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Abstract

It is known that a set of points in 3 dimensions is determined up to projectivity
from two views with uncalibrated cameras. It is shown in this paper that this
result may be improved by distinguishing between points in front of and behind
the camera. Any point that lies in an image must lie in front of the camera
producing that image. Using this idea, it is shown that the scene is determined
from two views up to a more restricted class of mappings known as quasi-affine
transformations, which are precisely those projectivities that preserve the convex
hull of an object of interest. An invariant of quasi-affine transformation known as
the cheiral sequence of a set of points is defined and it is shown how the cheiral
sequence may be computed using two uncalibrated views. As demonstrated
theoretically and by experiment the cheiral sequence may distinguish between
sets of points that are projectively equivalent. These results lead to necessary
and sufficient conditions for a set of corresponding pixels in two images to be
realizable as the images of a set of points in 3 dimensions.

Using similar methods, a necessary and sufficient condition is given for the
orientation of a set of points to be determined by two views. If the perspective
centres are not separated from the point set by a plane, then the orientation of
the set of points is determined from two views.



1 Introduction

Consider a set of points {xi} lying in a plane in space and let {ui} and {u′i}
be two images of these points taken with arbitrary uncalibrated perspective
(pinhole) cameras. It is well known that the points ui and u′i are related by
a planar projectivity, that is, there exists h a projectivity of the plane such
that hui = u′i for all i. This fact has been used for the recognition of planar
objects. For instance in [13] planar projective invariants were used to define
indexing functions allowing look-up of the objects in an object data-base. Since
the indexing functions are invariant under plane projectivities, they provide the
same value independent of the view of the object.

In a similar way, it has been shown in [1] and [3] that a set of points in 3-
dimensions is determined up to a 3-dimensional projectivity by two images taken
with uncalibrated cameras. Both these papers give a constructive method for
determining the point configuration (up to projectivity). This permits the com-
putation of projective invariants of sets of points seen in two views. An experi-
mental verification of these results has been reported in [2] and is summarized
in this paper.

The papers just cited make no distinction between points that lie in front of the
camera and those that lie behind. The property of a point that specifies that it
lies in front of or behind a given camera will be termed the cheirality of the point
with respect to the camera. This word is derived from the Greek word : χειρ
meaning hand or side. It is well know that cheirality is valuable in determining
scene geometry for calibrated cameras. Longuet-Higgins [7] uses it to distinguish
between four different possible scene reconstructions from two views. More
recently, Robert and Faugeras ([12]) have used it for the construction of convex
hulls of three-dimensional point sets. No systematic treatment of cheirality for
uncalibrated cameras has previously appeared, however. Investigation of this
phenomenon turns out to be quite fruitful, as is seen in the present paper.
Cheirality is valuable in distinguishing different point sets in space, especially
in allowing projectively equivalent point sets to be distinguished.

Projective transforms have the property of swapping points from the front to
the back of the camera. We will say that a transform is cheirality-reversing for
a given point if it swaps the point from the front to the back of the camera,
or vice-versa. Otherwise it is called cheirality-preserving. The use of the word
cheirality differs slightly from the conventional usage in topology where it refers
to local spatial orientation. In topology, a cheirality reversing transform is one
that reverses orientation, such as a mapping that takes a point set to its mirror
image. For instance, knots that are the same as their mirror image are called
amphicheiral ([5]). It will be seen in this paper that for affine spatial transforms
our definition of cheirality-preserving corresponds with the topological definition
in that an orientation preserving transformation preserves the front and back of
the cameras. For arbitrary projective transforms the two concepts are distinct.

Summary of major results of the paper. In Definition 4.5 a class of pro-
jectivities called quasi-affine transformations is defined, consisting of those that
preserve the convex hull of a set of points of interest. Theorem 5.14 strength-
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ens the result of [1, 3] by showing that a 3-dimensional point set is determined
up to quasi-affine transformation by its image in two uncalibrated views. This
sharpening of the theorem of [1, 3] results from a consideration of the cheiral-
ity of the cameras. This result leads naturally to the concept of a quasi-affine
reconstruction of a scene, which is one that differs by at most a quasi-affine
transformation from the true geometry. A practical algorithm for computing
a quasi-affine reconstruction of a scene seen in two (or more) views is given in
section 8.

Consideration of cheirality leads to a necessary and sufficient condition for a set
of image correspondences to be derived as projections of points in a real scene.
This is discussed in section 6.

In section 7 the concept of quasi-affine transformation is applied to orientation of
point sets, explaining why some point sets allow two differently oriented quasi-
affine reconstructions from two views, whereas some do not. The relationship of
this result to human visual perception of 3D scenes is briefly mentioned, noting
that the brain is able to reconstruct differently oriented quasi-affine models of
a scene.

Sections 9 and 10 consider the application of cheirality to view synthesis in
which a new view of a scene is constructed from a set of given images.

In section 11.1 a quasi-affine invariant is defined – the cheiral sequence. In
section 12 an example of computation of the cheiral sequence for 3D point sets
shows that it is useful in distinguishing between non-equivalent point sets. This
invariant may be seen as formalizing and extending to three dimensions the
thesis and paper of Morin [9, 10] on distinguishing planar shapes.

2 Notation

We will consider object space to be the 3-dimensional Euclidean space R3 and
represent points in R3 as 3-vectors. Similarly, image space is the 2-dimensional
Euclidean space R2 and points are represented as 2-vectors. Euclidean space,
R3 is embedded in a natural way in projective 3-space P3by the addition of
a plane at infinity. Similarly, R2 may be embedded in the projective 2-space
P2by the addition of a line at infinity. The simplicity of considering projections
between P3and P2has led many authors to identify P3and P2as the object
and images space. This sometimes leads one to forget that real points and
cameras lie in Euclidean and not in projective space. Where convenient we
will consider points in R2 and R3 as lying in P2and P3respectively, via the
natural embedding. However, in this case the line (or plane) at infinity will be
considered to be a special distinguished line (or plane).

Vectors will be represented as bold-face lower case letters, such as x. Such
a notation represents a column vector. The corresponding row vector will be
denoted by x�. The notation x usually denotes a homogeneous 4-vector repre-
senting an element in P3, whereas u represents a vector in P2. The notation
x̃ represents a non-homogeneous 3-vector representing an element of R3. Simi-
larly, ũ is a non-homogeneous 2-vector. The notation x̂ represents a vector with
final coordinate equal to 1, sometimes meant implicitly to represent the same
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point as a homogeneous vector x. Similarly û represents a vector of the form
(u, v, 1)�.

The notation a
.= b means that a and b have the same sign. For instance a

.= 1
has the same meaning as a > 0.

3 Projections in P3

A projection from P3into P2is represented by a 3×4 matrix P , whereby a point
xmaps to the point u = Px. It will be assumed that P has rank 3. Since P has 4
columns but rank 3, there is a unique vector c such that Pc = (0, 0, 0)�. In other
words, the projective transformation is undefined at the point c, since (0, 0, 0)�

is not a valid homogeneous 3-vector. The point c will be called the perspective
centre of the camera. We will assume for the present that the perspective centre

is not a point at infinity so we may write c = ĉ =
(
c̃
1

)
where c is the

perspective center as a point in R3.

Now, the camera matrix P may be written in block form as P = (M | v) where
M is a 3× 3 block and v is a column vector. Then

P ĉ = (M | v)
(
c̃
1

)
= M c̃+ v = 0 ,

and so v = −M c̃. Now since P has rank 3 and −M c̃ is a linear combination of
the columns of M , it follows that M must have rank 3. In other words, M is
non-singular. Summarizing this discussion we have

Proposition3.1. If P is a camera transform matrix for a camera with perspec-
tive centre not at infinity, then P can be written as P = (M | −M c̃) where M
is a non-singular 3× 3 matrix and c̃ represents the perspective centre in R3.

There exist points in P3that are mapped to points at infinity in the image. To
find what they are, we suppose that u = (u, v, 0)� = Px. Letting p1

�, p2
�

and p3
� be the rows of P , we see that p3

�x = 0. In other words, a point x
in P3that maps to a point at infinity in the image must satisfy the equation
x�p3 = 0. Looked at another way, if p3 is taken as representing a plane in
P3, then it represents the plane consisting of all points mapping to infinity in
the image. Since Pc = 0, we see in particular that p3

�c = 0 and so c lies on
the plane p3. To summarize this paragraph, the set of points in P3mapping
to a point at infinity in the image is a plane passing through the perspective
centre and represented by p3, where p3

� is the last row of P . In conformity
with standard terminology, this plane will be called the principal plane of the
camera.

Restricting now to R3, consider a point x in space, not lying on the principal
plane. It is projected by the camera with matrix P onto a point u where
wû = P x̂ for some scale factor w. The value of w will vary continuously with x
and the set of points where it vanishes is precisely the principal plane. It follows
that on one side of the principal plane w > 0 and on the other side, w < 0.
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In a Euclidean context, the value of w can be given a precise metric interpreta-
tion as explained next. The line perpendicular to the principal plane through
the perspective centre is called the principal ray. In general, the normal vector
to a plane (q, r, s, t)� is given in non-homogeneous coordinates as the vector
(q, r, s)�. Thus, if P = (M | −M c̃), then the principal ray is represented by the
last row of M , denoted m3

�.

For a point x in space, we see that

wû = P x̂

= (M | −M c̃)
(
x̃
1

)

= M x̃−M c̃
= M(x̃− c̃) ,

and so w = m3
�(x̃ − c̃) As just remarked, m3 represents the direction of the

principal ray, and x̃− c̃ is the vector from the camera centre to the point x. If
P is scaled by multiplication by an appropriate factor so that ||m3|| = 1 then,
w is equal to the depth of the point x from the camera perspective centre in the
direction of the principal ray. This metric interpretation of w, though useful in
some applications, such as depth recovery ([14]) will not be used further in this
paper.

Any real camera can only view points on one side of the principal plane, those
points that are “in front of” the camera. Points on the other side will not
be visible. In order to distinguish the front of the camera from the back, a
convention is necessary.

Definition 3.2. A camera matrix P = (M | v) is said to be normalized if
det(M) > 0. If P is a normalized camera matrix, a point x is said to lie in front
of the camera if P x̂ = wû with w > 0. Points x for which w < 0 are said to be
behind the camera.

Any camera matrix may be normalized by multiplying it by −1 if necessary.
The selection of which side of the camera is the front is simply a convention,
consistent with the assumption that for a camera with matrix (I | 0), points with
positive z-coordinate lie in front of the camera. This is the usual convention in
computer vision literature, used for instance in [7].

To avoid having always to deal with normalized camera matrices, we define the
following parameter χ.

Definition 3.3. Suppose a point x = (x, y, z, t)� maps to an image point u =
(u, v, w)� by a camera with matrix P = (M | v). Thus, let (u, v, w)� =
P (x, y, z, t)�. We define

χ(x;P ) = (detM)1/3t/w

��

Note that the value of χ is unchanged if the point x is multiplied by a non-zero
scale, since the value of w is multiplied by the same scale. Similarly, if P is
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multiplied by a constant scale k, then both detM1/3 and w are multiplied by k,
and the value of χ is unchanged. Thus, χ(x;P ) is independent of the particular
homogeneous representation of x and P . If P is normalized and t = 1 so that
x = x̂, then χ(x;P ) .= w. Thus, corresponding to Definition 3.2 we have

Proposition3.4. The point x lies in front of the camera P if and only if
χ(x;P ) > 0.

In fact, χ is positive for points in front of the camera, negative for points behind
the camera, zero on the plane at infinity and infinite on the principal plane of
the camera. If the camera centre or the point x is at infinity, then χ is still
defined but is equal to zero. In this case, it is not well defined whether the point
lies behind or in front of the camera.

In general, we will only be concerned with the sign of χ and not its magnitude.
We may then write χ(x;P ) .= t detM/w (remember that the symbol .= indicates
equality of sign). The quantity sign(χ(x;P )) will be referred to as the cheirality
of the point x with respect to the camera P . The cheirality of a point is said to
be reversed by a transformation if it is swapped from 1 to −1 or vice versa.

Note on the figures. In the figures included in this paper, a non-standard
representation of cameras is used. A camera is denoted by a line representing its
principal plane, along with an arrow pointing in the direction of the front of the
camera. The tail of the arrow lies at the centre of projection, on the principal
plane. Generally, the figures contain one or two cameras. The diagrams may
be thought of as representing the projection of R3 along the direction of the
common line of intersection of the two cameras’ principal planes. Thus, each
principal plane projects to a line, and their line of intersection projects to a
point.

4 Quasi-Affine Transformations

A subset B of Rn is called convex if the line joining any two points in B also
lies entirely within B. The convex hull of B, denoted B̄ is the smallest convex
set containing B. We denote by L∞ the (n − 1)-dimensional subspace (line,
plane, etc) at infinity in Pn. For simplicity, we will refer to it as the plane at
infinity, except where we are specifically considering P2. The inverse image of
L∞ under a projective transformation h is denoted π∞ = h−1(L∞).

Definition 4.5. Let B be a subset of Rn and let h be a projectivity of Pn. The
projectivity h is said to be “quasi-affine” with respect to the set B if h−1(L∞)
does not meet B̄, where L∞ is the plane at infinity.

A projectivity that is quasi-affine with respect to B is precisely one that pre-
serves the convex hull of B (as will be seen later).

It may be verified that if h is quasi-affine with respect to B, then h−1 is quasi-
affine with respect to h(B). Furthermore, if h is quasi-affine with respect to B
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and g is quasi-affine with respect to h(B), then g ◦h is quasi-affine with respect
to B. Thus, quasi-affine projectivities may be composed in this fashion. Strictly
speaking, however, quasi-affine projectivities with respect to a given fixed set of
points do not form a group.

We will be considering sets of points {xi} and {x′i} that correspond via a pro-
jectivity. When we speak of the projectivity being quasi-affine, we will mean
with respect to the set {xi}.
An alternative characterization of quasi-affine transformations is given in the
following theorem.

Theorem4.6. A projectivity h : Pn → Pn represented by a matrix H is quasi-
affine with respect to a set B = {xi} ⊂ Rn − h−1(L∞) if an only if there exist
constants wi, all of the same sign, such that Hx̂i = wix̂

′
i

Proof. To prove the forward implication, we assume that h is a quasi-affine
transformation. By definition, constants wi exist such that Hx̂i = wix̂

′
i. What

needs proof is that they all have the same sign. The value of w in the mapping
wx̂′ = Hx̂ is a continuous function of the point x. If wi > 0 for some point xi,
and wj < 0 for another point xj , then there must exist some point x∞ on the
line segment joining xi to xj for which w = 0. This means that x∞ lies in B̄,
but h(x∞) lies on the line at infinity, contrary to hypothesis.

Next, to prove the converse, we assume that there exist such constants wi all of
the same sign. We need to show that h−1(L∞) does not meet B̄. Let S be the
subset of Rn consisting of all points x satisfying the condition Hx̂ = wx̂′ such
that w has the same sign as all wi. The set S contains B and it is clear that
S∩h−1(L∞) = ∅. All that remains to show is that S is convex, for then S must
contain the convex hull of B. If xi and xj are points in S with corresponding
constants wi and wj , then any intermediate point x between xi and xj must
have w value intermediate between wi and wj . To see this, consider a point
x̂ = αx̂i + (1 − α)x̂j where 0 ≤ α ≤ 1. This point lies between xi and xj .
Denote by h4

� the last row of H . Then,

w = h4
�x̂

= h4
�(αx̂i + (1− α)x̂j)

= αh4
�x̂i + (1− α)h4

�x̂j
= αwi + (1− α)wj

which lies between wi and wj as claimed. Consequently, the value of w must
have the same sign as wi and wj , and so x lies in S also. This completes the
proof. ��

This theorem gives an effective method of identifying quasi-affine mappings.
The question remains whether quasi-affine mappings form a useful class. This
question will be answered by the following theorem.

Theorem4.7. If B is a point set in a plane (the “object plane”) in R3 and B
lies entirely in front of a projective camera, then the mapping from the object
plane to the image plane defined by the camera is quasi-affine with respect to B.
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Figure 1: Picture of a comb and a non-quasi-affine resampling of the comb

Proof. That there is a projectivity h mapping the object plane to the image
plane is well known. What is to be proven is that the projectivity is quasi-affine
with respect to B. Let L be the line in which the principal plane of the camera
meets the object plane. Since B lies entirely in front of the camera, L does
not meet the convex hull of B. However, by definition of the principal plane
L = h−1(L∞), where L∞ is the line at infinity in the image plane. Therefore,
h is a quasi-affine with respect to B. ��

As an example to illustrate the difference between projective and quasi affine
mapping, consider Fig. 1. This figure shows an image of a comb and the image
resampled according to a projective mapping. Most people will agree that the
resampled image is unlike any view of a comb seen by camera or human eye.
Nevertheless, the two images are projectively equivalent and will have the same
projective invariants. The projective mapping is not, however, quasi-affine with
respect to the comb.

Note that if points ui are visible in an image, then the corresponding object
points must lie in front of the camera. Applying Theorem 4.7 to a sequence
of imaging operations (for instance, a picture of a picture of a picture, etc),
it follows that the original and final images in the sequence are connected by
a planar projectivity which is quasi-affine with respect to any point set in the
object plane visible in the final image.

Similarly, if two images are taken of a set of points {xi} in a plane, {ui} and
{u′i} being correponding points in the two images, then there is a quasi-affine
mapping (with respect to the ui) mapping each ui to u′i, and so Theorem 4.6
applies, yielding the following proposition.

Proposition4.8. If {ui} and {u′i} are corresponding points in two views of a
set of object points {xi} lying in a plane, then there is a matrix H representing
a planar projectivity such that Hûi = wiû

′
i and all wi have the same sign.

This fact was previously discovered and exploited by Andrew Zisserman and
Charles Rothwell (private communication) and served as a starting point for
the current investigation. They derived this result using the methods of [14].
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5 Three dimensional point sets

We now consider three-dimensional point sets seen in a pair of images. The
3D locations of the points will be assumed unknown, but image point matches
ui ↔ u′i will be known. It will be assumed that sufficiently many point matches
knowf for the matrix F to be determined unambiguously, that is at least 8
points ([7]). Under these conditions as shown in [3] and [1] it is possible to
determine the location of points xi and cameras P and P ′ such that ui = Pxi
and u′i = P ′xi, and furthermore, the choice is unique up to projectivity of P3.
Recalling the definition of χ (definition 3.3) and Proposition 3.4, if χ(xi;P ) and
χ(xi;P ′) are both positive, then the point xi lies in front of both cameras, and
maps to points ui and u′i in the two images. Normally, this will not be the
case. It is possible, however, that another choice of P , P ′ and xi exists with
the desired property.

We introduce some new terminology. A triplet (F, {ui}, {u′i}) is called an epipo-
lar configuration if F is a rank 2 matrix satisfying the epipolar constraint equa-
tion u′i

�Fui = 0 for all i. A weak realization of (F, {ui}, {u′i}) is a triplet
(P, P ′, {xi}), where P and P ′ are a choice of camera matrices corresponding to
the fundamental matrix F and the points {xi} are object points satisfying the
equations ui = Pxi and u′i = P ′xi for each i. A strong realization is such a
triplet satisfying the additional condition that χ(xi;P ) > 0 and χ(xi;P ) > 0 for
all i. This condition implies that the points and the camera centres are at finite
points. The triplet (F, {ui}, {u′i}) is called a feasible configuration if a strong
realization exists. The purpose of considering epipolar configurations, rather
than simply a set of point correspondences ui ↔ u′i is to avoid the problem of
having insufficiently many points, or critical configurations of points that make
unique determination of the fundamental matrix impossible. The fundamental
matrix will be assumed known. Another common terminology that expresses
the same thing is that the cameras are “weakly calibrated”.

At this point, it is desirable to derive a slightly different form of the definition
of the function χ defined in Definition 3.3. In this definition, and henceforth, we
allow the possibility that the camera is located at infinity. Let P be a camera
matrix. The centre of P is the unique point c such that Pc = 0. One can write
an explicit formula for c as follows.

Definition 5.9. Given a camera matrix P , we define cP� to be the vector
(c1, c2, c3, c4), where

ci = (−1)i det P̂ (i)

and P̂ (i) is the matrix obtained by removing the i-th column of P . ��

For convenience of typesetting, we introduce the notation (P/v�) to represent
a 4×4 matrix made up of a 3×4 camera matrix P augmented with an final row
v�. Definition 5.9 leads to a simple formula for det(P/v�). Cofactor expansion
of the determinant along the last row gives det(P/v�) = v�cP for any row
vector v�. As a special case, if pi� is the i-th row of P , then

pi�cP = det(P/pi�) = 0

where the last equality is true because the matrix has a repeated row. Since
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this is true for all i, it follows that PcP = 0, and so cP is the camera centre, as
claimed.

Note that submatrix P̂ (4) is the same as matrix M in the decomposition P =
(M | v), and so detM = c4. This allows us to reformulate the definition of χ
as given in Definition 3.3, as follows.

χ(x;P ) .= (e4
�x)(e4

�c)/w (1)

where c = cP as defined in Definition 5.9, and e4
� is the vector (0, 0, 0, 1). It is

significant to note here that e4 is the vector representing the plane at infinity –
a point x lies on the plane at infinity if and only if e4

�x = 0.

5.1 Effect of Transformations on Cheirality

We now consider a projective transformation represented by matrix H . Writing
P ′ = PH−1 and x′ = Hx one sees that Px = P ′x′. So if u = Px then u = P ′x′.
Thus, the image correspondences are preserved by this transformation. When
speaking of a projective transformation being applied to a set of points and to a
camera, it is meant that a point x is transformed to Hx and the camera matrix
is transformed to PH−1.

In this section we will consider such projective transformations and their effect
on the cheirality of points with respect to a camera. First, we wish to determine
what happens to cP when P is transformed to PH−1. To answer that question,
consider an arbitrary 4-vector v. We see that

v�H−1cPH−1 = det(PH−1/v�H−1) = det(P/v�) detH−1 = v�cP detH−1 .

Since this is true for all vectors v, it follows that H−1cPH−1 = cP detH−1, or

cPH−1 = HcP detH−1 (2)

At one level, this formula is saying that the transformation H takes the camera
centre c = cP to the new location cPH−1 ≈ Hc. However, we are interested
in the exact coordinates of cPH−1 especially the sign of the last coordinate c4

which appears in the formula (1). Thus, the factor H−1 is significant.

Now, applying (2) to (1) gives

χ(Hx;PH−1) .= (e4
�Hx)(e4

�cPH−1)/w
.= (e4

�Hx)(e4
�Hc) detH−1/w

where c = cP . Finally, denoting the fourth row of the transformation matrix H
by h4

�, and sign(detH) by δ, we obtain

χ(Hx;PH−1) .= δ(h4
�x)(h4

�c)/w . (3)

This equation will be used extensively. Note that it may be considered to be a
generalization of (1) as will now be explained. A point x is mapped to the plane
at infinity by H if and only if h4

�x = 0. Interpreting h4 as the coordinates of a
plane, this condition means that h4 represents the plane mapped to infinity by
H . The factor δ

.= detH−1 represents the change of spatial orientation effected
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by the transformation H , in that H is orientation-preserving if detH > 0 and
orientation-reversing if detH < 0. This point will be explained more fully in
section 7. Thus, the terms in (3) may be interpreted as follows : x are the point
coordinates; c are the coordinates of the camera centre, as in Definition 5.9;
h4 are the coordinates of the plane at infinity and δ is the spatial orientation.
Compare this with (1) in which e4 represents the plane at infinity.

We now consider the effect of different transformations on the cheirality of points
with respect to a camera. An affine transformation is one represented by a ma-
trix H for which h4

� = e4
� = (0, 0, 0, 1). The effect of an affine transformation

may now be described.

Proposition5.10. An affine transformation with positive determinant preserves
the cheirality of any point with respect to a camera. An affine transformation
with negative determinant reverses cheirality.

Proof. From (1) and (3) we see that χ(x;P ) .= χ(Hx;PH−1) detH from which
the result follows. ��

We now determine how an arbitrary projective transformation affects cheirality.

Proposition5.11. Let H represent a projective transformation with positive
determinant, and let π∞ be the plane in space mapped to infinity by H. The
cheirality of a point x is preserved by H if and only if x lies on the same side
of the plane π∞ as the camera centre.

Proof. Since detH > 0, we see from (1) and (3) that χ(x;P ) .= χ(Hx;PH−1)
if and only if (h4

�x)(h4
�c) .= (e4

�x)(e4
�c). Suppose the point x and the

camera P are located at finite points so that the cheirality is well defined, and
let them be scaled so that x = x̂ and c = ĉ. In this case, (e4

�x)(e4
�c) = 1

and we see that cheirality is preserved, if and only if (h4
�x̂)(h4

�ĉ) .= 1, or
otherwise expressed h4

�x̂ .= h4
�ĉ. Since h4 represents the plane π∞, this

condition may be interpreted as meaning that the points c and x both lie on
the same side of the plane π∞. Hence, the cheirality of a point x is preserved
by a transformation H , if and only if it lies on the same side of the plane π∞
as the camera centre. ��

Points x close to the camera centre will lie on the same side of π∞ as the
camera centre, and hence, their cheirality will be preserved. Thus, Proposition
5.11 implies that cheirality is preserved in a local neighbourhood of the camera
centre. This is illustrated in Fig 2.

5.2 Quasi-affine invariance of strong realizations

For planar object sets, Theorem 4.7 established the existence of a quasi-affine
mapping between the object plane and the image plane. For non-planar objects
seen in two views, strong realizations of the epipolar configuration take the rôle
played by sets of image points in the two dimensional case.
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π∞

Figure 2: Effect of a projective transform with positive determinant.
The principal plane of the camera and the plane π∞ divide R3 into four seg-
ments. One pair of opposite segments (shown shaded) are transformed to points
in front of the camera. The opposite pair of segments are transformed to points
behind the camera. In the local neighbourhood of the camera centre the front and
back of the camera are preserved. This consideration determines which pair of
segments become the front of the camera. Thus the two dark shaded sets of points
lie in front of the camera after transformation. For a transform with negative
determinant the opposite pair of segments become the front of the camera.

Theorem5.12. Let (F, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi})
and (P̄ , P̄ ′, {x̄i}) be two separate strong realizations of the configuration. Then
the projectivity h mapping each point xi to x̄i is quasi-affine.

Proof. If the projectivity is not quasi-affine, then there are points on both sides
of π∞ = h−1(L∞). Since h preserves the cheirality of points lying on only
one side of π∞ it follows that h does not preserve the cheirality of all points,
Therefore at least one of the realizations can not be a strong realization, and so
the hypothesis that h is not quasi-affine is not tenable. ��

The particular case where one of the two realizations is the “correct” realization
is of interest. It is the analogue in three dimensions of Proposition 4.7.

Corollary 5.13. If {xi} are points in R3, image coordinates {ui} and {u′i} are
corresponding image points in two uncalibrated views from which the fundamen-
tal matrix F is determined uniquely, and (P, P ′, {x̄i}) is a strong realization of
the triple (F, {ui}, {u′i}), then there is a quasi-affine mapping taking each xi to
x̄i.

From this corollary, we can deduce one of the main results of this paper.

Theorem5.14. Let (P, P ′, {xi}) and (P̄ , P̄ ′, {x̄i}) be two different reconstruc-
tions of 3D scene geometry derived as strong realizations of possibly different
epipolar configurations corresponding to possibly different pairs of images of a
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3D point set. Then there is a quasi-affine transformation mapping each point
xi to x̄i.

What this theorem is saying is that if a point set in R3 is reconstructed as a
strong realization from two separate pairs of views, then the two results are the
same up to a quasi-affine transformation.

Proof. By corollary 5.13 there exist quasi-affine transformations mapping each
of the sets of reconstructed points {xi} and {x̄i} to the actual 3D locations of
the points. The result follows by composing one of these projectivities with the
inverse of the other. ��

6 When are a Set of Image Correspondences Re-
alizable ?

Given a set of image correspondences ui ↔ u′i one may ask under what con-
ditions these correspondences may arise from projection of points in a real
scene into the two images. A well known constraint is the epipolar constraint
u′i
�Fui = 0 for some rank-2 matrix, the fundamental matrix. It is shown here

that that condition is not sufficient, and a necessary and sufficient condition
will be given.

As usual, we avoid the problem of critical point configurations, or insuffi-
ciently many point correspondences by assuming that the images are “weakly
calibrated” meaning that the fundamental matrix is given. In the terminol-
ogy already introduced, we assume that we have an epipolar configuration
(F, {ui}, {u′i}). It has been shown in [3, 1] that a realization (P, P ′, {xi}) of
this configuration exists, and that further, all realizations may be reached from
this realization by applying a projective transformation.

Given a realization (P, P ′, {xi}) we write Pxi = wiûi and P ′xi = w′iû
′
i. Suppose

that there is a transformation H that transforms this to a strong realization.
This means that χ(Hxi;PH−1) > 0 and χ(Hxi;P ′H−1) > 0 for all i, from
which it follows that χ(Hxi;PH−1) .= χ(Hxi;P ′H−1) for all i. Substituting
the formula (3) gives

(h4
�xi)(h4

�c)δ/wi
.= (h4

�xi)(h4
�c′)δ/w′i .

Cancelling common terms from both sides gives

(h4
�c)/wi

.= (h4
�c′)/w′i .

Now (h4
�c) and (h4

�c′) must be non-zero, since χ(Hxi;PH−1) and χ(Hxi;P ′H−1)
are non-zero. Rearranging terms leads to wiw

′
i
.= (h4

�c)(h4
�c′). Since the right

side does not depend on i, this means that wiw′i has constant sign for all i, which
proves the following proposition.

Proposition6.15. Let (P, P ′, {xi}) be a realization of a feasible epipolar con-
figuration. Write Pxi = wiûi and P ′xi = w′iû

′
i. Then wiw

′
i has the same sign

for all i.
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Proposition 6.15 has a geometric interpretation as follows. The principal plane
of a camera separates R3 into two regions. For points on one side of the principal
plane Pxi = wiûi with wi > 0, whereas on the other side, wi < 0. The two
principal planes divide up R3 into four quadrants. The condition that sign(wiw′i)
is constant corresponds to the geometric condition that the points xi all lie in
a pair of opposite quadrants.

A Sufficient Condition Proposition 6.15 gives a necessary condition for an
epipolar configuration to be feasible. It will next be shown that this condition is
also sufficient. This will be done by explicitly showing how the weak realization
may be transformed to a strong realization. To ensure that this is possible, we
need two extra conditions.

Condition 6.16.

1. The image coordinates of the points xi as seen by two cameras are bounded.

2. At least one of the camera centres is not a limit point of the point set X .

Since image coordinates are unchanged under transformation, the first condi-
tion is independent of the particular weak realization considered. The second
condition concerning limit points is unchanged under continuous transforma-
tions. Since the transformations we consider are continuous in a neighbourhood
of the camera centres, this condition is also independent of the particular weak
realization considered. In any reasonable imaging situation, both these condi-
tions will hold. For finite point sets the two conditions are trivially satisfied.
For infinite point sets, the image coordinates of the points will still be limited
by the extent of the image, so the first condition will hold. For a topologically
closed point set, the second condition will hold, since a point that coincides with
the camera centre can not be imaged. In general, for arbitrary point sets, it will
not normally be the case that the points can lie arbitrarily close to the camera
centre.

This condition may be illustrated graphically as in Fig 3.

Now, we proceed to transform an arbitrary weak realization into a strong re-
alization. We proceed in steps. As a preliminary step, we need to ensure that
neither of the two camera centres lies on the plane at infinity. If this were to oc-
cur, then we would choose a new weak realization for which the camera centres
do not lie on the plane at infinity.

The principal planes of the two cameras must now meet in a line in space.
Consider a plane π∞ containing that line, but not equal to either of the two
principal planes. This plane will be contained in two opposite quadrants of R3,
except where it meets the two principal planes. Let this plane also be chosen
so that it passes through the two quadrants of space that do not contain any
of the points xi. This situation is shown in Fig 4. In this case the plane π∞
separates the two point sets X+ and X− lying in opposite quadrants of space.
Now consider the effect of a transformation mapping the plane π∞ to infinity.
According to Proposition 5.11, the cheirality of one of the two sets X+ and
X− (with respect to say the first camera) will be reversed and the cheirality
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Figure 3: The point set X (dark shading) must lie inside a truncated cone (dark
shading). The cone represents the bounding of the image coordinates. The cone
is truncated near the camera centre c since points in X can not lie arbitrarily
close to the camera centre. In the general case, points may lie both behind and
in front of the camera.

X+

X–

π∞

Figure 4: Step 1 of transformation. We choose the plane at infinity to
pass through the two quadrants that do not contain the point set. After this
transformation, all points will lie on one side of each camera.
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of the other will be preserved by this transformation. Since originally X+ and
X− have opposite cheirality, after the transformation they will have the same
cheirality. In other words, the whole set X = X+ ∪X− will lie on the same side
of the first camera. The same argument holds for the other camera.

In invoking Proposition 5.11, it was assumed that neither of the camera centres
lay on the line of intersection of the two principal planes, and hence on the plane
π∞ chosen. If this were to occur, then we would choose instead a plane π∞
slightly displaced from this intersection line but still separating the two sets X+

and X−. This is possible since conditions 6.16 ensure that the point set X does
not approach the line of intersection of the principal planes.

The case where the two principal planes are identical must also be handled spe-
cially. In this case, the plane π∞ is chosen slightly displaced from the cameras’
common principal plane, and separating X+ from X−.

If after this first transformation step, the set X lies in front of both cameras,
then we are done. If on the other hand it lies behind both cameras, then
applying an affine transformation with negative determinant (for instance H =
diag(−1,−1,−1, 1)) will swap the set X to the front of both cameras. There
remains the possibility that X lies in front of one camera and behind the other.

To handle this remaining case, we need a further transformation. We wish to
find a plane π∞ that separates the two camera centres, but does not separate
the point set X . Assuming this is possible, X will then lie on the opposite side
of π∞ from one of the camera centres (but not the other). Now we apply a
transformation that takes π∞ to infinity. According to Proposition 5.11 the
cheirality of X will be reversed with respect to one of the cameras, but not the
other. Originally the cheirality of X was opposite with respect to the two cam-
eras, and so after the transformation the cheirality will be the same. This means
that X will lie on the same side of both cameras. By applying, if necessary, a
cheirality-reversing affine transformation it may be assured that X lies in front
of both cameras, and we are done.

It remains to explain how the required plane π∞ is to be found. We suppose
that the points X lie in front of the first camera and behind the second camera.
We wish to find a plane that separates the two camera centers, but does not
separate the point set X . The method for constructing this plane is given in
Figures 5, 6 and 7 corresponding to whether the second camera lies behind, in
front of, or on the principal plane of the first camera. Details of the construction
are given in the captions of the figures.

We can summarize this discussion in the following theorem.

Theorem6.17. Let (F, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi})
be a realization of that configuration. Suppose that conditions (6.16) are sat-
isfied. Let Pxi = wiûi and P ′xi = w′iûi. Then (F, {ui}, {u′i}) is a feasible
configuration if and only if wiw′i has the same sign for all i.

Since an epipolar configuration always possesses a weak realization ([3]), Theo-
rem 6.17 gives a necessary and sufficient condition for an epipolar configuration
to be realizable as a three dimensional scene.
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c'

π∞c

Figure 5: Second camera behind the first cameraWe can separate the two
camera centres c and c′ with a plane π∞ lying just behind the principal plane of
the first camera. Since all the points lie in front of the camera, plane π∞ does
not separate the point set X.

c'

π∞

c

Figure 6: Second camera in front of the first camera We can separate the
two camera centres c and c′ with a plane π∞ lying just in front of the principal
plane of the first camera. The point set X lies entirely inside the truncated cone
(lightly shaded). The plane π∞ can be chosen sufficiently close to c so as not
to meet this cone. Consequently, it will not separate the point set X.
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c'

π∞

c

Figure 7: Second camera lies on the principal plane of the first camera.
We can separate the two camera centres c and c′ with an oblique plane π∞ which
crosses the principal plane of the first camera. Plane π∞ can be chosen so as
not to meet the cone containing X, and consequently will not separate X.

7 Orientation

We now consider the question of image orientation. A mapping h from Rn to
itself is called orientation-preserving at points x where the Jacobian of h (the
determinant of the matrix of partial derivatives) is positive and orientation-
reversing at points where the Jacobian is negative. Reflection of points of Rn

with respect to a hyperplane (that is mirror imaging) is an example of an ori-
entation reversing mapping. A projectivity h from Pn to itself restricts to a
mapping from Rn − h−1(L∞) to Rn, where L∞ is the hyperplane (line, plane)
at infinity. Consider the case n = 3 and let H be a 4×4 matrix representing the
projectivity h. We wish to determine at which points x in R−h−1(L∞) the map
h is orientation preserving. It may be verified (quite easily using Mathematica
[16]) that if Hx̂ = wx̂′ and J is the matrix of partial derivatives of h evaluated
at x, then det(J) = det(H)/w4. This gives the following result.

Proposition7.18. A projectivity h of P3represented by a matrix H is orienta-
tion preserving at any point in R3 − h−1(L∞) if and only if det(H) > 0.

Of course, the concept of orientability may be extended to the whole of P3, and
it may be shown that h is orientation-preserving on the whole of P3if and only
if det(H) > 0. The essential feature here is that as a topological manifold, P3is
orientable. The situation is somewhat different for P2, which is not orientable
as a topological space. In this case, with notation similar to that used above, it
may be verified that det(J) = det(H)/w3. Therefore, the following proposition
is true.

Proposition7.19. A projectivity h of P2is orientation preserving at a point u
in R2 − h−1(L∞) if and only if w det(H) > 0, where Hû = wû′.
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This theorem allows us to strengthen the statement of Theorem 4.6 somewhat.

Corollary 7.20. If h is a quasi-affine transformation of P2with respect to a
set of points {ui} in R2, then h is either orientation-preserving or orientation-
reversing at all points ui. Suppose the matrix H corresponding to h is nor-
malized to have positive determinant (by possible multiplication by −1) and let
Hûi = wiû

′
i. Then h is orientation-preserving if and only if wi > 0 for all i.

An example where Corollary 7.20 applies is in the case where two images of a
planar object are taken from the same side of the object plane. In this case,
an orientation-preserving quasi-affine projectivity will exist between the two
images. Consequently, all the wi defined with respect to a matrix H will be
positive, provided that H is normalized to have positive determinant.

The situation in 3-dimensions is rather more involved and more interesting.
Two sets of points {xi} and {x̄i} that correspond via a quasi-affine trans-
formation are said to be oppositely oriented if the projectivity is orientation-
reversing. This definition extends also to two strong realizations (P, P ′, {xi})
and (P̄ , P̄ ′, {x̄i}) of a common epipolar configuration (F, {ui}, {u′i}), since in
view of Theorem 5.12 the point sets are related via a quasi-affine transforma-
tion. Whether or not oppositely oriented strong realizations exist depends on
the imaging geometry. Common experience provides some clues here. In par-
ticular a stereo pair may be viewed by presenting one image to one eye and the
other image to the other eye. If this is done correctly, then the brain perceives a
3-D reconstruction of the scene (a strong realization of the image pair). If, how-
ever, the two images are swapped and presented to the opposite eyes, then the
perspective will be reversed – hills become valleys and vice versa. In effect, the
brain is able to compute two oppositely oriented reconstructions of the image
pair. It seems, therefore, that in certain circumstances, two oppositely oriented
realizations of an image pair exist. It may be surprising to discover that this is
not always the case, as is shown in the following theorem.

Theorem7.21. Let (F, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi})
be a strong realization of (F, {ui}, {u′i}). There exists a different oppositely ori-
ented strong realization (P̄ , P̄ ′, {x̄i}) if and only if there exists a plane in R3

such that the perspective centres of both cameras P and P ′ lie on one side of
the plane, and the points xi lie on the other side.

Proof. Consider one strong realization of the configuration. By definition, all the
points lie in front of both cameras. Suppose that there exists a plane separating
the points from the two camera centres. Let G be a projective transformation
mapping the given plane to infinity and let A be an affine transformation. Sup-
pose further that detG > 0 and detA < 0. Let H be the composition H = AG.
According to Proposition 5.11 the transformation H is cheirality reversing for
the points, since the points are on the opposite side of the plane from the cam-
era centres. According to Proposition 5.10 A is also cheirality reversing, since
detA < 0. The composition H must therefore be cheirality preserving, and it
transforms the strong configuration to a different strong configuration. Since H
has negative determinant, however, it is orientation reversing, so the two strong
realizations have opposite orientations.
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Conversely, suppose that two strong oppositely oriented realizations exist and
let H be the transformation taking one to the other. Since H is orientation
reversing, detH < 0. The mapping H is by definition cheirality preserving on
all points, with respect to both cameras. If π∞ is the plane mapped to infinity
by H , then according to Propositions 5.11 the points X must lie on the opposite
side of the plane π∞ from both camera centres. ��

8 The Cheiral Inequalities

Several methods ([1, 3, 8]) have been proposed for computing a projective recon-
struction (in our terminology a weak realization) of a scene from a set of point
matches. In section 6 a constructive method was given for transforming a weak
realization into a strong one. That method was not very suitable for computer
computation. Accordingly, in this section a straight-forward algorithm will be
given for computing a strong realization of an epipolar configuration. This will
be done by transforming a weak realization into a strong realization by finding
an appropriate transformation.

We start with a weak realization (P, P ′, {xi}) of an epipolar configuration. Let
wiûi = Pxi and w′iûi = P ′xi. We assume that wiw

′
i has the same sign for all i.

By multiplying the matrix P by −1 if necessary, we may ensure that wiw
′
i > 0

for all i. Furthermore, by multiplying xi by −1 if necessary, we may ensure that
wi > 0 and hence w′i > 0 for all i. We will assume that this has been done.

Now, we seek a transformation H that will transform the weak realization to a
strong realization. After this transformation, all points will lie in front of both
cameras. According to (3) this condition may be written (for camera P )

χ(xi;P ) .= (h4
�xi)(h4

�c)δ > 0

where δ = sign(detH). Similarly, for the other camera, we have

χ(xi;P ′)
.= (h4

�xi)(h4
�c′)δ > 0 .

Since we are free to multiply h4 by −1 if necessary, we may assume that
(h4
�c)δ > 0. From this it follows from the first inequality that h4

�xi > 0
for all i. Then, from the second inequality, we have (h4

�c′)δ > 0. The total set
of inequalities may now be written :

xi�h4 > 0
δc�h4 > 0
δc′�h4 > 0 (4)

These equations (4) may be called the cheiral inequalities. Since the values of
each xi, c and c′ are known, they form a set of inequalities in the entries of h4.
The value of δ is not known a priori, and so it is necessary to seek a solution
for each of the two cases δ = 1 and δ = −1.

To find the required transformation H , first of all we solve the cheiral inequalities
to find a value of h4, either for δ = 1 or δ = −1. The required matrix H is any
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matrix having h4
� as its last row and satisfying the condition detH .= δ. If

the last component of h4 is non-zero, then H can be chosen to have the simple
form in which the first three rows are of the form ±(I | 0).

Theorem 6.17 guarantees that there will be a solution either for δ = 1 or δ = −1.
In some cases there will exist solutions of the cheiral inequalities for both δ = 1
and δ = −1. This will mean that two oppositely oriented strong realizations
exist. The conditions under which this may occur were discussed in section 7.

Solving the Cheiral Inequalities Naturally, the cheiral inequalities may
be solved using techniques of linear programming. As they stand however, if
h4 is a solution, then so is αh4 for any positive factor α. In order to restrict
the solution domain to be bounded, one may add additional inequalities. For
instance, if h4 = (v1, v2, v3, v4)�, then the inequalities −1 < vi < 1 serve to
restrict the solution domain to be a bounded polyhedron.

To achieve a unique solution we need to specify some goal function to be lin-
earized. An appropriate strategy is to seek to maximize the extent by which
each of the inequalites is satisfied. To do this, we introduce one further variable,
d. Each of the inequalities a�h4 of the form (4) for appropriate a is replaced
by an inequality a�h4 > d. We seek to maximize d while satisfying all the
inequalities. This is a standard linear programming problem, for which many
methods of solution exist, such as the simplex method ([11])1. If a solution is
found for which d > 0 then this will be a desired solution.

8.1 Quasi-affine reconstruction

A strong realization of an epipolar configuration is a quasi affine reconstruction,
since it differs from the true scene by a quasi-affine transformation (Corollary
5.13). Quasi-affine reconstructions of a scene have useful properties such as
preservation of complex hull. Furthermore, computing a quasi-affine reconstruc-
tion has been used in [6] as a preliminary step towards computing a Euclidean
reconstruction of a scene from three views with the same camera. A strong real-
ization of an epipolar reconstruction is a slightly more restrictive than a general
quasi-affine reconstruction, however, as will be shown now.

The inequalities (4) are seen to be of two types. The first inequality involves the
points (one inequality for each i) and the other two involve the camera centres.
One sees that if only the first inequality is satisfied (for all i), but possibly
not the ones involving the camera centres, then the solution is less constrained.
Instead of all points lying in front of both cameras, all points will lie on the
same side of each camera. Thus, if δc�h4

� < 0, then all points will lie behind
the first camera, since χ(xi;P ) < 0. Thus, solving the first inequality for all i
is equivalent to the first step of the construction given in section 6. Adding the
other two inequalities as well is equivalent to carrying out the second step of
section 6. Note now that the transformation carried out in the second step is
itself quasi-affine. In fact, referring to Figs 5, 6 and 7 one sees that the plane π∞

1The Simplex algorithm given in [11] is not suitable for use as stands, since it makes the
unnecessary assumption that all variables are non-negative. It needs to be modified to be
used for this problem
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does not separate the point set X . Thus, just by solving the first inequality of (4)
one obtains a quasi-affine reconstruction of the point set. However, including the
two inequalities for the camera locations further constrains the reconstruction
to bring it closer to the true Euclidean reconstruction, and so is recommended
in most cases.

If one is content with any quasi-affine reconstruction, however, then one can
ignore the two last inequalities in (4). An example of when this may be sufficient
is when one is computing the cheiral sequence of a set of points, to be described
in section 11. In this case, there is a very simple means of solution. The
inequalities that we need to solve are of the form h4

�xi > 0 for all i. Recall
that we are assuming that each wi > 0 and w′i > 0. This being so, we see that
wi = p3

�xi > 0, where p3
� is the third row of the camera matrix P . Thus,

we may choose h4 = p3 as the solution to the inequalities. More generally, for
any α between 0 and 1, we may choose h4 = αp3 + (1 − α)p′3, where p′3� is
the third row of the other camera matrix P ′. This corresponds precisely to the
construction of Fig 4.

In the case where the weak realization is carried out in a way such that P = (I |
0) (for instance, see the method of [3]), then we have a very easy way to obtain
a quasi-affine reconstruction. In this case we choose h4 = p3 = (0, 0, 1, 0)�, and

H =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Such an H simply swaps the two last components of any point xi, and the last
two columns of each camera matrix. This gives a very simple way of computing
a quasi-affine reconstruction.

1. Carry out a projective reconstruction of the scene for which the first cam-
era has matrix P = (I | 0).

2. Swap the last two coordinates of each point xi and the last two columns
of each camera matrix.

Quasi-affine reconstruction using the cheiral inequalities or the simple algorithm
just given extends naturally to reconstruction from several views. There is no
analogue of Theorem 6.17 to ensure a solution in the multi-view case, but of
course if the input data is derived from real data of a real scene, then a solution
will exist.

9 Which Points are Visible in a Third View

Consider a scene reconstructed from two views. We consider now the question
of determining which points are visible in a third view. Such a question arises
when one is given two uncalibrated views of a scene and one seeks to synthesize
a third view. This can be done by carrying out a projective reconstruction of
the scene from the first two views and then projecting into the third view. In
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X

π∞

P1 P2

P3

Figure 8: Visibility. In the reconstruction as shown, the point set X lies en-
tirely in front of the first two cameras. Thus, this represents a strong realization
of the scene with respect to the first two cameras. As shown, the point set X
lies in front of the third camera. However, if the configuration is subjected to a
projective transformation so that plane π∞ becomes the plane at infinity, then
according to Theorem 5.11 the set X will remain in front of the first two cam-
eras, but will be switched to lie behind the third camera. With no way of knowing
where the plane at infinity lies, one can not determine whether X lies in front
of or behind the third camera.

this case, it is important to determine if a point lies in front of the third camera
and is hence visible, or not.

If the third view is given simply by specifying the camera matrix with respect to
the frame of reference of some given reconstruction, then it may be impossible
to determine whether points are in front of the third camera or behind it in the
true scene. The basic ambiguity is illustrated in Fig 8.

Knowledge of a single point known to be visible in the third view serves to
break the ambiguity, however, as the following proposition shows. By applying
Proposition 6.15 to the first and third views, one obtains the following criterion.

Proposition9.22. Let points (P 1, P 2, {xi}) be a realization of a set of corre-
spondences u1

i ↔ u2
i . Let P

3 be the camera matrix of a third view and suppose
that wijûi = P ixj for i = 1, . . . , 3. Then w1

jw
3
j has the same sign for all points

xj visible in the third view.

In practice, it will usually be the case that one knows at least on point visible in
the third view. For instance, once a projective reconstruction has been carried
out using two views, the camera matrix of the third camera may be determined
from the images of six or more points by solving directly for the matrix P3 given
the correspondences u3

i = P3xi where points xi are the reconstructed points.
This may be done by linear means ([15]).
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π∞

u1

u2

Figure 9: Which points are in front. In the reconstruction shown, point u1

is closer to the third camera than u2. If, however, we apply an orientation-
reversing projective transformation that maps the plane π∞ to infinity, then the
two points will still lie in front of both cameras, but now point u2 will lie closer
to the third camera. This is because locally the front and back of the cameras
will be reversed by the orientation-reversing transformation. In order to reach
u1 from the centre of the third camera, without crossing π∞ it is necessary to
pass through u2 first.

10 Which Points are in Front of Which

When we are attempting to synthesize a new view of a scene that has been
reconstructed from two or more uncalibrated views it is sometimes necessary to
consider the possibility of points being obscured by other points. This leads to
the question, given two points that project to the same point in the new view,
which one is closer to the camera, and hence obscures the other. In the case
where the possibility exists of oppositely oriented quasi-affine reconstructions it
may once again be impossible to determine which of a pair of points is closer to
the new camera. This is illustrated in Fig 9. If a plane exists, separating the
camera centres from the point set, then two oppositely oriented reconstructions
exist, and one can not determine which points are in front of which.

The sort of ambiguity shown in Fig 9 can only occur in the case where there
exists a plane π∞ that separates the camera centres from the set of all visible
points. If this is not the case, then one can compute a quasi-affine reconstruction
and the problem is easily solved. To avoid the effort of computing a quasi-
affine reconstruction, however, we would like to solve this problem using only a
projective reconstruction of the scene. How this may be done is explained next.

The parameter χ defined in Definition 3.3 is used to distinguish the front from
the back of the camera in a Euclidean or quasi-affine frame. It is also useful for
determining which points lie in front of which, as will be seen now. Recall that
χ is zero for points x on the plane at infinity, infinite for points on the principal
plane of the camera, positive for points in front of the camera and negative for
points behind the camera. Furthermore, given two points in front of the camera,
projecting to the same point in the image , the point with the greater value of
χ lies closer to the front of the camera.

The value of χ can be used to parametrize any line in P3through the camera
centre. As one proceeds along the line in the direction of the front of the camera,
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Figure 10: Preservation of order of points. This shows the effect of a
transformation with positive determinant taking the plane π∞ to infinity. Both
χ (before the transformation) and χ′ (after the transformation) decrease mono-
tonically along any ray through the camera centre. We find that χ′(x1) > χ′(x2)
if and only if χ(x1) > χ(x2).

the value of χ decreases continuously from infinity at the camera centre, through
positive values. It reaches zero at the plane at infinity, and continues to decrease
through negative values eventually reaching −∞ when the line returns to the
camera centre from the rear of the camera. This is illustrated in Fig 10.

Now, if the configuration undergoes a projective transformation H with positive
determinant taking the plane π∞ to infinity, then the parameter χ will be
replaced by a new parameter χ′ defined by χ′(x) = χ(Hx;PH−1). Since the
transformation is assumed to have positive determinant, it will preserve the
front of the camera locally near the camera centre (by Theorem 5.11). Now, as
one proceeds along the line in the same direction as before, the parameter χ′

will decrease continuously through positive values from infinity at the camera
centre, reaching zero where the line crosses the plane π∞ and then continuing
to decrease through negative values until the line returns to the camera centre.
Since both χ and χ′ decrease monotonically as one proceeds along the line, one
sees that if x1 and x2 are two points on the line, then χ′(x1) > χ′(x2) if and
only if χ(x1) > χ(x2).

In the case where the projective transformation has negative determinant, then
the front and back of the camera are reversed locally. In this case the direction
of increase of the parameter χ′ will be reversed. In this case χ′(x1) > χ′(x2) if
and only if χ(x1) < χ(x2).

If the case where the projective transformation transforms the scene to the
“true” scene, of two points that project to the same point in the image, the
one with the higher value of χ′ is closer to the camera. This leads to the
following proposition that allows us to determine from an arbitrary projective
reconstruction which of two points is closer to the front of the camera.

Proposition10.23. Suppose that x1 and x2 are two points that map to the
same point in an image. Consider a projective reconstruction of the scene and
let the parameter χ be defined (by formula (1)) in the frame of the projective
reconstruction. If the projective reconstruction has the same orientation as the
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true scene, then the point that lies closer to the front of the camera in the
true scene is the one that has the greater value of χ. On the other hand, if
the projective transformation has the opposite orientation, then the point with
smaller value of χ will lie closer to the front of the camera in the true scene.

As remarked previously, unless there exists a plane separating the point set from
the cameras used for the reconstruction, the orientation of the scene is uniquely
determined, and one can determine whether the projective transformation of
theorem 10.23 has positive or negative determinant. However, to do this may
require one to compute a strong realization of the configuration by the linear
programming method as described in section 8. If differently oriented strong
realizations exist, then as illustrated by Fig 9, there is an essential ambiguity.
However, this ambiguity may be resolved by knowledge of the relative distance
from the camera of a single pair of points.

11 3D quasi-affine invariants

One of the important properties of quasi-affine transformations is that they
preserve separation by planes as will be explained next.

Proposition11.24. Let x0 and x1 be two points in space and let π be a plane
not passing through either of the points. Let h be a quasi-affine transformation
with respect to the two points taking xi to x′i and mapping π to a plane π′.
Then x0 and x1 lie on the same side of π if and only if x0 and x1 lie on the
same side of π′.

Proof. Let π be represented by a 4-vector v. The points lie on the same side of
π if and only if v�x̂0

.= v�x̂1. Let H represent the projective transformation.
Since H is a quasi-affine we have x̂′i = wiHx̂i where wi has the same sign
for i = 0, 1. The plane represented by v is mapped to the plane represented
by v′ such that v′� = v�H−1. Then v′�x̂′i = (v�H−1)(wiHx̂i) = wiv�x̂i.
Since all wi have the same sign, it follows that v�x̂0

.= v�x̂1 if and only if
v′�x̂′0

.= v′�x̂′1, whence the result. ��

Given a point set {xi} it results from this proposition that the set of planes that
do not separate the point set is preserved under quasi-affine transformations.
Consequently, the convex hull of a set of points is preserved by quasi-affine
transformations as was claimed in section 4.

Proposition 11.24 may be used to define quasi-affine invariant properties of point
sets. Let π be a plane partitioning the point set into two subsets X+ and X−.
Applying a quasi-affine mapping the transformed point set will be partitioned
into the same two subsets by the transformed plane. Thus for each plane π
there exists an invariant partitioning of the set of points. If the partitioning
plane is defined in terms of the point set itself (such as a plane passing through
three specified points), then the resulting partition is invariant under quasi-affine
transformation, and may be used for indexing purposes.
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11.1 An invariant sequence

A way of finding a better invariant plane than the one defined by three points
in the set is now described. We describe this method in general n-dimensional
space.

Suppose we are given a set of N ≥ n + 2 points {xi}, i = 1, . . . , N in Rn. Let
e1, . . . en+2 be points in Rn such that {ei} form a canonical projective basis for
Pn. For n = 2, the points (0, 0)�, (1, 0)�, (0, 1)� and (1, 1)� will do. Assume
that the points xi are numbered in such a way that the first n + 2 of them
are in general position (meaning that no n + 1 of them lie in a codimension 1
hyperplane). In this case, there exists a projectivity g (not in general quasi-
affine) such that g(xi) = ei for i = 1, . . . , n + 2. Let π∞ = g−1(L∞) be the
plane in Rn that is mapped to the plane at infinity by this mapping, g. The
invariant partition that we are interested in is the one defined by the plane π∞.

We can define the partition more specifically as follows. Let G be a matrix
representing the projective transformation g. For each i we may define points
ei such that Gx̂i = ηiêi where x′i is the image of xi under g. In particular for
i = 1, . . . , n+ 2 the points ei are our canonical projective basis. In this way, the
set {xi} is partitioned into those points for which ηi > 0 and those for which
ηi < 0. In exceptional cases the point ei = g(xi) may lie on the plane at infinity,
in which case we set ηi = 0. This invariant partitioning is of course dependent
on the choice of canonical basis {ei}.

The cheiral sequence. We define sign(ηi) to be +1, −1 or 0 according
to whether ηi is positive, negative or zero. The sequence of values sign(ηi)
for i = 1, . . . , N is called the cheiral sequence of the points xi. Except for a
simultaneous change of sign of all ηi, the cheiral sequence is invariant under
quasi-affine transformations.

If desired, it is possible to code the values ηi into a single number according to
the formula

χ(x1,x2, . . . ,xN ) =

∣∣∣∣∣
N∑
i=1

sign(ηi)3i−1

∣∣∣∣∣ (5)

The value χ(xi) is invariant under quasi-affine transformation of the ordered set
of points xi.

We now make the assumption that ηi �= 0. In this case the cheiral sequence,
along with the projective invariants of the point configuration, constitute a
complete quasi-affine invariant. This may be stated as follows.

Theorem11.25. Let x1, . . . ,xN be a set of points in Rn, where N ≥ n + 2.
Suppose that the first n+2 of these points form a basis for Pn ⊃ Rn, so that the
cheiral sequence sign(ηi) may be defined as above. Suppose further that for each
i we have ηi �= 0. Let x′1, . . . ,x

′
N be another set of points in Rn, projectively

equivalent to the points {xi} via a projective transformation h. Then h is a
quasi-affine mapping if and only ηi

.= η′iε for some constant ε = ±1.

Proof. Let points ei be defined as in the definition of the cheiral sequence.
Further, let g be a projective transform represented by a matrix G and let
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ηi be defined by the equation Gx̂i = ηiêi. Similarly, we may define projective
transformation g′ represented by matrix G′ and values η′i such that G′x̂′i = η′iêi.

Since the transformation g is defined uniquely by its action on the basis set
x1, . . . ,xn+2 we see that g = g′h. Let h be represented by a matrix H , which
may be chosen with the correct sign such that G = G′H . We define constants
wi such that Hx̂i = wix̂

′
i. It follows that ηi = η′iwi, since

ηiêi = Gx̂i = G′Hx̂i = wiG
′x̂′i = wiη

′
iêi .

This situation is represented by the following commutative diagram.
xi

x'i

ei
H

G

G'

wi

ηi

η'i

Now, if H represents a quasi-affine transformation, then all wi have the same
sign by Proposition 4.6. We may write wi

.= ε from which one sees that ηi
.= εη′i

for all i, and the cheiral sequences of the points xi and x′i differ at most by a
sign change.

Conversely, suppose that ηi
.= εη′i. Then ε

.= ηi/η
′
i, since by hypothesis ηi �= 0,

and so η′i �= 0. On the other hand, from ηi = wiη
′
i we deduce that wi = ηi/η

′
i
.= ε

and the wi all have the same sign, as required. ��

This theorem is not true without the assumption that ηi �= 0, as the reader is left
to discover. In practice, because of measurement inaccuracies, it will (virtually)
never be the case that a computed value of ηi will equal exactly 0. Therefore,
for readability in displaying cheiral sequences the practice will be adopted of
writing 0 instead of −1, so that the cheiral sequence becomes a sequence of 0
and 1 values, and may be interpreted as a binary integer if desired.

11.2 The cheiral sequence in two dimensions

To illustrate the principle of the cheiral sequence, we illustrate it for sets of 4
points in the plane. The interpretation of the cheiral sequence in this way for
2-dimensional sets was suggested by Charles Rothwell. We assume that no three
of the points are collinear. Let the points be u1, . . . ,u4. We define a particular
line in the plane as follows. Denote the line through two points ui and uj by
< ui,uj >. Furthermore, denote the intersection of two lines by the symbol ×.
Thus < u1,u2 > × < u3,u4 > is the intersection of the line through u1 and u2

with the line through the points u3 and u4.

Now, construct the points p1234 =< u1,u2 > × < u3,u4 > and p1324 =<
u1,u3 > × < u2,u4 >. Then construct the line π =< p1234,p1324 > joining
these two points. This construction is shown in Fig 11 for several configurations
of four points.
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Figure 11: Cheiral sequence in two dimensions. The cheiral sequnece is
the sequence ξi for i = 1, . . . , 4 where ξi is 0 or 1 according to whether the point
ui lies on the same side or the opposite side of π∞ from u1. Shown are the 7
distinct arrangements of 4 points in the plane.

If points ui are the points of a canonical basis with homogeneous coordinates
(0, 0, 1), (1, 0, 1), (0, 1, 1) and (1, 1, 1), then points p1234 and p1324 are two points
on the line at infinity, and so the line π is the line at infinity, denoted L∞. If
on the other hand, the points ui are not the points of this canonical basis, but
are mapped to that basis by a projective transformation h, then the line π is
mapped to the line at infinity. Thus, we have π = π∞ = h−1(L∞), and so π
is the line defined in the definition of the cheiral sequence. If we choose ξi to
be ±1 according to which side of π the point ui lies. The sequence of values ξi
is the cheiral sequence. It is invariant up to simultaneous reversal of all signs.
The invariant values are shown in Fig 11, where for readability the digit 0 is
used instead of −1. The values of ξi are normalized in all cases so that ξ1 = 0.

As seen in the diagram (and proven by Theorem 11.25) the cheiral sequence dis-
tinguishes all non-equivalent configurations of four points. These seven configu-
rations of points in the plane were also considered by Morin (/citemorin93a,morin94a)
who found them very useful for helping distinguish point sets in the plane using
projective invariants. In that work it was shown that considering the quasi-
affine structure (using the present terminology) of the set of points significantly
increased the capability of distinguishing point sets in the plane as compared
with using only projective geometric techniques.

11.3 Computation of 3D invariants

Computation of the cheiral sequence of a set of points seen in a set of views is
relatively straight-forward. It takes place in four steps

1. Compute a projective reconstruction of the point set from the images.
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2. Transform the projective reconstruction to a quasi-affine reconstruction.

3. Determine the mapping that maps the first five points to the canonical
basis ei.

4. Project each point and compute the coefficients ηi.

Many ways ([1, 3, 8]) have been given for carrying out the first step of projective
reconstruction. It will be easiest if one uses a method (for example [3]) that
results in one of the cameras having matrix (I | 0). Then one carries out
the second step of quasi-affine reconstruction simply by swapping the last two
coordinates of each point. Otherwise, the method of section 4 is still fairly
straight-forward.

One may ask how many quasi-affinely distinct configurations of five points in
space exist, analogous to the seven configurations of four points in the plane.
We ignore configurations in which four points lie in a plane. In this case, the
cheiral sequence of five points is of length five. Up to a common sign change,
there are therefore 16 distinct cheiral sequences for five points. This gives an
upper bound on the number of distinct configurations.

One may get an exact count by enumerating the different possible geometries of
the convex hull of the points. As in two dimensions, there are two different types
of configuration – those in which all five points lie on the convex hull, and those
in which only 4 points lie on the convex hull. In this second case the convex
hull is a tetrahedron containing the fifth point in the interior. Corresponding to
the five possible choices of which point is in the interior, there are five possible
such configurations.

We now analyze the configurations in which all five points lie on the convex
hull. The convex hull is a polyhedron, bounded by triangular faces, since no
four points are coplanar. Let n be the number of faces. Since each face has three
edges, and each edge belongs to two faces, we see that there are 3n/2 edges,
and so the Euler characteristic of the polyhedron is 5 − 3n/2 + n = 2, since
the boundary of the convex hull is topologically a sphere. From this it follows
that there are n = 6 faces and 9 edges. Since each edge meets two vertices, the
sum of degrees of the vertices must equal 18. Since no vertex can have degree 5
(there are only five vertices in total), the only possibility is that there are three
vertices with degree 4 and two vertices with degree 3. The polyhedron must
have the shape of two tetrahedra joined along one face. There are 10 possible
such configurations corresponding to the 10 different ways of choosing the two
vertices with degree 3.

In total therefore there are 15 = 5 + 10 quasi-affinely distinct configurations
of five (numbered) points in three dimensions. Proposition 11.25 shows that
these configurations may be distinguished by their cheiral sequences. Curiously
enough, 15 is one less than the upper bound of 16 distinct cheiral sequences.
Just as in the two dimensional case, there is one cheiral sequence which can not
occur. Does this observation hold in higher dimensions also ? This question is
left for the interested reader to resolve.
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Figure 12: Three views of houses, and numbered selected vertices

12 Experimental results

In considering real images of 3-D configurations it is necessary to take into
account the effects of noise. In some cases, a value of ηi used in computing the
cheiral sequence will lie so close to 0 variations due to noise can swap its sign.
For robust evaluation of a cheiral sequence value, it is necessary to select a noise
model and determine how errors in the input data affect the sign of each ηi. In
the following discussion, noise effects are ignored, however. As usual, cheiral
sequences are written using the digit 0 instead of 1, for readability.

In [4] projective invariants of 3D point sets were discussed. As an experiment in
that paper, a set of images of some model houses were acquired. Fig 12 shows
the three images as well as certain numbered vertices selected by hand from
among those detected automatically.

Six sets of six points were chosen as in the following table which shows the
indices of the points as given in Fig 12.

S1 = {1, 2, 3, 6, 9, 10} ,
S2 = {2, 4, 6, 8, 10, 12} ,
S3 = {1, 3, 5, 7, 9, 11} ,
S4 = {1, 2, 3, 6, 7, 8} ,
S5 = {1, 4, 7, 10, 13, 12} ,
S6 = {2, 5, 8, 11, 12, 13}

From image correspondences in two views (the left two images of Fig 12) the
fundamental matrix F was found and a weak realization (P, P ′, {xi}) was com-
puted. For each of the six sets of indices i shown above a complete projective
invariant of the points {xi} was computed by mapping the first five points onto
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a canonical basis. The coordinates of the mapped sixth point constitute a pro-
jective invariant of the set of six points.

This computation was repeated with a different pair of views (right two images
of Fig 12). Theory predicts that the invariants should have the same value when
computed from different views, and should distinguish between non-equivalent
point sets.

Table (6) shows the comparison of the computed invariant values.

0.026 0.970 0.975 0.619 0.847 0.823
0.995 0.015 0.064 0.841 0.252 0.548
0.967 0.066 0.013 0.863 0.276 0.516
0.617 0.830 0.873 0.016 0.704 0.752
0.861 0.238 0.289 0.708 0.005 0.590
0.828 0.544 0.519 0.719 0.574 0.026

(6)

The (i, j)-th entry of the table shows the distance according to an appropriate
metric between the invariant of set Si as computed from the first image pair
with that of set Sj as computed from the second image pair. The diagonal
entries of the matrix (in bold) should be close to 0.0, which indicates that the
invariants had the same value when computed from different pairs of views.

Although the projective invariants computed here are quite effective at discrim-
inating between different point sets, indicated by the fact that most off-diagonal
entries are not close to zero, entries (2, 3) and (3, 2) are small indicating that
the point sets numbered 2 and 3 are close to being equivalent up to projectivity.

Next, the cheiral sequence for each of the point sets were computed from the
weak realization using the method described here. The computed values for
each of the six point sets were as follows. The binary integer interpretation of
the cheiral sequence is given in brackets.

χ(S1) = 011100 = (28)10

χ(S2) = 110000 = (60)10

χ(S3) = 000100 = (4)10

χ(S4) = 111100 = (60)10

χ(S5) = 101010 = (42)10

χ(S6) = 100100 = (36)10

As expected these invariant values were the same whether computed using the
first pair of views or the second pair. Note that the cheirality invariant clearly
distinguishes point sets 2 and 3. Point sets S2 and S4 have the same cheiral
sequence, but these are well distinguished by their projective invariants.

Conclusions : These results show that the cheiral sequence is quite effective
at distinguishing between arbitrary sets of points. Given the relative ease with
which the cheiral sequence may be computed, it may be extremely useful in
grouping points. In addition, it may conveniently be used as an indexing func-
tion in an object recognition system. It has been demonstrated that the cheiral
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sequence gives supplementary information that is not available in projective in-
variants. As a theoretical tool, the cheiral sequence provides conditions under
which image point matches may be realized by real point configurations.
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