1

= (I − k.MT ãT )M

= M − k.MT (ãTM)

and

M ′T = MT − k.MT (ãTMT )

= k′.MT (14)

where k′ = 1 − k.ãTMT . Since T ′ is a constant multiple of T according to Lemma 2,

M ′T ′ = k′′MT . From these results, it follows that

(M ′ | −M ′T ′) = (M | −MT )


 I 0

k.ãTM k′′




This completes the proof of the theorem. ✷

Choosing a Factorization. Given a set of image correspondences ũi ↔ ũ′i defining an

essential matrix Q, the previous theorem shows that one cannot unambiguously determine

the position of the cameras, or the corresponding object-space points from Q. Since Q con-

tains all the information that is available from the point correspondences, it follows that the

position of the cameras and the object points can be determined only up to a 3-dimensional

projective transform as specified by the matrix H . In order to determine the positions of the
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object-space points {xi} unambiguously, it is necessary for some ground-control points to be
specified. Our strategy, therefore, is to select any pair of camera placements consistent with

the essential matrix, Q. Later, a 3-dimensional projective transform will be carried out to

translate to an absolute coordinate system.

The first task is to determine a pair of camera matrices corresponding to a given essential

matrix, Q. To this purpose, suppose that the singular value decomposition [?] of Q is given

by Q = UDV T , where D is the diagonal matrix D = diagonal(r, s, 0). In a practical case, the

smallest singular value of Q will not be exactly equal to 0 because of numerical inaccuracies.

However, setting the smallest singular value to 0 gives the matrix closest to Q in Euclidean

norm that has the required rank 2. The following factorization of Q may now be verified by

inspection.

Q = RS ; R = Udiag(r, s, γ)EV T ; S = V ZV T

where

E =



0 −1 0

1 0 0

0 0 1


 ; Z =



0 −1 0

1 0 0

0 0 0




and γ is any non-zero number, but is best chosen to lie between r and s so that the condition

number [?] of R is as good as possible. From Lemma 1 it follows that the pair of camera

matrices

P1 = (I | 0),

P2 = (Udiag(r, s, γ)EV T | U(0, 0, γ)T )

correspond to the given essential matrix, Q. It is in no way intended that this should

represent the true placement of the cameras, but it is related to the true camera placement

by a 3-dimensional projective transformation.

Computation of 3-D Points. The point in the object space that projects on to ũi and

ũ′i in the two images, according to P1 and P2, can be computed as follows. The equations

of the rays originating at the focal point of the two cameras and passing through the two

match points are given by

[wiui, wivi, wi]
T = P1[xi, yi, zi, 1]

T

[w′iu
′
i, w

′
iv
′
i, w

′
i]
T = P2[xi, yi, zi, 1]

T

The values of ui, vi, u
′
i, v
′
i, P1 and P2 are known. Thus we have and overconstrained system

of equations in 5 unknowns and the values x̃i = (xi, yi, zi) that minimizes the error can be

computed. This will correspond to the point of intersection of these two rays, if they do

intersect in space, or the point midway between the points of their closest approach.
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2.5 Relative to Absolute Transformation

Since the relative 3-D points computed above may be off by a perspective transformation,

ground control points are needed to transform the relative coordinates to absolute coordinates

in some user-specified coordinate system. In order to determine absolute placements of the

cameras, it is necessary to have at least 8 ground control points to resolve the ambiguity in

camera placements derived from the match point data. The method that is used here may

be regarded in some ways as a generalization of the method of Sutherland [?] to more than

one camera. Suppose that we have n cameras represented by matrices P1, P2, . . . , Pn and a

set of ground control points {xi}, where ground control point xi is visible in camera Pσ(i), the

corresponding image-coordinates being ũi. It is assumed that there is a 4× 4 non-invertible
matrix H that transforms each Pi to its true placement. This leads to a set of equations



wiui

wivi

wi


 = Pσ(i)H




xi

yi

zi

1




The only unknowns in this set of equations are the entries of the matrix H and the values

wi, the above equations may be written as a set of equations

wiui = Ai(h11, h12, . . . , h44)

wivi = Bi(h11, h12, . . . , h44)

wi = Ci(h11, h12, . . . , h44)

where A, B and C are linear expressions in the entries hjk of H . Since the wi are unknown

values, it is possible to eliminate them from the above equations by writing

Ci(h11, . . . , h44)ui = Ai(h11, . . . , h44)

Ci(h11, . . . , h44)vi = Bi(h11, . . . , h44)

This gives a set of linear equations in the entries hjk of H , which can be solved to find

the matrix H . The solution will be determined only up to a scale factor, corresponding to

the fact that H is itself only determined up to a scale factor.

We can now compute the 3-D points by applying the inverse transformation, H−1 to

the points x̃i computed earlier. Points x̃i may not have any physical meaning except that

they give rise to the known match points when viewed through cameras with P1 = (I | 0)
and P2 = (Udiag(r, s, γ)EV T | U(0, 0, γ)T ). However, by virtue of Theorem 1 and the fact

that ground control points are used in the computation of H , H−1x̃i does correspond to the

actual 3-D point responsible for the i-th match point.
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3 Experimental Validation

The methodology described in this paper has been implemented by augmenting the STE-

REOSYS testbed with appropriate routines. Fig. ?? shows a stereo image pair showing two

overlapping views of a portion of Malibu, California, and the associated image hierarchy (the

highest resolution images in the hierarchy, which are 1K×1K in size, are not shown in the

figure). The result after epipolar matching using the MI and Q transformations is shown.

In the figure, the green squares represent the successful matches. These are obtained by

starting with an interesting point ũ in the first image, computing its approximate location

in the second image using MI , and searching along the line given by Qũ. Once a match ũ
′ is

found in the second image, the processing is reversed and a match point ũ′′, corresponding

to ũ′, is found in the first image. If ũ and ũ′′ are close to each other, and the matched

points exhibit high correlation, the matched pair is accepted. The red squares in the figure

are the results of unsuccessful matches. Typically, matching is unsuccessful because for an

interesting point in the first image, the corresponding match point lies outside the second

image.

As can be seen, the two images are translated with respect to each other and are only

partially overlapping. However, because of the image to image transformation, translations,

rotations, and several other discrepancies in the images can be handled.

It was seen that the initial estimation of this transformation, which is based on user-

selected tie points, is rather rough and can provide an accuracy of about 4-5 pixels when

transforming a point from one image to another. However, this accuracy improves con-

siderably once more tie points become available through unconstrained matching. In fact,

recomputation of MI , as discussed in Section 2.3, generally yields a transformation that

gives sub-pixel accuracy after discounting for the parallactic displacement from one image

to the other. Because of this accuracy, in both unconstrained hierarchical matching and the

epipolar matching, the search is typically initiated very close to the actual match point. This

results in faster convergence.

After epipolar searching, exhaustive searching is done to compute match points on a

closely spaced grid. These match points, about 3000 in all, are used recompute Q which in

turn yields camera transformations P1 and P2. 3-D points, in a relative coordinate system,

are then computed and are transformed using H — which is computed with the help of

ground control points — to get the absolute 3-D location of the points in the object space.

Fig. ?? shows the final 3-D model for the image pair in Fig. ?? after Rayleigh interpolation

for the missing points. In all the processing steps mentioned here, it was observed that
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reliance on linear, non-iterative computations results in considerable saving in run time.

An earlier version of our program used a non-linear, iterative technique, based on a

modified Marquardt procedure, to compute the camera parameters. It was observed that

unless good initial estimates for the camera parameters are provided, the process sometimes

converged to a valid, but physically meaningless, set of parameters. The present technique,

which does not require explicit camera modeling, is more robust as no information about

camera parameters, exact or approximate, is required. The imagery, and a few control points

in order to register the 3-D model to some world coordinate system, is all that is needed.

4 Extensions to Trinocular Stereo

A point in 3D is located by intersecting two rays originating from the camera points and

passing through the corresponding points in the image plane. In practice, these rays rarely

intersect and one is forced to take the point P in space which is closest to both these rays

(i.e., sum of P’s perpendicular distances from these two rays is minimum), as the intersection

point. Since in trinocular vision the point P is required to be closest to three rays, it achieves

better 3D localization of the point.

It is also possible to make the search for match points more efficient if more than 2 views

of the same scene are available. In binocular stereo, the epipolar search for match point

in the second image has one degree of freedom (i.e., it is confined to a line). For the third

image, the degree of freedom can be reduced to zero as shown in Figure ??.

Consider three images with Mij and Qij denoting the MI and Q matrices that take a

point ũ in image i and produce the corresponding match point and epipolar line, respectively,

in the image j. A point ũ in the first image can be transformed to ṽ =M12ũ on its epipolar

line Q12ũ in the second image as shown in Figure ??. All the epipolar lines pass through the

point C12, the image of the first camera in the second image, as shown. Similarly, ũ can be

transformed to w̃ =M13ũ on its epipolar line Q13ũ in the third image.

If one assumes that ṽ is the match point in the second image, then the match point in

the third image can be easily found by intersecting Q13ũ and Q23ṽ. In general, since ṽ is

not known, the search for the match point the third image can proceed simultaneously with

that in the second image.

In order to confirm the match-triple (ũ, ṽ, w̃), which has been obtained by starting with

ũ in the first image, we can rotate images 1, 2, and 3 and in turn regard image 2 and image 3
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as the reference image. The same triple (ũ, ṽ, w̃) should be obtained, no matter which image

is the reference image, for three 3-way matching to succeed.
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Figure 1: The image hierarchy and the result of epipolar matching. Note (2001) : The

original images from this paper have been lost.

Figure 2: Terrain elevation model for the image pair in Fig. 1.

Figure 3: 3-Way matching in trinocular stereo.
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