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Abstract
This paper considers the problem of computing

placement of points in 3 dimensional space given two
uncalibrated perspective views. The main theorem
shows that the placement of the points is determined
only up to an arbitrary projective transformation of
3-space. Given additional ground control points, how-
ever, the location of the points and the camera pa-
rameters may be determined. The method is linear
and non-iterative whereas previously known methods
for solving the camera calibration and placement to
take proper account of both ground-control points and
image correspondences are unsatisfactory in requiring
either iterative methods or model restrictions.

As a result of the main theorem, it is possible to
determine projective invariants of 3-D geometric con-
figurations from two perspective views.

1 Introduction
A typical system for the construction of 3-D models

from stereo imagery operates in three phases. In the
first phase a set of matched points (i.e., pixels in the
two views that are the images of the same point in the
real world), are established between the two images.
In the second phase, the identified matched points are
used to derive the relative locations, orientations and
other parameters of the cameras. This process usually
requires iterative solution of a set of non-linear equa-
tions. In a third phase the locations of 3-D points are
computed.

This paper describes a method of computing the
3-D point locations without explicit computation of
the camera models. The method is related to work of
Longuet-Higgins ([4]), but is different in that we do
not assume a known calibration of the cameras.

1.1 Notation
The symbol u represents a column vector. We will

use the letters u, v and w for homogeneous coordinates
in image-space. In particular, the symbol u represents
the column vector (u, v, w)�. Object space points will
also be represented by homogeneous coordinates x, y,
z and t, or more often x, y, z and 1. The symbol x

will represent a point in three-dimensional projective
space represented in homogeneous coordinates.

Since all vectors are represented in homogeneous
coordinates, their values may be multiplied by any ar-
bitrary non-zero factor. The notation ≈ is used to
indicate equality of vectors or matrices up to multipli-
cation by a scale factor.

Given a vector, t = (tx, ty, tz)� it is convenient to
introduce the skew-symmetric matrix

[t]× =


 0 −tz ty

tz 0 −tx
−ty tx 0


 (1)

For any non-zero vector t, matrix [t]× has rank 2.
Furthermore, the null-space of [t]× is generated by
the vector t. This means that t�[t]× = [t]×t = 0 and
that any other vector annihilated by [t]× is a scalar
multiple of t.
1.2 Camera Model

The general model of a perspective camera that will
be used here is that represented by an arbitrary 3× 4
matrix, P , known as the camera matrix. The camera
matrix transforms points in 3-dimensional projective
space to points in 2-dimensional projective space ac-
cording to the equation u = Px. The camera matrix
P is defined up to a scale factor only, and hence has
11 independent entries. As shown by Strat ([6]), this
model allows for the modeling of several parameters,
in particular : the location and orientation of the cam-
era; the principal point offsets in the image space; and
unequal scale factors in two directions parallel to the
axes in image space.

This accounts for 10 of the total 11 entries in
the camera matrix. It may be seen that if unequal
stretches in two directions not aligned with the image
axes are allowed, then a further 11-th camera parame-
ter may be defined. In practical cases, the focal length
(magnification) of the camera may not be known, and
neither may the principal point offsets. Strat [6] gives
an example of an image where the camera parameters
take on surprising values. Our purpose in treating
general camera transforms is to avoid the necessity
for arbitrary assumptions about the camera.
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If the camera is not placed at infinity, then the left-
hand 3 × 3 submatrix of P is non-singular. Then P
can be written as P = (M | −MT ) where T is a vec-
tor representing the location of the camera. By the
method of QR-factorization ([1]), M may be written
as a product M = KR where K is upper triangular
and R is a rotation matrix. The matrix K represents
the so-called internal parameters of the camera. If
K is known a priori, then we say that the camera is
calibrated. For calibrated cameras, a common simpli-
fication is to assume that the matrix K is the identity,
so that M is a rotation matrix.

1.3 Overview
Corresponding to a pair of cameras, there exists a

3× 3 matrix Q known as the essential matrix ( [4, 3]),
such that if u and u′ are a pair of matched points ex-
pressed in homogeneous coordinates, then u′�Qu = 0.
If a sufficient number of matched points are known,
the matrix Q may be computed by the solution of a
(possibly overdetermined) set of linear equations. If
the internal calibration of the cameras is known, then
it is possible to determine from Q the relative place-
ment of the cameras and hence the relative locations of
the 3-D points corresponding to the matched points.
It is shown in [3] that this is also true even when the
focal lengths of the two cameras are unknown. Unfor-
tunately, for uncalibrated cameras, it is not possible
to compute the camera parameters or the point loca-
tions unambiguously. However, we prove in Theorem 1
that the various solutions (i.e., the 3-D location of
points and the camera transformations matrices) that
are compatible with the given set of matched points
are related with each other via a 3-dimensional pro-
jective transformationH . Then, we show how one can
compute (non-uniquely) two camera transformations
P1 and P2 from Q and use them to find a tentative
set of 3-D points locations. Since both P1 and P2, and
the set of points may be off by an unknown projective
transformation H , ground control points are used to
compute the true 3-D location of the points.

Thus, the 3-D point locations are found by consider-
ing both matched points and ground control points us-
ing linear methods. Other purely non-iterative meth-
ods (e.g. those by Sutherland [7] or Longuet-Higgins
[4]) are not able to handle ground-control and matched
points simultaneously. In our approach, we avoid the
explicit computation of internal or external camera
parameters though they may easily be obtained if
needed.

2 Theory
We consider a general pair of camera matrices rep-

resented by P1 = (M1 | −M1T1) and P2 = (M2 |

−M2T2). The form of the matrix Q may be given in
terms of P1 and P2.

Lemma 1 The essential matrix corresponding to the
pair of camera matrices (M1 | −M1T1) and (M2 |
−M2T2) is given by

Q ≈M∗2M1
�[M1(T2 − T1)]× .

Here A∗ represents the adjoint of a matrix A, that
is, the matrix of cofactors. If A is an invertible matrix,
then A∗ ≈ (A�)−1. For a proof of Lemma 1 see [3].

As is indicated by the previous lemma, an essential
matrix Q factors into a product Q = RS, where R is
a non-singular matrix and S is skew-symmetric. The
next lemma shows to what extent this factorization is
unique.

Lemma 2 Let the 3 × 3 matrix Q factor in two dif-
ferent ways as Q ≈ R1S1 ≈ R2S2 where each Si is a
non-zero skew-symmetric matrix and each Ri is non-
singular. Then S2 ≈ S1. Furthermore, if Si = [t]×
then R2 ≈ R1 + at� for some vector a.

Proof: Since R1 and R2 are non-singular, it follows
that Qt = 0 if and only if Sit = 0. From this it
follows that the null-spaces of the matrices S1 and
S2 are equal, and so S1 ≈ S2. Matrices R1 and R2

must both be solutions of the linear equation Q ≈ RS.
Consequently, they differ by the value at� as required.
✷

We now prove our main theorem which indicates
when two pairs of camera matrices correspond to the
same essential matrix.

Theorem 1 Let {P1, P2} and {P ′1, P ′2} be two pairs
of camera transforms. Then {P1, P2} and {P ′1, P ′2}
correspond to the same essential matrix Q if and only
if there exists a 4×4 non-singular matrix H such that
P1H ≈ P ′1 and P2H ≈ P ′2.

Proof : First we prove the if part of this theorem.
To this purpose, let {xi} be a set of at least 8 points in
3-dimensional space and let {ui} and {u′i} be the cor-
responding image-space points as imaged by the two
camera P1 and P2. By the definition of the essential
matrix, Q satisfies the condition u′i

�Qui = 0 for all i.
We may assume that the points {xi} have been chosen
in such a way that the matrix Q is uniquely defined up
to scale by the above equation. The point configura-
tions that defeat this definition of the essential matrix
are discussed in [4]. Suppose now that there exists a
4 × 4 matrix H taking P1 to P ′1 and P2 to P ′2 in the
sense specified by the hypotheses of the theorem. For
each i let x′i = H−1xi. Then we see that

P ′jx
′
i = PjHH−1xi = Pjxi = ui



for j = 1, 2. In other words, the image points {ui}
and {u′i} are a matched point set with respect to the
cameras P ′1 and P

′
2. Thus the essential matrix for this

pair of cameras is defined by the same relationship
u′i
�Qui = 0 that defines the essential matrix of the

pair P1 and P2. Consequently, the two camera pairs
have the same essential matrix.

Now, we turn to the only if part of the theorem
and assume that two pairs of cameras have the same
essential matrix, Q. First, we consider the camera pair
{(M1 | −M1T1), (M2 | −M2T2)}. It is easily seen that
the 4× 4 matrix

(
M−1

1 T1

0 1

)

transforms this pair to the camera pair

{(I | 0), (M2M
−1
1 | −M2(T2 − T1))}

where I and 0 are identity matrix and zero column
vector respectively. Furthermore by the if part of this
theorem (or as verified directly using Lemma 1), this
new camera pair has the same essential matrix as the
original.

Applying this transformation to each of the camera
pairs

{(M1 | −M1T1), (M2 | −M2T2)}

and
{(M ′1 | −M ′1T ′1), (M ′2 | −M ′2T ′2)}

we see that there is 4 × 4 matrix transforming one
pair to the other if and only if there is such a matrix
transforming

{(I | 0), (M2M
−1
1 | −M2(T2 − T1))}

to
{(I | 0), (M ′2M ′−1

1 | −M ′2(T ′2 − T ′1))}

Thus, we are reduced to proving the theorem for the
case where the first cameras, P1 and P ′1 of each pair are
both equal to (I | 0). Thus, let {(I | 0), (M | −MT )}
and {(I | 0), (M ′ | −M ′T ′)} be two pairs of cameras
corresponding to the same essential matrix. According
to Lemma 1, the Q-matrices corresponding to the two
pairs areM∗[T ]× andM ′∗[T ′]× respectively, and these
must be equal (up to scale). According to Lemma 2,
T ≈ T ′ and M ′∗ ≈ M∗ + aT� for some vector a.
Taking the transpose of this last relation yields

M ′
−1 ≈M−1 + Ta� (2)

At this point we need to interpolate a lemma.

Lemma 3 For any column vector t and row vector
a�, if I + ta� is invertible then

(I + ta�)−1 = I − kta�

where k = 1/(1 + a�t).

Proof : The proof is done by simply multiplying
out the two matrices and observing that the product is
the identity. One might ask what happens if a�t = 1
in which case k is undefined. The answer is that in
that case, I − ta� is singular, contrary to hypothesis.
Details are left to the reader. ✷

Now we may continue with the proof of the theo-
rem. Referring back to (2), it follows that

M ′ ≈ (M−1 + Ta�)−1

≈ (M−1(I +MTa�))−1

≈ (I − kMTa�)M
≈ M − kMT (a�M)

and

M ′T ≈ MT − kMT (a�MT )
≈ k′MT ≈ MT (3)

where k′ = 1 − ka�MT . Since T ′ ≈ T according to
Lemma 2, M ′T ′ ≈MT . From these results, it follows
that

(M ′ | −M ′T ′) ≈ (M | −MT )
(

I 0
ka�M k′′

)

for some constant k′′.
This completes the proof of the theorem. ✷

2.1 Choosing a Realization of Q.
Given a set of image correspondences ui ↔ u′i

defining an essential matrix Q, the previous theorem
shows that one cannot unambiguously determine the
position of the cameras, or the corresponding object-
space points from Q. Since Q contains all the in-
formation that is available from the point correspon-
dences, it follows that the position of the cameras and
the object points can be determined only up to a 3-
dimensional projective transform as specified by the
matrix H . In order to determine the positions of the
object-space points {xi} unambiguously, it is neces-
sary for some ground-control points to be specified.
Our strategy, therefore, is to select any pair of cam-
era placements consistent with the essential matrix,
Q. Later, a 3-dimensional projective transform will
be carried out to transform to an absolute coordinate
system.

The first task is to determine a pair of camera ma-
trices corresponding to a given essential matrix, Q. To



this purpose, suppose that the singular value decom-
position [1] of Q is given by Q = UDV �, where D
is the diagonal matrix D = diag(r, s, 0). In a practi-
cal case, the smallest singular value of Q will not be
exactly equal to 0 because of numerical inaccuracies.
However, setting the smallest singular value to 0 gives
the matrix closest to Q in Euclidean norm that has
the required rank 2. The following factorization of Q
may now be verified by inspection.

Q = RS ; R = Udiag(r, s, γ)EV � ; S = V ZV �

where

E =


 0 −1 0

1 0 0
0 0 1


 ; Z =


 0 −1 0

1 0 0
0 0 0




and γ is any non-zero number, but is best chosen to
lie between r and s so that the condition number [1]
of R is as good as possible. From Lemma 1 it follows
that the pair of camera matrices

P1 = (I | 0) ; P2 = (Udiag(r, s, γ)EV � | U(0, 0, γ)�)

correspond to the given essential matrix, Q. It is in
no way intended that this should represent the true
placement of the cameras, but it is related to the true
camera placement by a 3-dimensional projective trans-
formation.
2.2 Computation of 3-D Points.

The point in the object space that projects on to
ui = (ui, vi, 1)� and u′i = (u′i, v

′
i, 1)

� in the two im-
ages, under the transforms P1 and P2, can be com-
puted as follows. The equations of the rays originat-
ing at the focal point of the two cameras and passing
through the two matched points are given by

(wiui, wivi, wi)� = P1(xi, yi, zi, 1)�

(w′iu
′
i, w

′
iv
′
i, w

′
i)
� = P2(xi, yi, zi, 1)�

The values of ui, vi, u′i, v
′
i, P1 and P2 are known,

whereas xi, yi, zi, wi and w′i are unknown. Thus
we have 6 equations in 5 unknowns and the vector
xi = (xi, yi, zi) that minimizes the error can be com-
puted. This will correspond to the point of intersec-
tion of these two rays, if they do intersect in space, or
the point midway between the points of their closest
approach.
2.3 Absolute Point Placement

Since the relative 3-D points computed above may
be off by a perspective transformation, ground control
points are needed to transform the relative coordinates
to absolute coordinates in some user-specified coordi-
nate system. In order to determine absolute place-
ments of the cameras, it is necessary to have at least 8

ground control points to resolve the ambiguity in cam-
era placements derived from the matched point data.
The method that is used here may be regarded in some
ways as a generalization of the method of Sutherland
[7] to more than one camera. Suppose that we have n
cameras represented by matrices P1, P2, . . . , Pn and a
set of ground control points {xi}, where ground con-
trol point xi is visible in camera Pσ(i), the correspond-
ing image-coordinates being ui = (ui, vi, 1)�. It is as-
sumed that there is a 4×4 non-singular matrix H that
transforms each Pi to its true placement. This leads
to a set of equations


 wiui

wivi
wi


 = Pσ(i)H




xi
yi
zi
1




The only unknowns in this set of equations are the
entries of the matrix H and the values wi, the above
equations may be written as a set of equations

wiui = Ai(h11, h12, . . . , h44)
wivi = Bi(h11, h12, . . . , h44)
wi = Ci(h11, h12, . . . , h44)

where A, B and C are linear expressions in the entries
hjk of H . Since the wi are unknown values, it is pos-
sible to eliminate them from the above equations by
writing

Ci(h11, . . . , h44)ui = Ai(h11, . . . , h44)
Ci(h11, . . . , h44)vi = Bi(h11, . . . , h44)

This gives a set of linear equations in the entries hjk
of H , which can be solved to find the matrix H . The
solution will be determined only up to a scale factor,
corresponding to the fact that H is itself only deter-
mined up to a scale factor. At least 15 equations are
needed for a solution and each point gives two equa-
tions. If the image of a 3-D point is known in both
images, then this gives rise to 4 equations, but it can
be shown that only three of these are linearly inde-
pendent. Once H is known, the true 3-D points may
be computed by applying the inverse transformation,
H−1 to the points xi computed earlier.

3 Application to Invariants
It results from Theorem 1 that a configuration of 8

points or more (except for degenerate cases for which
the essential matrix can not be determined ([4])) is
determined up to a 3-dimensional projective transfor-
mation by two perspective views. In this case, any
projective invariant ([5])of a set of 3-D points can be



computed from the two views. For instance, six points
in 3-dimensions determine 3 independent projective
invariants1. The invariant can be computed as follows.
Given a set of 8 matched points or more, the essential
matrix Q can be computed. A realization of Q can be
chosen as in section 2.1 and the point locations can be
computed as in section 2.2. Now, from any subset of
6 points projective invariants may be computed which
because of Theorem 1 will be invariants of the true
locations of the points in space.

Many other 3 dimensional geometric configurations
give rise to invariants which may also be computed
using this method. Details are left to another paper.

4 Conclusions
The techniques presented in this paper have been

implemented and tested by augmenting the STEREO-
SYS testbed ([2]). Our experiments reveal that these
techniques result in fast processing and reliable point
estimates. We thank Marsha Jo Hannah for the use
of the STEREOSYS program and Pat Taylor for con-
verting it to C++.
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1Choose projective coordinates so that five of the points are
(1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�, (0, 0, 0, 1)�and (1, 1,
1, 1)�. The coordinates of the final point are invariants.


