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Abstract

This paper describes an implementation of the Cubic Rational Poly-
nomial Camera model developed as part of the FOCUS project. FO-
CUS ([1]) is on ongoing “shared vision” IR&D project jointly sponsored
by Lockheed Martin Missiles and Space (LMMSS/Sunnyvale) and Gen-
eral Electric CR&D. A cubic camera has the advantage that all cameras,
such as projective, affine and the linear pushbroom, which map the image
points as rational polynomial functions (of degree no greater than 3) of
the coordinates of a world point, can be treated as special cases of the
cubic camera. This paper demonstrates that the cubic camera can very
effectively model even those cameras which express the image points as
complicated functions of world coordinates, such as radicals. In particu-
lar, it is empirically demonstrated that a SAR sensor is very accurately
approximated by a cubic camera, but not by any linear camera model.

The paper also outlines an algorithm for estimating the parameters
of the cubic camera, given a set of image to world correspondences. The
non-linear nature of this camera can make parameter estimation a very
unstable process. The slightest noise in the coefficients of the nonlinear
terms can lead to a completely unrealistic model of the camera. This paper
discusses some refinements such as avoiding degeneracies, data normaliza-
tion, and regularization which are necessary for accurate estimation of the
cubic camera parameters and minimization of noise in the coefficients of
the higher degree terms.

1 Introduction

A basic requirement of the FOCUS ([1]) project is to be able to compute camera
models and do model building using complex and general camera models. To
this purpose, a Cubic Rational Polynomial camera model has been developed in
FOCUS to aid in these tasks. Lockheed Martin and GE initiated the FOCUS
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project in January 1996 using GE’s TargetJr as the MSE/IU platform. Funding
for FOCUS at GE CR&D is provided by the Lockheed Martin Corporation. We
acknowledge that this work would not have been possible without Governrment
sponsored camera modelling and IU technology during the past decade.

A cubic camera models the coordinates of the image point as ratios of third
degree polynomials in the coordinates of the world point. Given a set of image-
world correspondences, the objective of the cubic camera estimation problem is
to determine the set of coefficients (a total of 80) of the polynomials in the cubic
camera model such that the error with which the camera maps the world points
to the image points in this set of correspondences, is minimized. In this paper,
we outline an algorithm which solves the cubic camera estimation problem by
applying a least squares minimization to make an initial guess of the camera
model, and then iteratively refining that guess and minimizing the error using
a method based on Levenberg-Marquardt algorithm.

Due to the existence of non-linear terms in the camera model, even a small
noise in the coefficients of the higher degree terms can lead to a large amount
of error. A related problem is that of extrapolation. Since the solution of the
camera model is not unique, there may exist models which produce a small error
in the given set of correspondences, but assign such values to the coefficients
of the higher degree terms which produce a completely unrealistic mapping of
points outside the given set of correspondences. This leads to complications
while extrapolating the model to points outside the given correspondence set.
To overcome this such problems which are unique to non-linear camera models,
we use the techniques of Data Normalization and Regularization. Specifically,
we demonstrate that constraining the coefficients of the nonlinear terms to be
as small as possible, generates a more realistic camera model which extrapolates
better on the points outside the data set.

It is easy to see that all linear cameras such as the affine, perspective, and
linear pushbroom cameras, can be viewed as special cases of the cubic cam-
era. However, it is not so straightforward to use the cubic camera estimation
for this special cases. Some of the problems encountered are the same as be-
fore, namely those concerning the unstability of higher degree terms leading to
over-parametrization, which basically estimates a non-linear approximation to
a completely linear camera. We demonstrate how the techniques such as regu-
larization can also be exploited to overcome this problem, and get a more linear
approximation in these special cases.

Finally, we conjecture that rational polynomial cameras indeed provide a
very accurate approximation of even the non-polynomial cameras. In particu-
lar, we consider the SAR sensor, which models the image point as complicated
radical functions of the coordinates of the world point. We provide empirical evi-
dence which demonstrates that the cubic camera provides an extremely accurate
approximation of this sensor, despite the fact that SAR is not a rational polyno-
mial camera. The cubic-approximation of SAR is compared to the perspective
and linear pushbroom approximations of the same. Our empirical results show
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that the cubic-approximation performs at least four orders of magnitude better.

2 The Cubic Camera Model

The cubic Rational Polynomial (RP) camera provides an abstraction of many
types of camera models. The essential aspect of a camera model is the manner
in which it maps points in space to points in an image. In the case of the RP
camera, this mapping can be expressed in terms of rational polynomial functions
of the world-coordinates of the object point.

Thus, the mapping defined by an RP camera is of the form

u = Nu(x)/Du(x)v = Nv(x)/Dv(x) (1)

where x = (x, y, z, t)� is the homogeneous coordinate of a 3D point, (u, v)�

is the corresponding image point, and Nu, Du, Nv and Dv are homogeneous
polynomials of degree n.

A general homogeneous polynomial of degree n in r variables contains
(
n+r−1
n

)
=

(n+r−1)!
n! (r−1)! terms. In the particular case of polynomials in the coordinates of x we
have r = 4 and so the number of terms of degree n is (n+ 1)(n+ 2)(n+ 3)/6.

We will consider most particularly the case in which n = 3 and refer to this
as the Cubic camera. Each of the polynomials Nu(x), Du(x), Nv(x) and Dv(x)
has 20 terms, and hence may be parametrized by 20 coefficients. This amounts
to a total of 80 parameters in all. It may be noted that in some descriptions
of the Cubic camera, each of the coordinates x, y and z as well as the image
coordinates u and v is subject to a scaling and offset, which adds an extra 10
parameters. However, these extra transformations may be incorporated into the
rational cubic polynomial mappings, and are hence non-essential. They will be
ignored in this exposition.

The polynomials Nu, Du, Nv and Dv are homogeneous polynomials in the
coordinates x, y, z and t of the 3D points. This means that each of the terms
has the same degree, in this case 3. This is done so that the mapping is not
dependent on the particular representation of the point x as a homogeneous
vector. It is possible to dehomogenize the polynomials by setting t = 1. In
this case the terms of the polynomials will have different degrees, and we can
talk of constant, linear, quadratic, cubic terms. Whenever we talk of the de-
gree of a term of a polynomial, or of the corresponding coefficient, it is this
dehomogenized degree that will be meant.

3 Special Cases of the Cubic Camera

Many of the common cameras may be considered as special cases of the Cubic
camera.

3



Projective Camera. The projective camera is defined by a mapping (wu,wv,w)� =
Px where P is a 3 × 4 matrix, u and v are the image coordinates, and w is an
unknown scale. This may also be written as

u =
p1
�x

p3
�x

v =
p2
�x

p3
�x

.

Thus, we see that this is a special case of the RP camera in which Nu(x), Du(x),
Nv(x) and Dv(x) are linear functions and Du = Dv.

Linear Pushbroom Camera. The linear pushbroom camera described
in [5] is an example of an RP camera. The linear pushbroom camera is an
approximation of the camera model represented by a SPOT satellite pushbroom
sensor. The defining equation is (u,wv, w)� = P (x, y, z, 1)� where as before, P
is a 3×4 matrix, u and v are the image coordinates, and w is an unknown scale.
In terms of a homogeneous object point x = (x, y, z, t)�, this may be written as

u =
p1
�x
t

v =
p2
�x

p3
�x

where x = (x, y, z, 1)�. In this case, it is equivalent to an RP camera with
Nu(x), Nv(x) and Dv(x) linear functions, and Du(x) = t.

Affine Camera. The affine camera is a special case of the projective camera
in which the camera matrix has a special form in which the last row is (0, 0, 0, 1).
This may be modelled as a Cubic camera for which

u =
p1
�x
t

v =
p2
�x
t

SAR images. SAR sensors may be approximated with the Cubic camera
with excellent accuracy. This was demonstrated by testing the Cubic model
against some synthetic correspondence data constructed as follows. Consider
a SAR sensor moving in the x axial direction at an altitude of 3000m above a
nominal ground plane and imaging a section of the ground at distances between
5000 and 7000 metres to the side of the flight path. Points were chosen over
a 2000m × 2000m swath of ground at altitudes between -500m and 500m, and

4



Cubic model LP model Perspective model

Figure 1: Fitting error for synthetic SAR data using Cubic, Perspective and
Linear Pushbroom models. The graphs show the error for points in the plane
z = 0, but for fitting, data points at altitdues between -500m and 500m were
used. The average error for Perspective and LP sensors was approximately 6
pixels, with a maximum of 10 pixels. The error achieved with the Cubic camera
was only 0.02 pixels.

their corresponding image coordinates were computed, assuming a 1m pixel,
thus creating a 2000 × 2000 pixel image. Thus, the u coordinate in the image
of a point x = (x, y, z)� in space was equal to the x coordinate of the point,
and the v coordinate was equal to the radial distance of the point from the line
of flight. In symbols

u = x

v =
√
y2 + (z − 3000)2

This data was then fitted with a Cubic camera, a Perspective camera and
a Linear Pushbroom camera model and the residual reprojection error was
recorded. The results are shown in Fig 1.

4 Solving for the Cubic Camera

We now consider the basic photogrammetry problem of parameter estimation for
the Cubic camera. We assume given a set of image to world correspondences
ui → xi. The task is to compute the parameters of the Cubic RP camera,
namely the coefficients of the polynomials Nu(x), Du(x), Nv(x) and Dv(x).
Two methods will be used to do this.

1. A linear method based on linear least-squares minimization. This method
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is based on the DLT method ([7]) for estimating the parameters of a
projective camera.

2. An iterative method based using the Levenberg-Marquardt method ([6]).
The linear method was used to provide an initial estimate of camera pa-
rameters, which is refined by iteration. This method was implemented us-
ing a general-purpose camera solving program Carmen ([4]). Little more
will be said in this report concerning the iterative method.

4.1 Linear Estimation of the Cubic Camera Model.

From the equations

u = Nu(x)/Du(x)
v = Nv(x)/Dv(x)

defining the cubic camera model, one may obtain by cross multiplication a pair
of equations

uDu(x)−Nu(x) = 0
vDv(x)−Nv(x) = 0 . (2)

Although these equations are non-linear in x, they are linear in the coefficients of
the polynomials. Since each such correspondence gives a pair of equations, and
there are a total of 80 unknown parameters, a total of at least 40 correspondences
are required to solve for the polynomial coefficients. With more than 40 points
one has an over-determined system of equations which will be solved by least-
squares techniques. The total set of equations are of the form Ap = 0, where
p is the set of parameters. We are not interested in the trivial solution p = 0.
Since the polynomials are homogeneous, their quotient Nu(x)/Du(x) (and the
same thing for v) is independent of scale. We find the parameter vector p
that minimizes ||Ap|| subject to ||p|| = 1. The solution is the singular vector
corresponding to the smallest singular value of A ([2]).

This is the barest outline of the method. More will be said later about
important implementation details and refinements to this algorithm.

4.2 Degeneracy of the Cubic Model

We would like to be able to treat cameras such as the projective and linear
pushbroom cameras as special cases of the Cubic camera and use the same
parametrization method for all. Care must be taken in doing this, however
because of over-parametrization of the camera model. Consider for instance a
set of world to image correspondences ui → xi corresponding to a projective
camera. In the absence of noise, there will exist linear polynomialsNu(x), Nv(x)
and D(x) such that ui = Nu(xi)/D(xi) and vi = Nv(xi)/D(xi). Unfortunately,
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these are not the only polynomials which give rise to the correct image points.
In particular, one may multiply numerator and denominator by an arbitrary
polynomial and obtain the same mapping. In symbols the value of

ui =
A(xi)Nu(xi)
A(xi)D(xi)

is constant for all polynomials A(xi). Since Nu(xi) and D(xi) have degree 1 for
a perspective camera, A(xi) may be an arbitrary degree 2 homogeneous polyno-
mial. Such a polynomial has C5

2 = 10 degrees of freedom. Since the numerator
and denominator of vi = Nv(xi)/D(xi) may independently be multiplied by
a polynomial B(x), there exists a 20-parameter family of cubic polynomials
defining a projective camera mapping. In this case, the matrix A in the set of
equations Ap = 0 will have diminished rank. In fact A has 80 columns, but its
rank will be at most 60 because of the 20-parameter family of solutions. The
solution of Ap = 0 will not be well defined, and there is no reason to expect the
linear solution to be selected, if one is chosen arbitrarily.

In the presence of a degree of noise in the measurements of image points,
or 3D points, the matched points ui → xi will not correspond precisely with a
true perspective model. The cubic model will attempt to correct for this by the
introduction of spurious higher-order terms. This will cause the model to match
the data more precisely on the measured data. However, it can lead to large
errors in other parts of the scene, far from measured control points. In brief,
in the presence of instabilities of this nature, one can not extrapolate reliably
beyond the measured data. This point will be illustrated later on in this paper.

4.3 Data Normalization

It has been pointed out by several authors, for instance the present authors
([3]) that prenormalization of the input data is essential for obtaining a good
result from linear algorithms of this kind which do not minmize geometrically
meaningful quantity. Before running the linear algorithm to compute the camera
parameters, it is absolutely essential to normalize the data. The general method
involves three steps.

1. Choose transforms Tu and Tx of the image and object points such that
ui �→ u′i = Tuui and xi �→ x′i = Txxi.

2. Solve to find a parametrized Cubic RP camera model, represented by a
map P ′ (in general, non-linear), that provides a best possible solution to
the set of equations u′i = P ′x′i. This is done using the linear algorithm
described above.

3. Replace P ′ by P = TuP
′T−1

x . This mapping will satisfy Pxi = T−1
u P ′Txxi =

T−1
u P ′x′i = T−1

u u′i = ui as required. Note that composition of mappings
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and not matrix multiplication is implied by this juxtaposition TuP
′T−1

x ,
since P ′ is not linear.

The recommended normalizing transforms Tu and Tx are both of the same
type : translation of the data to place its centroid at the origin, and scaling
so that the average point is a distance

√
2 from the origin in the case of Tu,

which is a 2D transformation, and
√
3 in the case of Tx, which is a 3D trans-

formation. The reasons for this choice of scaling are given in [3]. The main
purpose of data normalization is to improve the conditioning of the problem.
To see why this would otherwise be a problem, consider a 3D object point with
coordinates (x, y, z, t)� = (500, 500, 500, 1)� in some coordinate system map-
ping to an image point (u, v)� = (500, 500). In writing the set of equations (2),
the entry corresponding to the term x3 of Nu will be 5004, whereas the entry
corresponding to term t3 of Du will be 1. This wide range of entries in matrix
A means that A will be poorly conditioned, and the solution very unstable in
the presence of noise. The normalization transformations are designed to give
each entry in A an equal weight.

In doing this, it is important that if P ′ is a cubic RP mapping, then so is P =
T−1

u P ′Tx. This will be true for any linear transformation Tx, but interestingly
enough, not for any Tu. This is easily seen as follows. First, suppose that
P ′u(x) = N ′u(x)/D′u(x) where both N ′u and D′u have degree n. (For the Cubic
camera, n = 3.) Then, P ′uTx(x) = N ′u(Tx(x))/D′u(Tx(x)), and both numerator
and denominator are degree n polynomials in x, since Tx(x) is linear.

On the other hand, consider TP ′(x) where T is any affine transformation.
The u coordinate in the image is given by u = T (u′, v′) = αu′ + βv′ + γ. The v
coordinate is expressed similarly. In this case, we have

TP ′(x) = α
N ′u(x)
D′u(x)

+ β
N ′v(x)
D′v(x)

+ γ

=
αN ′u(x)D

′
v(x) + βN ′v(x)D

′
u(x) + γD′u(x)D

′
v(x)

D′u(x)D′v(x)

Thus, the degree of the RP transformation is increased. There are two
evident exceptions to this :

1. D′u = D′v. This is the case for a projective camera.

2. β = 0. This is the case in which the transformation is a simple scaling
and translation. This is the recommended sort of transformation.

In this latter case, one has

TP ′(x) =
αN ′u(x) + γD′u(x)D

′
v(x)

D′u(x)
(3)
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Perspective model Cubic model : k = 0.1 Cubic model : k = 10.0

Figure 2: This shows the result of camera resectioning using the Cubic camera
model. Hand-picked correspondences between a site model and an image are
used to compute the camera model. The site model is then projected into the
image using the computed camera model. The three examples show a projective
camera, and two parametrized cubic cameras computed with different settings of
k, the constraint weight for high-order coefficients. In all cases, the site model
is well aligned with the image within the image area. For the cubic camera, the
agreement of the site model outside of the area where control points are chosen
is not so good, though for larger value of k, the site model is projected reasonably
well.
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4.4 Computing Composition of Mappings

The composition of T−1
u P ′(x) is easily computed using (3). The computation of

P ′Tx is a little more complicated, however. This is a standard sort of algebraic
manipulation problem, but complicated if one does not do it the right way. A
simple implementation is possible using tensors, as described now.

A cubic homogeneous polnomial N(x) may be written in terms of a sym-
metric tensor Nijk defined such that if x has components xi, then N(x) =
Nijkx

ixjxk. Here, the superscripts represent indices, not powers, and a re-
peated index in the upper and lower positions implies summation. This may be
more familiar in the degree 2 case, where a quadratic form may be written as
x�Ax = Aijx

ixj .
Now, if we apply a linear transformation such that xi = T ipx

′p, then it follows
that N(x) = Nijkx

ixjxk = NijkT
i
pT

j
q T

k
r x
′px′qx′r = N ′pqrx

′px′qx′r where N ′pqr is
defined by

N ′pqr = NijkT
i
pT

j
q T

k
r (4)

This is the composition rule required to compute the composition PTx.

4.5 Regularization

It was shown in a previous section that in cases where a Cubic camera is well
approximated by a projective camera, or some other linear camera, the compu-
tation of the camera model may be unstable. A way that we have found useful
for dealing with this problem is regularization. In this method, a constraint is
put on quadratic and cubic terms in Nu, Nv, Du and Dv constraining them to
be close to zero. This constraint is weighted by a parameter k, where high values
of k provide a strong constraint on the values of the higher order terms. The
requirements that these terms be small is balanced against the requirements
imposed by the data.

This has two effects :

1. Low degree polynomials are favoured over high-degree polynomials. This
has the effect of resolving the ambiguity in the set of solutions. In the
presence of only a low degree of noise, for instance, a perspective cameras
will be modelled with linear (or near linear) rational polynomials.

2. It is possible to solve for the camera parameters with fewer than the full
number (40 in the Cubic camera case) of point correspondences. This is
useful when it is difficult to find such a large number of control points.

Figure 2 shows the effect of different values of k.
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