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Abstract

It is known that a set of points in 3 dimensions is determined up to projectiv-
ity from two views with uncalibrated cameras. It is shown in this paper that
this result may be improved by distinguishing between points in front of and
behind the camera. Any point that lies in an image must lie in front of the
camera producing that image. Using this idea, it is shown that the scene is
determined from two views up to a more restricted class of mappings known
as good projectivities, which are precisely those projectivities that preserve the
convex hull of an object of interest. An invariant of good projectivity known
as the cheirality invariant of a set of points is defined and it is shown how the
cheirality invariant may be computed using two uncalibrated views. As demon-
strated theoretically and by experiment the cheirality invariant may distinguish
between sets of points that are projectively equivalent (but not via a good pro-
jectivity). These results lead to necessary and sufficient conditions for a set of
corresponding pixels in two images to be realizable as the images of a set of
points in 3 dimensions.

Using similar methods, a necessary and sufficient condition is given for the the
orientation of a set of points to be determined by two views. If the perspective
centres are not separated from the point set by a plane, then the orientation of
the set of points is determined from two views.

Good projectivities and the cheirality invariant are also defined for point sets
in a plane, which allows these new methods to be applied to images of planar
objects.

1 Introduction

Consider a set of points {xi} lying in a plane in space and let {ui} and {u′i}
be two images of these points taken with arbitrary uncalibrated perspective



(pinhole) cameras. It is well known that the points ui and u′i are related by a
planar projectivity, that is, there exists h a projectivity of the plane such that
hui = u′i for all i. This fact has been used for the recognition of planar objects.
For instance in [Rothwell-92] planar projective invariants were used to define
indexing functions allowing look-up of the objects in an object data-base. Since
the indexing functions are invariant under plane projectivities, they provide the
same value independent of the view of the object.

In a similar way, it has been shown in [Faugeras-92] and [Hartley-Gupta-92] that
a set of points in 3-dimensions is determined up to a 3-dimensional projectivity
by two images taken with uncalibrated cameras. Both these papers give a con-
structive method for determining the point configuration (up to projectivity).
This permits the computation of projective invariants of sets of points seen in
two views. An experimental verification of these results has been reported in
[Hartley-92] and is summarized in this paper.

The papers just cited make no distinction between points that lie in front of the
camera and those that lie behind. The specification of the front of a camera will
be termed the cheirality of the camera (from Greek : χειρ = hand or side). It is
well know that camera cheirality is valuable in determining scene geometry for
calibrated cameras. Longuet-Higgins [Higgins-81] uses it to distinguish between
four different scene reconstructions. No systematic treatment of cheirality of
uncalibrated cameras has previously appeared, however. Investigation of this
phenomenon turns out to be quite fruitful, as is seen in the present paper.
Cheirality is valuable in distinguishing different point sets in space, especially
in allowing projectively equivalent point sets to be distinguished.

The major results of this paper are summarized now. In Definition 4.4 a class of
projectivities called good projectivities is defined, consisting of those ones that
preserve the convex hull of a set of points of interest. In section 5 an invariant of
good projectivity is defined – the cheirality invariant. Theorem 6.13 strengthens
the result of [Faugeras-92, Hartley-Gupta-92] by showing that a 3-dimensional
point set is determined up to good projectivity by its image in two uncalibrated
views. This sharpening of the theorem of [Faugeras-92, Hartley-Gupta-92] re-
sults from a consideration of the cheirality of the cameras. In section 9 an
example of computation of the cheirality invariant for 3D point sets shows that
it is useful in distinguishing between non-equivalent point sets. In section 7 the
concept of good-projectivity is applied to orientation of point sets, explaining
why some point sets allow two differently oriented reconstructions from two
views, whereas some do not. The relationship of this result to human visual
perception of 3D scenes is briefly mentioned, suggesting that the brain accepts
various interpretations of a scene differing by good projectivities, but not by
arbitrary projectivities.

2 Notation

We will consider object space to be the 3-dimensional Euclidean space R3 and
represent points in R3 as 3-vectors. Similarly, image space is the 2-dimensional
Euclidean space R2 and points are represented as 2-vectors. Euclidean space,
R3 is embedded in a natural way in projective 3-space P3by the addition of
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a plane at infinity. Similarly, R2 may be embedded in the projective 2-space
P2by the addition of a line at infinity. The simplicity of considering projections
between P3and P2has led many authors to identify P3and P2as the object and
images space. This point of view will not be followed here however, although
when necessary we will consider points in R2 and R3 to as lying in P2and
P3respectively, via the natural embedding.

Vectors will be represented as bold-face lower case letters, such as x. Such
a notation represents a column vector. The corresponding row vector will be
denoted by x�. The notation x usually denotes a vector in R3, whereas u rep-
resents a vector in R2. Elements in projective spaces P3and P2will be denoted
with a tilde accent. For instance, x̃ is a homogeneous 4-vector representing an
element in P3, and ũ is a homogeneous 3-vector representing an element of P2.

The notation ≈ represents equality of matrices or homogeneous vectors up to an
arbitrary non-zero factor. If x = (x, y, z)� is a 3-vector representing a point in
R3, then x̂ is the vector (x, y, z, 1)�. Similarly, if u = (u, v)�, then û represents
the vector (u, v, 1)�.

The notation a
.= b means that a and b have the same sign. For instance a .= 1

has the same meaning as a > 0.

3 Projections in P3

A projection from P3into P2is represented by a 3×4 matrix P , whereby a point
x̃ maps to the point ũ ≈ P x̃. It will be assumed that P has rank 3. Since P
has 4 columns but rank 3, there is a unique point t̃ such that P t̃ = (0, 0, 0)�.
In other words, the projective transformation is undefined at the point t̃, since
(0, 0, 0)� is not a valid homogeneous 3-vector. The point t̃ will be called the
perspective centre of the camera. We will assume that the perspective centre is

not a point at infinity so we may write t̃ ≈ t̂ =
(

t
1

)
where t is the perspective

center as a point in R3.

Now, the camera matrix P may be written in block form as P = (M | c) where
M is a 3× 3 block and c is a column vector. Now

P t̂ = (M | c)
(

t
1

)
=Mt+ c = 0 ,

and so c = −Mt. In future, we will write P = (M | −Mt). Now since P has
rank 3 and −Mt is a linear combination of the columns of M , it follows that
M must have rank 3. In other words, M is non-singular. Summarizing this
discussion we have

Proposition3.1. If P is a camera transform matrix for a camera with perspec-
tive centre not at infinity, then P can be written as P = (M | −Mt) where M
is a non-singular 3× 3 matrix and t represents the perspective centre in R3.

There exist points in P3that are mapped to points at infinity in the image. To
find what they are, we suppose that ũ = (u, v, 0)� = P x̃. Letting p1

�, p2
�
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and p3
� be the rows of P , we see that p3

�x̃ = 0. In other words, a point x̃
in P3that maps to a point at infinity in the image must satisfy the equation
x̃�p3 = 0. Looked at another way, if p3 is taken as representing a plane in P3,
then a point x̃ lies on the plane p3 if and only if x̃�p3 = 0. In other words,
the condition for x̃ to map to a point at infinity is the same as the condition
for x̃ to lie on the plane p3. Since P t̂ = 0, we see in particular that p3

�t̂ = 0,
and so t̂ lies on the plane p3. To summarize this paragraph, the set of points
in P3mapping to a point at infinity in the image is a plane passing through the
perspective centre and represented by p3, where p3

� is the last row of P . This
plane will be called the meridian plane of the camera.

Restricting now to R3, consider a point x in space, not lying on the meridian
plane. It is projected by the camera with matrix P onto a point u where
wû = P x̂ for some scale factor w. The value of w will vary continuously with x
and the set of points where it vanishes is precisely the meridian plane. It follows
that on one side of the meridian plane w > 0 and on the other side, w < 0. It
can be shown, but is not used in this paper, that w is in fact proportional to
the distance of x from the meridian plane.

Any real camera can only view points on one side of the meridian plane, those
points that are “in front of” the camera. Points on the other side will not
be visible. In order to distinguish the front of the camera from the back, a
convention is necessary.

Definition 3.2. A camera matrix P = (M | −Mt) is said to be normalized if
det(M) > 0. If P is a normalized camera matrix, a point x is said to lie in front
of the camera if P x̂ = wû with w > 0. Points x for which w < 0 are said to be
behind the camera.

Any camera matrix may be normalized by multiplying it by −1 if necessary. It
will always be assumed that camera matrices are normalized. The selection
of which side of the camera is the front is simply a convention, consistent with
the assumption that for a camera with matrix (I | 0), points with positive z-
coordinate lie in front of the camera. This is the usual convention in computer
vision literature, used for instance in [Higgins-81].

The following statement expresses the fact that a camera sees only those points
that lie in front of it.

Proposition3.3. A point x in R3 is mapped to a point u in R2 by a camera
with normalized matrix P if and only if wû = P x̂ for some constant w > 0.

4 Good Projectivities

A subset B of Rn is called convex if the line segment joining any two points in
B also lies entirely within B. The convex hull of B, denoted B̄ is the smallest
convex set containing B.

Definition 4.4. Let B be a subset of Rn and let h be a projectivity of Pn. The
projectivity h is said to be a “good projectivity” with respect to the set B if
h−1(L∞) does not meet B̄, where L∞ is the plane (or line) at infinity.
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A good projectivity with respect to B is precisely one that preserves the convex
hull of B. It may be verified that if h is a good projectivity with respect to B,
then h−1 is a good projectivity with respect to h(B). Details are omitted for
the sake of brevity. We will be considering sets of points {ui} and {u′i} that
correspond via a projectivity. When we speak of the projectivity being good, we
will mean good with respect to the set {ui}.
An alternative characterization of good projectivities is given in the following
theorem.

Theorem4.5. A projectivity h : Pn → Pn represented by a matrix H is good
with respect to a set B = {ui} ⊂ Rn−h−1(L∞) if an only if there exist constants
wi, all of the same sign, such that Hûi = wiû

′
i

Proof. To prove the forward implication, we assume that h is a good projectivity.
By definition, constants wi exist such that Hûi = wiû

′
i. What needs proof is

that they all have the same sign. The value of w in the mapping wû′i = Hûi is a
continuous function of the point u. If wi > 0 for some point ui, and wj < 0 for
another point uj , then there must some point u∞ on the line segment joining
ui to uj for which w = 0. This means that h(u∞) lies on the line at infinity,
contrary to hypothesis.

Next, to prove the converse, we assume that there exist such constants wi all
of the same sign. Let S be the subset of Rn consisting of all points u satisfying
the condition Hû = wû′ such that w has the same sign as all wi. The set S
contains B and it is clear that S ∩ h−1(L∞) = ∅. All that remains to show is
that S is convex, for then S must contain the convex hull of B. If ui and uj
are points in S with corresponding constants wi and wj , then any intermediate
point u between ui and uj must have w value intermediate between wi and wj .
Consequently, the value of w must have the same sign as wi and wj , and so u
lies in S also. This completes the proof. �

As just noted, if a projectivity is not good, then there are points in the convex
hull for which w equals nought (0). For this reason, a projectivity that is not
good will be called “naughty”1.

This theorem gives an effective method of identifying good projectivities. The
question remains whether good projectivities form a useful class. This question
will be answered by the following theorem.

Theorem4.6. If B is a point set in a plane (the “object plane”) in R3 lying
entirely in front of a projective camera, then the mapping from the object plane
to the image plane defined by the camera is a good projectivity with respect to
B.

Proof. That there is a projectivity h mapping the object plane to the image
plane is well known. What is to be proven is that the projectivity is good with
respect to B. Let L be the line in which the meridian plane of the camera
meets the object plane. Since B lies entirely in front of the camera, L does

1This terminology was suggested to me by David Forsyth
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not meet the convex hull of B. However, by definition of the meridian plane
L = h−1(L∞), where L∞ is the line at infinity in the image plane. Therefore,
h is a good projectivity with respect to B. �

As an example, Fig. 1 shows an image of a comb and the image resampled
according to a naughty projectivity. Most people will agree that the resampled
image is unlike any view of a comb seen by camera or human eye. Nevertheless,
the two images are projectively equivalent and will have the same projective
invariants.

Note that if points ui are visible in an image, then the corresponding object
points must lie in front of the camera. Applying Theorem 4.6 to a sequence
of imaging operations (for instance, a picture of a picture of a picture, etc), it
follows that the original and final images in the sequence are connected by a
planar projectivity which is good with respect to any point set in the object
plane visible in the final image.

Similarly, if two images are taken of a set of point {xi} in a plane, ui and u′i
being correponding points in the two images, then there is a good projectivity
(with respect to the ui) mapping each ui to u′i, and so Theorem 4.5 applies,
yielding the following proposition.

Proposition4.7. If {ui} and {u′i} are corresponding points in two views of a
set of object points {xi} lying in a plane, then there is a matrix H representing
a planar projectivity such that Hûi = wiû

′
i and all wi have the same sign.

This fact was pointed out to me by Charles Rothwell (private communication)
and served as a starting point for the current investigation. Rothwell derived
this result using the methods of [Sparr-92].

5 An integer valued invariant

Given a set of N ≥ n + 2 points {ui}, i = 1, . . . , N in Rn, it is possible to
define an invariant of good projectivity as follows. Let e1, . . .en+2 be points
in Rn such that {êi} form a canonical projective basis for Pn. For n = 2, the
points (0, 0)�, (1, 0)�, (0, 1)� and (1, 1)� will do. Assume that the points ui
are numbered in such a way that the first n+ 2 of them are in general position
(meaning that no n + 1 of them lie in a codimension 1 hyperplane). In this
case, there exists a projectivity g (not necessarily good) such that g(ui) = ei
for i = 1, . . . , n+2. Now, for each i = 1, . . . , N we define a value ηi as follows. If
g(ui) lies on the plane at infinity, we set ηi = 0. Otherwise, there exists a further
ei such that g(ui) = ei. If g is represented by a matrix G, then ηi is defined
by the equation Gûi = ηiêi. We show that, except for possible simultaneous
negation, the values sign(ηi) are an invariant of good projectivity. Here sign(ηi)
is defined to equal 1, −1 or 0 depending on whether ηi is positive, negative or
zero respectively. The invariant value is of course dependent on the choice of
canonical basis {ei}.
To prove the invariance, suppose that h is a good projectivity with respect
to points {ui} and let h(ui) = u′i. Consider the projectivity g′ defined by
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g′(u′i) = ei for i = 1, . . . , n+ 2. Values η′i may be defined as before in terms of
the projectivity g′. On the other hand, values wi may be defined in terms of
the projectivity h mapping each ui to u′i as in Theorem 4.5.

Since h and g′−1 ◦ g agree on a set of basis points, it follows that h = g′−1 ◦ g.
Consequently, wi = ηi/η

′
i. However, under the assumption that h is a good

projectivity, all the wi have the same sign, and so, for all i, we have ηi
.= ε η′i,

where ε = ±1. In other words, the set of values sign(ηi) are an invariant under
good projectivity, except for possible simultaneous negation.

It is possible to code the values ηi into a single number according to the formula

χ(u1,u2, . . . ,uN ) =

∣∣∣∣∣
N∑
i=1

sign(ηi)3i−1

∣∣∣∣∣ (1)

The value χ(ui) is an invariant under good projectivity of the ordered set of
points ui. It will be called the cheirality invariant of the points.

6 Three dimensional point sets

We now consider three-dimensional point sets. The question that will be ad-
dressed is : “Under what conditions can points ui and u′i in two views be the
images of a three dimensional point set xi corresponding to two arbitrary un-
calibrated cameras ?”. One well-known necessary condition ([Higgins-81]) is the
epipolar constraint, û′i

�Qûi = 0 for all i and some rank-two matrix Q. We will
ignore the effects of noise, so that the epipolar constraint equation will be as-
sumed to hold exactly. The question is whether this is also a sufficient condition.
The answer is no.

It will be assumed that there are sufficient points for the matrix Q to be deter-
mined unambiguously, that is at least 7 ([Hartley-92]) or 8 ([Higgins-81]) points.
Under these conditions as shown in [Hartley-Gupta-92] and [Faugeras-92] it is
possible to determine the location of points x̃i and cameras P and P ′ such that
ûi ≈ P x̃i and û′i ≈ P ′x̃i, and furthermore, the choice is unique up to projectiv-
ity of P3. Assuming that none of the reconstructed points xi is at infinity, we
can write

wiûi = P x̂i
w′iû

′
i = P ′x̂i

(2)

If all the wi and w′i are positive, then according to Proposition 4.7 the points
xi map to points ui and u′i in the two images. Normally, this will not be the
case. It is possible, however, that another choice of P , P ′ and xi exists with
the desired property.

We introduce some new terminology. A triplet (Q, {ui}, {u′i}) is called an epipo-
lar configuration if Q is a rank 2 matrix satisfying the epipolar constraint equa-
tion û′i

�Qûi = 0 for all i. A weak realization of (Q, {ui}, {u′i}) is a triplet
(P, P ′, {xi}), where P and P ′ are a choice of normalized camera matrices cor-
responding to the essential matrix Q and the points {xi} are object points
satisfying the equations (2) for each i. A strong realization is such a triplet sat-
isfying the additional condition that all the wi and w′i are positive. The triplet
(Q, {ui}, {u′i}) is called a feasible configuration if a strong realization exists.
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The following lemma sets notation and derives a basic technical result.

Lemma6.8. Let (P, P ′, {xi}) and (P̄ , P̄ ′, {x̄i}) be two weak realization of a
feasible configuration (Q, {ui}, {u′i}). There exists a 4 × 4 matrix H such that
P ≈ P̄H, P ′ ≈ P̄ ′H and x̂i ≈ H−1 ˆ̄xi. Assume that P , P ′, P̄ and P̄ ′ are
normalized and let constants ε, ηi, wi and w̄i be defined by the equations

P = εP̄H

x̂i = ηiH
−1 ˆ̄xi

wiûi = P x̂i
w̄i ˆ̄ui = P̄ ˆ̄xi (3)

Then wiw̄iεηi
.= 1.

If constants w′i, w̄
′
i, and ε′ are defined in a similar way then w′iw̄

′
iε
′ηi

.= 1.

Proof. The existence of the matrix H is proven in [Hartley-Gupta-92]. Now,

wiûi = P x̂i
= εηiP̄HH−1 ˆ̄xi
= εηiw̄iûi

whence wi = εηiw̄i. Multiplying each side of this equation by wi gives the
required result. The proof for the primed quantities is of course the same. �

A further useful technical result follows.

Lemma6.9. Let H be the matrix

H =
(

I 0
kv� k

)
.

Then with the notation used in Lemma 6.8, ε .= v̂�t̂, ε′ .= v̂�t̂
′
and for each i,

ηi
.= kv̂�x̂i, where t and t′ are the perspective centres of P and P ′. (Remember

that .= denotes equality of sign.)

Proof. One verifies that

H−1 =
(

I 0
−v� k−1

)
.

Let P = (M | −Mt) with det(M) > 0 and P̄ = (M̄ | −M̄ t̄) with det(M̄) >
0. The from the εP̄ = PH−1 it follows that εM̄ = M(I + tv�). Taking
determinants and signs gives

ε
.= det(I + tv�) = 1 + v�t = v̂�t̂

as required. The same proof holds for ε′.

From (3) we have Hx̂i = ηi ˆ̄xi. Multiplying this out and considering only the
last component yields ηi = k(v�xi + 1) = kv̂�x̂i as required. �
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Applying Lemma 6.8 to the case where one of the realizations is a strong realiza-
tion leads to a necessary and sufficient condition for an epipolar configuration
to be feasible.

Theorem6.10. Let (P, P ′, {xi}) be any weak realization of an epipolar config-
uration (Q, {ui}, {u′i}) and let wi and w′i be defined as in (2). There exists a
strong realization (P̄ , P̄ ′, x̄i) of (Q, {ui}, {u′i}) if and only if wiw′i has the same
sign for all i.

Proof. We begin by proving the if part of this theorem, and apply Lemma 6.8
to the case where (P̄ , P̄ ′, x̄i) is a strong realization. In this case, w̄i

.= 1 and
so wiηiε

.= 1. Similarly, w′iηiε
′ .= 1. Therefore wiw

′
iη

2
i εε
′ .= 1. from which it

follows that wiw′i
.= εε′ which is constant for all i.

Now, we turn to prove the converse. Let X+ be the set of points xi such that
wi > 0 and let X− be the set of points such that wi < 0. The sets X+ and
X− are separated by the meridian planes of each of the cameras. Now, we seek
a plane that separates X− from X+ and satisfies the additional condition that
the perspective centres of the two camera lie on the same side of the plane if
wiw

′
i > 0 for all i, or on opposite sides of the plane if wiw′i < 0 for all i. Such

a plane can easily be found by slightly displacing the meridian plane of one of
the cameras2.

Let this separating plane be represented by a 4-vector v̂. The condition that
both perspective centres t and t′ lie on the same or opposite sides of the plane
may be written as v̂�t̂ .= κ and v̂�t̂

′ .= κwiw
′
i where κ is some non-zero value

and sign(wiw′i) is a constant for all i by hypothesis. The condition that the plane
v̂ separates X− from X+ may be written as v̂�x̂i

.= ξwi for some constant ξ.
Now, let H be the matrix

H =
(

I 0
κξv� κξ

)
.

Then according to Lemma 6.9, ε .= v̂�t̂ .= κ, ε′ .= v̂�t̂′ .= κwiw
′
i and ηi

.=
κξv̂�x̂i

.= κξ2wi. Now substituting into the equationwiw̄iεηi
.= 1 from Lemma 6.8

yields wiw̄iκ2ξ2wi
.= 1 from which it follows that w̄i

.= 1 as required. Similarly,
from the equation w′iw̄

′
iε
′ηi

.= 1 we derive w′iw̄
′
iκwiw

′
iκξ

2wi
.= 1, from which

it follows that w̄i
.= 1. This shows that (P̄ , P̄ ′, {x̄i}) is a strong realization as

required. �

Since the epipolar configuration derived from two images of a real scene must
have a strong realization, this theorem gives a necessary and sufficient condition
for a set of image correspondences to be realizable as a three dimensional scene.
Theorem 6.10 is illustrated in Fig 2.

For planar object sets, Theorem 4.6 established the existence of a good projec-
tivity between the object plane and the image plane. For non-planar objects
seen in two views, strong realizations of the epipolar configuration take the rôle
played by sets of image points in the two dimensional case.

2For this construction to work, it seems necessary to make the additional assumption that
the point set {ui} is bounded in the image plane. This assumption will be true for any
reasonable pinhole camera, which can not have an image of infinite extent.
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Theorem6.11. Let (Q, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi})
and (P̄ , P̄ ′, {x̄i}) be two separate strong realizations of the configuration. Then
the projectivity mapping each point xi to x̄i is good.

Proof. With notation as in (3), wi
.= w̄i

.= 1, and hence from Lemma 6.8,
ηiε

.= 1, which means that all ηi have the same sign. Therefore, by Theorem
4.5, H is a good projectivity. �

The particular case where one of the two realizations is the “correct” realization
is of interest. It is the analogue in three dimensions of Proposition 4.6.

Corollary 6.12. If {xi} are points in R3, image coordinates {ui} and {u′i} are
corresponding image points in two uncalibrated views, Q is the essential matrix
derived from the image correspondences ui ↔ u′i and (P, P ′, {x̄i}) is a strong
realization of the triple (Q, {ui}, {u′i}), then there is a good projectivity taking
each xi to x̄i.

From this corollary, we can deduce one of the main results of this paper.

Theorem6.13. Let (P, P ′, {xi}) and (P̄ , P̄ ′, {x̄i}) be two different reconstruc-
tions of 3D scene geometry derived as strong realizations of possibly different
epipolar configurations corresponding to possibly different pairs of images of a
3D point set. Then there is a good projectivity mapping each point xi to x̄i.

What this theorem is saying is that if a point set in R3 is reconstructed as a
strong realization from two separate pairs of views, then the two results are the
same up to a good projectivity.

Proof. By corollary 6.12 there exist good projectivities mapping each of the sets
of reconstructed points {xi} and {x̄i} to the actual 3D locations of the points.
The result follows by composing one of these projectivities with the inverse of
the other. �

7 Orientation

We now consider the question of image orientation. A mapping h from Rn

to itself is called orientation-preserving at a point x if the Jacobian of h has
positive determinant at x. Otherwise h is called orientation reversing. Reflection
of points of Rn with respect to a hyperplane (that is mirror imaging) is an
example of an orientation reversing mapping. A projectivity h from Pn to itself
restricts to a mapping from Rn − h−1(L∞) to Rn, where L∞ is the hyperplane
(line, plane) at infinity. Consider the case n = 3 and let H be a 4 × 4 matrix
representing the projectivity h. We wish to determine at which points x in
R − h−1(L∞) the map h is orientation preserving. It may be verified (quite
easily using Mathematica [Wolfram-88]) that if Hx̂ = wx̂′ and J is the Jacobian
of h evaluated at x, then det(J) = det(H)/w4. This gives the following result.
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Proposition7.14. A projectivity h of P3represented by a matrix H is orienta-
tion preserving at any point in R3 − h−1(L∞) if and only if det(H) > 0.

Of course, the concept of orientability may be extended to the whole of P3, and
it may be shown that h is orientation-preserving on the whole of P3if and only
if det(H) > 0. The essential feature here is that as a topological manifold, P3is
orientable. The situation is somewhat different for P2, which is not orientable
as a topological space. In this case, with notation similar to that used above, it
may be verified that det(J) = det(H)/w3. Therefore, the following proposition
is true.

Proposition7.15. A projectivity h of P2is orientation preserving at a point u
in R2 − h−1(L∞) if and only if w det(H) > 0, where Hû = wû′.

This theorem allows us to strengthen the statement of Theorem 4.5 somewhat.

Corollary 7.16. If h is a good projectivity of P2with respect to a set of points
{ui} in R2, then h is either orientation-preserving or orientation-reversing at
all points ui. Suppose the matrix H corresponding to h is normalized to have
positive determinant (by possible multiplication by −1) and let Hûi = wiû

′
i.

Then h is orientation-preserving if and only if wi > 0 for all i.

An example where Corollary 7.16 applies is in the case where two images of a
planar object are taken from the same side of the object plane. In this case,
an orientation-preserving good projectivity will exist between the two images.
Consequently, all the wi defined with respect to a matrix H will be positive,
provided that H is normalized to have positive determinant.

The situation in 3-dimensions is rather more involved and more interesting.
Two sets of points {xi} and {x̄i} that correspond via a good projectivity are
said to be oppositely oriented if the projectivity is orientation-reversing. This
definition extends also to two strong realizations (P, P ′, {xi}) and (P̄ , P̄ ′, {x̄i})
of a common epipolar configuration (Q, {ui}, {u′i}), since in view of Theorem
6.11 the point sets are related via a good projectivity. Whether or not oppositely
oriented strong realizations exist depends on the imaging geometry. Common
experience provides some clues here. In particular a stereo pair may be viewed
by presenting one image to one eye and the other image to the other eye. If this
is done correctly, then the brain perceives a 3-D reconstruction of the scene (a
strong realization of the image pair). If, however, the two images are swapped
and presented to the opposite eyes, then the perspective will be reversed – hills
become valleys and vice versa. In effect, the brain is able to compute two
oppositely oriented reconstructions of the image pair. It seems, therefore, that
in certain circumstances, two oppositely oriented realizations of an image pair
exist. It may be surprising to discover that this is not always the case, as is
shown in the following theorem.

Theorem7.17. Let (Q, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi})
be a strong realization of (Q, {ui}, {u′i}). There exists a different oppositely ori-
ented strong realization (P̄ , P̄ ′, {x̄i}) if and only if there exists a plane in R3

such that the perspective centres of both cameras P and P ′ lie on one side of
the plane, and the points xi lie on the other side.
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Before proving this theorem, we need a lemma.

Lemma7.18. Let (P, P ′, {xi}) be a strong realization of an epipolar configu-
ration (Q, {ui}, {u′i}). Then there exists a similarly oriented strong realization
(P̄ , P̄ ′, {x̄i}) for which P̄ = (I | 0).

Proof. Suppose P = (M | −Mt), with det(M) > 0. Then multiplication by the
matrix

H =
(

M−1 t
0 1

)

transforms P to the required form. Furthermore, H−1 defines an orientation-
preserving good projectivity on the points xi. �

Now, we may prove the theorem.

Proof. (Theorem 7.17) In light of Lemma 7.18 it may be assumed that P ′ and P̄ ′

are both of the form (I | 0), because an oppositely oriented pair of realizations
exist if and only if an oppositely oriented pair exist satisfying this additional
condition.

Let us assume that such an oppositely oriented pair of strong realizations exists
and H represents the orientation-reversing good projectivity relating them. We
define ε, ε′ and ηi as in (3). If necessary, H may be multiplied by a constant
so that ε′ .= 1. Since wi

.= w′i
.= w̄i

.= w̄′i
.= 1, it follows from Lemma 6.8 that

ηi
.= 1 for all i and ε

.= 1. From the equation (I | 0)H = (I | 0) the form of H
may be deduced :

H =
(

I 0
kv� k

)

for some 3-vector v and, since H is orientation reversing, k .= −1.
Now, according to Lemma 6.9, ηi

.= kv̂�x̂i, and since ηi
.= 1 and k

.= −1 it
follows that v̂�x̂i

.= −1. This condition may be interpreted as meaning that all
the xi lie on one side of the plane defined by v̂.

On the other hand, by applying Lemma 6.9, we get v̂�t̂ .= ε
.= 1 and v̂�t̂

′ .=
ε′

.= 1. These equations mean that t and t′ lie on the opposite side of the plane
v̂ from all the points xi. This completes the only if part of the proof.

The converse may be proven by working backwards through this proof. Assum-
ing the existence of a separating plane v̂ one constructs the orientation reversing
matrix H as above and verifies that the resulting (P̄ , P̄ ′, {x̄i}) is a strong real-
ization. �

Note that the existence of such a separating plane as described in Theorem 7.17
may be checked using any strong realization.

8 3D cheirality invariants

The cheirality invariant of a set of points may be computed from two views by
constructing a strong realization of the epipolar configuration and then invoking
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Theorem 6.13. If in addition each pair of views is discovered to satisfy the
condition of Theorem 7.17 then the orientation of the set of points with respect
to a canonical basis gives a further invariant.

In general, finding a strong realization involves substantial computation. It is
therefore convenient to be able to compute the cheirality invariant of a set of
points from a weak realization. This may be done using the following theorem

Theorem8.19. Suppose (P, P ′, {xi}) is a weak realization of an epipolar con-
figuration (Q, {ui}, {u′i}) and let constants η̆i be defined for each xi as in the
definition of the cheiral invariant. Suppose that P x̂i = wiûi and define ηi =
η̆iwi, then

∣∣∣∑N
i=1 sign(ηi)3

i−1
∣∣∣ is the cheiral invariant of a strong realization of

(Q, {ui}, {u′i}).

Details of the proof will not be given. It is simply a matter of considering
the composition of two projectivities : from the strong realization to the weak
realization and from the weak realization to the canonical frame.

9 Experimental results

In considering real images of 3-D configurations it is necessary to take into
account the effects of noise. In particular, because of measurement inaccuracies,
it will (virtually) never be the case that a point xi in a strong realization will
map by chance exactly onto the plane at infinity under the mapping to the
canonical basis. For this reason, in practical experiments I have preferred to
define the cheiral invariant by interpreting the values ηi as bits of a binary
integer : ηi > 0 corresponds to a 1 bit and ηi < 0 to a 0 bit. In some cases, a
value of ηi will lie so close to 0 variations due to noise can swap its sign. For
robust evaluation of a cheiral invariant value, it is necessary to select a noise
model and determine how errors in the input data affect the sign of each ηi. In
the following discussion, noise effects are ignored, however.

In [Hartley-93] projective invariants of 3D point sets were discussed. As an
experiment in that paper, a set of images of some model houses were acquired.
Figures 3, 4 and 5 show the three images. Corresponding vertices were selected
by hand from among those detected automatically. The 13 vertices used are
shown in Fig 6.

Six sets of six points were chosen as in the following table which shows the
indices of the points as given in Fig 6.

S1 = {1, 2, 3, 6, 9, 10} ,
S2 = {2, 4, 6, 8, 10, 12} ,
S3 = {1, 3, 5, 7, 9, 11} ,
S4 = {1, 2, 3, 6, 7, 8} ,
S5 = {1, 4, 7, 10, 13, 12} ,
S6 = {2, 5, 8, 11, 12, 13}

From image correspondences in two views (Figs 3 and 4) the essential matrix Q
was found and a weak realization (P, P ′, {xi}) was computed. For each of the

13



six sets of indices i shown above a complete projective invariant of the points
{xi} was computed by mapping the first five points onto a canonical basis. The
coordinates of the mapped sixth point constitute a projective invariant of the
set of six points.

This computation was repeated with a different pair of views (Figs 4 and 5).
Theory predicts that the invariants should have the same value when computed
from different views, and should distinguish between non-equivalent point sets.

Table (4) shows the comparison of the computed invariant values.

0.026 0.970 0.975 0.619 0.847 0.823
0.995 0.015 0.064 0.841 0.252 0.548
0.967 0.066 0.013 0.863 0.276 0.516
0.617 0.830 0.873 0.016 0.704 0.752
0.861 0.238 0.289 0.708 0.005 0.590
0.828 0.544 0.519 0.719 0.574 0.026

(4)

The (i, j)-th entry of the table shows the distance according to an appropriate
metric between the invariant of set Si as computed from the first image pair
with that of set Sj as computed from the second image pair. The diagonal
entries of the matrix (in bold) should be close to 0.0, which indicates that the
invariants had the same value when computed from different pairs of views.

Although the projective invariants computed here are quite effective at discrim-
inating between different point sets, indicated by the fact that most off-diagonal
entries are not close to zero, entries (2, 3) and (3, 2) are small indicating that
the point sets numbered 2 and 3 are close to being equivalent up to projectivity.

Next, the cheirality invariants for each of the point sets were computed from
the weak realization using the method described here. The computed values for
each of the six point sets were as follows : χ(S1) = 28, χ(S2) = 3, χ(S3) = 59,
χ(S4) = 60, χ(S5) = 21, χ(S6) = 27. As expected these invariant values were
the same whether computed using the first pair of views or the second pair.
Note that the cheirality invariant clearly distinguishes point sets 2 and 3. In
fact, all six point sets are distinguished.

Reordering : Although there are no invariants of projectivity for 5 points
in P3, the cheirality invariant is defined. In order to estimate its effectiveness
for distinguishing different configurations the following experiment was carried
out. Five points in P3were selected and the cheirality invariant computed for
all permutations of the five points. The result was that 10 different invariant
values were found (out of 16 possible), each one occuring 12 times. It may be
seen that this will be true whichever 5 points are selected (though the invariant
values will be different). In short, there is about one chance in 10 that two sets
of five arbitrarily selected points will have the same cheirality.

When this experiment was carried out with 6 points arbitrarily chosen the results
were seen to vary according to the particular configuration of the points. For
various choices of points it was seen that the probability of getting a chance
match for arbitrary permutations of the point set is about one chance in 20 or
30.
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Conclusions : These results show that the cheirality invariant is quite ef-
fective at distinguishing between arbitrary sets of points. Given the relative
ease with which the cheirality invariant may be computed, it may be extremely
useful in grouping points. In addition, it may conveniently be used as an in-
dexing function in an object recognition system. It has been demonstrated that
the cheirality invariant gives supplementary information that is not available
in projective invariants. As a theoretical tool, the cheirality invariants pro-
vide conditions under which image point matches may be realized by real point
configurations.
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Figure 1. At the left a comb. At the right a naughty projection of the comb.

Figure 2. Each camera is shown symbolically as a line representing the
meridian plane and an arrow indicating the direction of the front of the
camera. Each diagram represents a weak realization of an epipolar

configuration. The two top configurations of points and cameras satisfy the
condition of Theorem 6.10 and may be converted to strong realizations. The
two lower configurations do not, and hence can not be weak realizations of a

real scene.
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