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Abstract

A new practical method is given for the self-calibration of a camera. In this method, at
least three images are taken from the same point in space with different orientations of
the camera and calibration is computed from an analysis of point matches between the
images. The method requires no knowledge of the orientations of the camera. Calibration
is based on the image correspondences only. This method differs fundamentally from
previous results by Maybank and Faugeras on self-calibration using the epipolar structure
of image pairs. In the method of this paper, there is no epipolar structure since all images
are taken from the same point in space, and so Maybank and Faugeras’s method does
not apply. Since the images are all taken from the same point in space, determination of
point matches is considerably easier than for images taken with a moving camera, since
problems of occlusion or change of aspect or illumination do not occur.

A non-iterative calibration algorithm is given that works with any number of images.
An iterative refinement method that may be used with noisy data is also described. The
algorithm is implemented and validated on several sets of synthetic and real image data.
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1 Introduction

The possibility of calibrating a camera based on the identification of matching points
in several views of a scene taken by the same camera has been shown by Maybank
and Faugeras ([17, 8]). Using techniques of Projective Geometry they showed that each
pair of views of the scene can be used to provide two quadratic equations in the five
unknown parameters of the camera. For this, it is necessary that the two views be
taken from different viewpoints. Given three pairs of views, a method of solving these
equations to obtain the camera calibration has been reported in [8, 16] based on directly
solving these quadratic equations using homotopy continuation. It has been reported
however that this method requires extreme accuracy of computation, and seems not
to be suitable for routine use. In addition with large numbers of cameras (more than
three or four) this method threatens to be unworkable, because the number of potential
solutions grows rapidly as a function of the number of views. An alternative algorithm
for calibration of a moving camera has been given in [11], which works for any number of
views. However, the algorithm is lengthy and tricky to implement. Other methods are
discussed in [16]. Nevertheless, the task of self-calibration in the case of arbitrary camera
motions is difficult, and none of the methods given so far is entirely satisfactory. The
applicability of these methods is further complicated by the problem of finding matched
points in images taken from different viewpoints. This task can be difficult, because of
occlusion, aspect changes and lighting changes that inevitably occur when the camera
moves.

Recently several papers on self-calibration have appeared ([6, 2, 7]). These papers all
rely on known motions of the cameras. In [6] the motion of the camera is assumed to be
purely translational. In [2, 7] rotational motions of the camera are considered, but the
rotation must be through known angles. This simplifies the calibration task enormously.
For instance, in this case, the focal length of the camera can be estimated simply as
a ratio of feature displacement to incremental angle of rotation ([7]). In addition, the
methods of [2, 7] require tracing features in the image through many frames. In [2] an
approximate guess at the location of the principal point is also necessary. In this paper,
on the other hand, calibration is carried out solely on the basis of image content, and
without a priori assumptions of calibration values. Calibration can be carried out by
finding point matches in as few as three images, though for best results, more images
may be used. The method is based on analysis of the projective distortion that an image
undergoes when the camera is rotated. It has recently come to my attention that the
possibility of calibrating a camera undergoing rotatory motions has also been suggested
by work of Viévilled, Luong and Faugeras ([20]), but they did not pursue this line of
research.

The calibration algorithm is demonstrated on real and synthetic data and is shown to
perform robustly in the presence of noise.

2 The Camera Model

A commonly used model for perspective cameras is that of projective mapping from 3D
projective space, P3, to 2D projective space, P2. This map may be represented by a
3× 4 matrix, M of rank 3. The mapping from P3 to P2 takes the point x = (x, y, z, 1)�

to u = Mx in homogeneous coordinates. (Note: the equality relation when applied to
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homogeneous vectors really means equality up to a non-zero scale factor).

Provided the camera centre is not located on the plane at infinity, the matrix M may
be decomposed as M = K(R| − Rt), where t represents the location of the camera,
R is a rotation matrix representing the orientation of the camera with respect to an
absolute coordinate frame, and K is an upper triangular matrix called the calibration
matrix of the camera. The matrix (R| −Rt) represents a rigid transformation (rotation
and translation) of R3. Given a matrix M it is a very simple matter to obtain this
decomposition, using the QR-decomposition of matrices.

The entries of the matrix K may be identified with certain physically meaningful quan-
tities known as the internal parameters of the camera. Indeed, K may be written as

K =


 ku s pu
0 kv pv
0 0 1


 (1)

where

• ku is the magnification in the u coordinate direction

• kv is the magnification in the v coordinate direction

• pu and pv are the coordinates of the principal point

• s is a skew parameter corresponding to a skewing of the coordinate axes.

Note that K is non-singular. This follows from the requirement thatM should have rank
3.

The parameters ku and kv are related to the focal length f of the camera. In particular,
if we assume that the skew s = 0, and that the pixels are square (ku = kv), then ku is
equal to the focal length of the camera measured in pixels. For CCD cameras, the pixels
in the sensor array will not be square. In the case of non-square pixels, ku is equal to
the ratio of f to the pixel dimension measured in the u direction, and kv is analogously
defined.

For CCD cameras, it is quite unlikely that the skew s differs significantly from 0, since
CCD arrays can be manufactured with high precision. However, many images used in
aerial photogrammetry applications are taken on film and are later digitized. A common
means of digitization is to use a digitizing camera that takes a photograph of the original
film image. This digitization process causes a further 2D projective transformation to
be applied to the original image. Nevertheless, the composite imaging process may still
be expressed as a 3D to 2D projective mapping u = Mx. In this case, the calibration
matrix for the digitized image depends on the characteristics of both the original camera
and the digitizing camera. A non-zero value of s will result if the principal axis of the
digitizing camera is not precisely perpendicular to the image being digitized. This non-
perpendicularity will also result in non-equal values for ku and kv, even if the digitizing
camera has square pixels.

The images used for the experiments reported in this paper were obtained as follows.
A 35mm camera with ordinary black and white film was used to produce negatives.
These negatives were enlarged to produce positive 3.5 × 5 inch prints, which were then
digitized using a flat-bed scanner. The enlargement process can lead to a non-zero value
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of s and non-equal values of ku and kv if the negative and print paper are not precisely
parallel. For digitized enlarged images obtained in this manner, the values of ku and
kv are dependent on the focal length of the original camera, the degree of enlargement
and the pixel-size of scanner. For this reason, the term magnification, rather than focal
length is preferred here.

The term camera is used in this paper as an abstraction of the complete imaging process
that maps world points to image points in a digitized image by one of these processes
(or some other equivalent process).

The purpose of this paper is to give a method for determining the matrix K of internal
camera parameters. In the method to be described, the camera will be held in the same
location in space and rotated to different orientations. For convenience, the common
location of all the cameras will chosen to be the origin of the coordinate system. We
will speak of several cameras each with its own camera matrix, whereas in fact the
cameras will be the same camera, with the same interior parameters, differing only in their
orientation. Thus, we consider a set of cameras with camera matrices Mj = K(Rj | 0).
Often, we will identify a camera with its transformation matrix.

A point x = (x, y, z, 1)� is mapped by the camera Mj to the point u = K(Rj |
0)(x, y, z, 1)� = KRj(x, y, z). In other words, since the last column of Mj is always
0, the fourth coordinate of x is immaterial. Therefore, in this paper, we will drop the
fourth column of the camera matrix, and write instead

Mj = KRj

where K is upper triangular, the same for all cameras, and Rj is a rotation matrix.
This transformation sends points x = (x, y, z)� to u = KRjx. Note that the points kx,
where k is a non-zero factor, are all mapped to the same point independent of the scale
factor. Consequently, Mj represents a mapping between a two-dimensional projective
object space with coordinates (x, y, z)� and two-dimensional projective image space with
coordinates (u, v, w)�. This situation has a very convenient feature, not shared by the
usual 3D to 2D projective mapping, namely that the mapping Mj from object to image
space is invertible.

3 Rotating the Camera

Now, we will consider what happens to an image taken by a camera when the camera is
rotated. Thus, let M = KR and M ′ = KR′ be two cameras, and let ui = KRxi and
u′i = KR′xi. From this it follows that

u′i = KR′R−1K−1ui

This simple observation gives the following important result

Proposition3.1. Given a pair of images taken by cameras with the same interior pa-
rameters from the same location, then there is a projective transformation P taking one
image to the other. Furthermore, P is of the form P = KRK−1 where R is a rotation
matrix and K is the calibration matrix.

In standard terminology, the relation P = KRK−1 may be described by saying that
P is a conjugate of a rotation matrix, K being the conjugating element. Since P is
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meaningfully defined only up to a non-zero factor, Proposition 3.1 may be interpreted as
meaning that P = KRK−1 only up to a non-zero factor. However, the right hand side of
this equation has unit determinant. Therefore, if P is chosen to have unit determinant
(as may always be done by multiplying P by an appropriate factor if necessary), then
exact equality will hold.

Now, suppose we have several cameras with matrices Mj = KRj for j = 0, . . . , N .
For convenience, we assume that the coordinate axes are chosen to be aligned with
the 0-th camera, so that R0 = I, the identity matrix, and hence M0 = K. Write
Pj =MjM

−1
0 = KRjK

−1. This gives the following proposition.

Proposition3.2. Given a set of images J0, . . . JN taken from the same location by cam-
eras with the same calibration (or with the same camera), then there exist 2D projective
transforms, represented by matrices Pj , taking image J0 to image Jj. The matrix Pj
may be written in the form

Pj = KRjK
−1

where K is the common calibration matrix of the cameras, and Rj represents the rotation
of the j − th camera with respect to the 0-th. The camera matrix for the j-th camera is
Mj = KRj = PjK.

4 Algorithm Idea

The idea of the calibration algorithm will now be described. Suppose we are given a set
of overlapping images J0, J1, . . . , JN where N ≥ 2, all taken from the same location with
cameras with the same calibration (or the same camera). It is required to determine the
common calibration matrix of the cameras. The steps of the algorithm are as follows.

1. Establish point correspondences between the images. (Section 9)

2. For each j = 1, . . . , N compute the 2D projective transformation Pj matching J0

to Jj . (Section 5)

3. Find an upper triangular matrix K such that K−1PjK = Rj is a rotation matrix
for all j > 0. The matrix K is the calibration matrix of the cameras, and Rj
represents the orientation of the j − th camera with respect to the 0-th camera.
(Section 6)

4. Refine the estimated camera matrix using Levenberg-Marquardt iterative tech-
niques. (Section 8)

The steps of this algorithm will be described in detail in subsequent sections of this
paper, as indicated. The main subject of this paper comprises the last three steps of
this algorithm, which will be described first. The first step (establishing point correspon-
dences) is of peripheral interest, and a description of the method used for point matching
in validation of this algorithm will be postponed to a later section.
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5 Determination of the Transformations

Consider a set of matched points ui ↔ u′i. It is required to find a two-dimensional
projectivity, P mapping each ui to u′i. In the presence of noise, the matches will not be
exact. Therefore, a best approximation will be computed instead. First, of all, a quick
linear, but non-optimal method for computing P will be described.

5.1 Linear determination of P

Writing ui = (ui, vi, 1)� and u′i = (u
′
i, v
′
i, 1)

�, the 2D transform is given by the equation
w′i(u

′
i, v
′
i, 1)

� = P (ui, vi, 1)�, where w′i is unknown. Denoting the rows of P by vectors
p1
�, p2

� and p3
�, this set of equations can be written as

w′iu
′
i = p1

�ui
w′iv
′
i = p2

�ui
w′i = p3

�ui

Eliminating the unknown w′i leads to two equations

p3
�uiu′i = p1

�ui
p3
�uiv′i = p2

�ui

This is a set of two linear equations in the entries of P . Four such point matches provide
a set of eight equations in the entries of P . Since P is determined only up to a scale,
this is enough equations to solve linearly for the entries of P . If there are more than four
matched points, then we have an overdetermined set of equations of the form Ap = 0,
where p is a vector consisting of the entries of P . We seek to find p such that ||p|| = 1
and such that ||Ap|| is minimized. The solution is the eigenvector corresponding to the
smallest eigenvalue of A�A, and may be conveniently found using the Singular Value
Decomposition of A or Jacobi’s method to find the eigenvalues of the symmetric matrix
A�A ([18]).

5.2 Computing all the transforms

Now, we consider the case where point matches are known in several images. It is not
assumed, however, that all points are visible in all images. As a first step the images
are reordered. We start by choosing the image J0 to be the one for which the greatest
number of image matches are given. The next image J1 is the image with the greatest
number of matches with J0, then J2 is the image with the greatest number of matches
with J0 and J1. Once Ji is chosen, then Ji+1 is the image with the greates number of
matches with the images J0, . . . , Ji.

We choose P0 = I, the identity transform. It is desired to find the other transformations
Pj for j > 1. Suppose that transformations P0 to Pj−1 have been determined and we are
to determine the transformation Pj . Consider a matched point between a point in image
k and a point in image j, where k < j. We denote this as uk ↔ uj where the superscripts
identify the image involved. Since the transformation Pk is known, we may relate the
point uk back to a point P−1

k uk in image J0. Thus, the match uk ↔ uj between points
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in the k-th and j-th images is equivalent to a match P−1
k uk ↔ uj between points in

images J0 and Jj . If there are at least four of these image matches, we may solve for
the transformation Pj such that PjP−1

k uk = uj for all the matched points. If there are
more than four matches, the equation is of course to be solved in the least-squares sense
described previously. Proceeding in this way, we identify all the transformations Pj , as
long as sufficient matches are given.

5.3 Refining the transforms

First, suppose that a set of matches ui ↔ u′i are known between a pair of images.
Suppose that there are errors in the measurement of both ui and u′i, and suppose further
that errors are Gaussian and independent (the usual assumption). Then, the optimum
(maximum likelihood) transform P is found by estimating the transform P and points
ûi and û

′
i (the “correct” values of ui and u′i) so as to minimize the squared error sum,∑

d(ui, ûi)2 + d(u′i, û
′
i)

2

where û′i = P ûi, and d(∗) represents Euclidean distance. This non-linear problem can
be solved by iterative techniques starting from an initial guess with ûi = ui and û′i = u

′
i

and P provided by the linear solution.

This method generalizes to the case of several images with point matches. Denote by uji
the coordinates of some point xj as seen in the i-th image. It is not assumed that all points
are seen in all images. Once more, we assume that errors in the measured coordinates
uji are gaussian and independent. The optimal estimate of the transformations Pj is
obtained by minimizing the error term

∑
d(uji , û

j
i )

2 (2)

where the sum is over all pairs (i, j) for which uji is defined. The values û
j
i are estimates

of the “correct” image point locations, which must satisfy the equation

ûji = PjP
−1
k ûki (3)

whenever both uji and u
k
i are defined. Both the transformations Pj and the estimates

ûji are to be varied in minimizing the error expression (2), subject to the constraint (3).

One can turn this into an unconstrained minimization problem by introducing variables
xi defined by the equation x̂i = P−1

j ûji if u
j
i is defined. According to (3), it does not

matter which point ûji is used in defining x̂i, since P−1
j ûji = P−1

k ûki for all applicable
j and k. The problem now becomes to minimize the error expression (2), where ûji =
Pj x̂i. The transforms Pj and the points x̂i are to be varied in minimizing (2), but
transform P0 should be locked to the value P0 = I in to avoid over-parametrization. The
problem is solved by a Levenberg-Marquardt iterative minimization method ([18]). The
transformations Pj are initialized to the values found using the non-iterative method
given above, and the value of x̂i is initially set to P−1

j uji for some j such that uji is
known.

This problem is essentially the same as a camera parameter estimation problem as de-
scribed in [19]. In fact, what we are doing is effectively equivalent to computing a
projective reconstruction of the scene. The vectors x̂i represent the directions to the
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reconstructed scene points. It is of course not possible to determine the depths of the
points from the common camera centre. The minimization problem was solved with min-
imal extra coding using a general purpose camera-parameter estimation program called
Carmenwritten by the author. The general method used is a Levenberg-Marquardt least-
squares parameter estimation method ([18]). The minimization problem formulated in
the previous paragraph has the advantage that measurements in each of the images are
treated equally. If one assumes that the pinhole camera model is exact, and that errors
in measurements take the form of independent gaussian variables, then this problem for-
mulation leads to an estimate of the transformations, Pj , corresponding to the optimal
(maximum likelihood) estimate of the true image point positions.

It may appear that there are a large number of parameters to be estimated, namely the
entries of each of the transformation matrices Pj , as well as the values of xi for all i.
However, in solving this problem one may (in fact must) take advantage of the block
structure of the Jacobian matrix (of the measurements with respect to the parameters).
At each iteration, this allows one to compute the updated estimates of the transforms Pj
first, and then to get the values of xi by a sort of back-substitution. This is a standard
technique in photogrammetry, and is well described in the Manual of Photogrammetry
([19]), and also in [11]. Using this technique, it was possible to handle cases with more
than 30 transformations and over 4,500 point matches within a reasonable time (a few
minutes on a Sun Sparcstation 2). Without this refinement, each iteration would take
thousands of times longer, if it would be possible at all.

In estimating the transformations Pj for a large number of cameras using the direct
non-iterative approach, it is advantageous to pause after every few transformations are
computed to apply the iterative least-squares method. In this way, errors are prevented
from accumulating. In our experiments the approach of allowing one step of iteration
after the computation of each transformation, Pj , and then five steps of iteration at the
end proved more than adequate, while not taking excessive time. If time were important,
the iterative estimation steps could be applied less frequently. Alternatively, a Kalman
filter approach could be used.

6 Determining the Calibration Matrix

We now suppose that transformations Pj are known for j = 1, . . . , N . We wish to find the
calibration matrix K, which will be an upper triangular matrix satisfying the condition
that K−1PjK = Rj is a rotation matrix for all j. The condition that P should be a
conjugate of a rotation matrix means that P is somewhat special, as will be seen now.
For any non-singular matrix A, let A−� be the inverse transpose of A. For a rotation
matrix R, we have R = R−�. From the relation Rj = K−1PjK it follows that Rj =
K�Pj

−�K−�. Equating the two expressions for Rj gives K�Pj
−�K−� = K−1PjK,

from which it follows that
(KK�)Pj−� = Pj(KK�) (4)

Given sufficiently many views and corresponding matrices Pj equation 4 may be used to
solve for the entries of the matrix KK�. In particular, denoting KK� by C and writing

C = KK� =


 a b c

b d e
c e f



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the equation (4) gives rise to a set of nine linear equations in the six independent entries
of C. It may be seen that multiplying C by a constant factor does not have any effect
on the equation (4). Consequently, C can only be determined up to a constant factor.
It turns out that because of redundancy, the nine equations derived from (4) for a single
known transformation Pj are not sufficient to solve for C (see Section 11). However, if
two or more such Pj are known, then we may solve for C. In particular, for each view
and corresponding Pj for j = 1, . . . , N we have nine equations in the entries of C. This
overconstrained system of equations may be written in the form Xa = 0, where X is a
matrix of dimension 9N×6 and the vector a contains the independent entries of C. This
is the same sort of minimization problem as in Section 5. The least-squares solution is
the eigenvector corresponding to the least eigenvalue of X�X . Note that the views are
numbered starting at 0, so we need three views to provide two independent transforms
Pj , and hence to solve for C.

Once C = KK� is found it is an easy matter to solve for K using the Choleski factoriza-
tion ([1]). A solution forK is only possible when C is positive-definite. This is guaranteed
for noise-free data, since by construction, C possesses such a factorization. The Choleski
factorization of C is easily computed as follows. Since C is symmetric, it may be written
as C = UDU� where D is a diagonal matrix containing the eigenvalues of C, all real
and positive, and U is an orthogonal matrix the columns of which are the corresponding
eigenvectors. This factorization is easily found using the Jacobi method for eigenvalue de-
termination ([18]) or else the Singular Value Decomposition ([18, 1]). Since D is diagonal,
real and positive, we may take its square root, writing D = EE� where E is diagonal.
Then C = V V � where V = UE. The matrix V is not upper-triangular yet. However, we
may apply the QR decomposition ([18, 1]) to write V = KR where K is upper triangular
and R is a rotation matrix. Then C = V V � = KRR�K� = KK� as required. This
is the Choleski factorization of C. It is easy to prove that the Choleski factorization is
almost unique. Specifically, if K1 and K2 are two upper triangular matrices satisfying
K1K1

� = K2K2
� then K−1

2 K1 = K2
�K1

−�. Since the left side of this equation is
upper-triangular, and the right side is lower triangular, they must both in fact be diago-
nal. Hence, K1 = K2D where D is diagonal. Furthermore, D = K−1

2 K1 = K2
�K1

−� is
equal to its own inverse transpose, and hence is a diagonal matrix with diagonal entries
equal to ±1. Hence, if we insist that the diagonal entries or K are positive, then the
Choleski factorization C = KK� is unique.

With noisy input data, it is possible that the matrix C turns out not to be positive-
definite, and so the calibration matrix can not be found. In practice this was found to
happen only in the case of gross errors in the point matching. In fact, this algorithm was
found to work very well, as will be seen later.

7 Interpretation of Calibration using the Absolute Conic

This method of camera calibration may be interpreted in terms of the absolute conic.
The connection between the absolute conic and camera calibration is well known. For
instance, in [17] it is shown how Kruppa’s equations ([15]) are related to the dual of the
absolute conic.

The absolute conic is a conic on the plane at infinity consisting of points (x, y, z, t)�

such that t = 0 and x2 + y2 + z2 = 0. Writing as usual x = (x, y, z)�, this last
condition is x�x = 0. The image point corresponding to such an object point is given
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by uj = KRjx, from which we obtain x = R−1
j K−1uj . Then from x�x = 0 follows

uj�K−�RjR−1
j K−1uj = uj�(KK�)−1uj = 0. In other words, uj is on the image of

the absolute conic if and only if uj�(KK�)−1uj = 0. Thus, the image of the absolute
conic is a plane conic represented by the matrix (KK�)−1. In other words, KK� is the
dual of the image of the absolute conic. By finding the image of the absolute conic, one
can retrieve K using the Choleski factorization, as already discussed.

The image of the absolute conic is unaffected by the location and orientation of the
camera. Consequently, if Pj is a projective transformation from image J0 to Jj taking
a point in J0 to its matching point in Jj , then in particular it must take a point on
the image of the absolute conic in J0 to a point on the image of the absolute conic in
Jj . In short, Pj must preserve the image of the absolute conic. Since a 2D projective
transform P acting on a conic C transforms it to the conic P−�CP−1 it follows that
Pj
−�CP−1

j = C where C is the absolute conic (KK�)−1. In other words,

Pj
−�(KK�)−1P−1

j = (KK�)−1

from which it follows that

Pj(KK�) = (KK�)Pj−� ,

which is the same equation as 4.

8 Iterative Estimation of the Calibration matrix

In section 5.3 a method was given for determining the transformations Pi. Similar least-
square techniques are also available for an iterative determination of the calibration
matrix K. In particular, we seek a set of points xi, a matrix K and a set of rotation
matrices Ri such that

uji = KRjxi + εji

for each pair (i, j) for which uji is defined, and such that the squared error sum,
∑

εj2i
is minimized. The difference between this and the iteration problem described in 5.3 is
that matrix K is common to all the transforms KRj , and that the matrix Rj must be
constrained to be a rotation matrix. There is no particular technical problem with sharing
the transform K between all the transforms. Adapting the sparse block techniques
described in [19] to this added complication is straight-forward enough. Indeed it is built
in to our camera-parameter estimation program.

The matrix K is parametrized by its five independent entries. This makes it easy to set
any of the camera parameters to known values (for instance skew may be forced to zero, or
the two magnifications ku and kv may be forced to be equal). This capability is built into
Carmen. There are various methods of parametrizing rotations. This estimation problem
is similar to the Relative Orientation problem solved by Horn ([13, 14]) using quaternions.
In the method of quaternions, a rotation is represented by a unit quaternion. This
method of parametrization has the disadvantage of using four parameters per rotation (a
quaternion having four coordinates) and requiring the quaternions to be renormalized at
each step. I prefer to parametrize rotations using Eulerian angles. This has the advantage
that a rotation is parametrized by the minimum of three parameters, instead of four using
quaternions. To avoid problems of singularities in the representation of rotations by
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Eulerian angles, rotations are parametrized as incremental rotations with respect to the
present “base rotation”. Thus, each Ri is represented as a product Ri = Xi∆(θi, φi, κi),
where ∆(θi, φi, κi) is the rotation represented by Eulerian angles θi, φi and κi. Initially,
Xi is set to the initial estimate of the rotation, and θi, φi and κi are all set to zero
(and hence ∆ is the identity mapping). At the end of each LM iteration Xi is set to
the product Xi∆(θi, φi, κi), and θi, φi and κi are reset to zero. Since the incremental
rotation adjustment applied at each step of iteration is small, the Eulerian angles used to
represent it are small. Consequently the difficulty of singularities in the representation
of rotations by Eulerian angles does not arise. In this way, only three parameters are
used to represent the incremental adjustment in the estimation step, rather than four
using quaternions. This represents a substantial speed increase when large numbers of
rotations are being estimated.

Before carrying out this iterative estimate of K, it is necessary to provide an initial
estimate. This initial estimate is provided by the methods of Sections 5 and 6. In
particular, from Section 5.1 or Section 5.3 we obtain a set of transformations Pj and
points xi such that P0 = I and Pjxi = u

j
i whenever u

j
i is defined. From Section 6 we

obtain rotation matrices Rj and a calibration matrix K such that Pj = KRjK
−1 for all

j. Now, writing x′i = K−1xi, one verifies that

KRjx′i = PjKK−1xi = Pjxi = u
j
i

as required, with x′i being the initial point locations.

Using Carmen, therefore, an optimal estimate of the calibration matrix and the orienta-
tion of the parameters is possible. However, in the examples used for experimentation it
turned out that this did not yield very great benefits. The solution for K given by the
non-iterative method of section 6 was so good that the difference between the estimates
found with and without this final estimation step did not differ very significantly.

9 Finding Matched Points

Finding matched points between images taken from the same point is easier than the gen-
eral point-matching problem, because apart from the image transformation determined
by the changing orientation of the camera, the images look essentially the same. There
is no occlusion and no lighting changes. Points that are visible in one image are visible
in the other (provided that they are inside the field of view). One method of finding
matched points in sequences of video images would be to track them from from frame
to frame. In the experiments carried out to test the calibration algorithm, individual
images, rather than an image sequence were used, and a different approach to image
matching was taken.

To find match points between images a correlation-based matching algorithm was used.
The algorithm was based on parts of the STEREOSYS stereo algorithm ([9, 10]) adapted
to the particular purposes of the current problem. The matching algorithm consisted of
the following steps

1. Identify manually a small number (at least four) matching points between overlap-
ping images. This identification need not be made very exactly.
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2. Automatically find matches between pairs of overlapping images by resampling the
second image of each pair to the same reference frame as the first, and then carrying
out correlation based hierarchical matching.

3. Weed out outliers (false matches) among the matched points by a least median
error algorithm.

Details of the second step are as follows. Given the small number of seed matches, a pro-
jective transformation mapping each selected point in the second image to its matching
point in the first image is computed. The second image is then resampled according to
this transformation. After resampling, the two images should correspond precisely, pixel
for pixel. In reality, the accuracy of the initial matches is only approximate, so the match
will not be exact. However, it will be sufficiently good for a correlation-based matching
algorithm to work effectively. The accuracy of the point matching is ensured by doing
the match in both directions. In a first step, a point u in the first image is matched with
a point u′ in the second image. In the second step, u′ is matched with a point u′′ in the
first image. Only if u and u′′ are close together (within one pixel) is the match u ↔ u′

accepted.

Using this method, about 100 or more matches between each pair of overlapping images
were found without difficulty. Even with this two-way matching method, it is possible for
there to be some erroneous matches, and it is important to detect and eliminate them.
This was done using a least median error approach. If we assume a small percentage
of outliers (false matches), not exceeding 25%, then a set of four matches chosen at
random will contain no outliers with about 32% probability. If sufficiently many sets of
four matches are chosen, then one can be almost certain that one of the sets contains
no outliers. For instance, if we test 100 sets of four matches chosen at random, then
the probability of not selecting one set without an outlier is inconceivably small. The
complete algorithm is as follows.

1. Select several sets of four matched points and carry out the following steps for each
of these sets.

2. Given four matched points, compute the projective transformation P consistent
with these four matches.

3. Compute the distance δi = d(Pui,u′i) for all matched point pairs ui ↔ u′i.

4. Sort the set of distances δi, and find the median distance (or alternatively the 75th,
or any other percentile).

5. Find the set of four matched points that leads to the least median distance δi, and
accept this as being close to the correct transform.

6. Discard all matched point pairs ui ↔ u′i for which the error δi exceeds some
threshold (for instance, three times the median error).

This least median error approach is particularly suitable to apply to the present prob-
lem for two reasons. First, the small number (four) matches required to determine the
transform P means that one can be very sure of selecting an outlier-free set with a small
number of trials. Second, the computation of each trial is very fast, since a 2D projective
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transformation is very quick to compute. Because of this, the time to weed out the out-
liers is very small compared with the time to find the point matches by correlation-based
search.

One slight refinement is used in the selection of sets of four matched points. The matched
points are divided into four equal sized sets, denoted NW, NE, SW and SE (after the
compass directions) corresponding to their position in the first image. Then, sets of four
matched points are selected by taking one point at random from each of the four sets.
This means that the four points will not be clustered together in one part of the image,
and the projective transform that they determine will be more accurately defined for the
whole image.

10 Experimental Verification of the Algorithm

10.1 Tests with Synthetic Data

First of all, the calibration algorithm was carried out on synthetic data to determine its
performance in the presence of noise.

The synthetic data was created to simulate the images taken with a 35mm camera with
a 50mm lens, and digitized with 20 pixels per mm. For such a camera, the image
measures approximately 35mm by 23mm. When digitized with 20 pixels per mm, the
image measures 700 × 460 pixels. The field of view is approximately 38◦ × 26◦. This
is approximately the resolution of the images used for the experiments with real images
described later. For such images, the magnification factors, ku and kv in the two image-
plane axial directions are equal to the focal length in pixels. In other words, ku = kv =
1000. The skew calibration parameter, s was taken to be zero, and image coordinates
were taken to be centred at the principal point of the image, so that pu = pv = 0.0.

A set of N camera matrices were chosen with arbitrary orientations so that the principal
ray of the camera lay within a prescribed angle θ of the positive z-axis. A set of 100 points
were chosen, randomly placed on the unit sphere, subject to the restriction that each
point is visible in at least two cameras. The image of each of the points was computed
in each camera for which it lay inside the field of view. These image coordinate values
were then used to compute the camera calibration using the algorithm of section 4. A
Levenberg-Marquardt iteration algorithm was used to refine the estimate given by the
non-iterative method. Ideally, the computed calibration parameters should be close to
the true values given in the previous paragraph.

Two experiments are reported here. The first experiment was with N = 3 with principal
rays lying within an angle θ = 10◦ of the positive z axis. The results are summarized in
tables 1, 2 and 3. The second experiment was with N = 10 images with view directions
lying within an angle θ = 30◦ of the positive z-axis. Results are summarised in tables
4, 5 and The results are very satisfactory. Experiments with real images to be described
later indicate that images may be matched with an RMS error of about 0.5 pixels, which
suggests that this is a realistic noise level. The results with synthetic data show that the
algorithms are robust for noise levels well beyond this range. The noise levels indicated
in the table are the standard deviation of the deltas applied to each of u and v. Hence
the actual RMS pixel displacement is

√
2 times the indicated value.
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Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 0.0 0.0
0.125 995.3 995.8 -0.5 1.3 0.1
0.25 990.6 991.5 -1.0 2.5 0.2
0.5 981.4 983.2 -2.0 4.9 0.3
1.0 963.4 967.0 -3.6 9.4 0.6
2.0 946.0 952.6 -7.3 20.9 1.2
4.0 898.2 910.0 -10.2 35.8 2.2
8.0 864.4 882.3 -10.8 40.1 5.4
16.0 715.9 744.6 54.5 20.4 -4.6

Table 1: Calibration from three images in the presence of various degrees of noise, with
one run at each noise level. The three views directions lie in a circle of radius 10◦. The
table shows the results of the Choleski (that is, non-iterative) algorithm. The first row
shows the expected parameter values, whereas subsequent rows show the effects of different
levels of noise (measured in pixels). Although the noise level differs for different runs,
the displacements of each pixel due to noise are in the same direction for all noise levels.

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 0.0 0.0
0.125 999.2 999.5 -0.2 -0.3 0.0
0.25 998.4 999.0 -0.4 -0.5 0.1
0.5 996.8 998.0 -0.7 -0.9 0.1
1.0 993.5 996.0 -1.5 -1.8 0.2
2.0 956.1 960.7 -7.5 19.1 0.8
4.0 946.0 955.3 -12.4 26.4 1.5
8.0 938.7 956.6 -15.8 23.6 3.7
16.0 1077.9 1108.7 -0.2 -13.7 5.1

Table 2: Calibration from three views. The table shows the results of Levenberg-Marquardt
algorithm with one run at each of the noise levels. The results of the non-iterative cali-
bration algorithm are used for initialization. Results show significant improvement over
those of the non-iterative algorithm.
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Noise Algorithm statistic ku kv pu pv skew
1.0 Choleski Mean 997.6 997.8 0.9 -1.1 -0.1

σ 24.5 24.3 7.5 8.7 1.0
Marquardt Mean 1016.2 1016.4 5.6 -13.0 -0.2

σ 29.1 29.2 7.5 14.7 0.9
2.0 Choleski Mean 1005.7 1006.3 -1.8 -0.5 -0.1

σ 81.9 92.1 24.4 4.4 8.5
Marquardt Mean 979.4 976.1 18.5 -1.1 -4.2

σ 44.0 45.2 15.2 2.8 7.5

Table 3: Result of 100 runs with 3 views, with random noise of 1 and 2 pixels. The
parameters ku and kv were highly correlated, whereas other parameters showed little cor-
relation. The Levenberg-Marquardt algorithm does not show a clear advantage over the
non-iterative algorithm.

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 -0.0 0.0
0.125 996.1 997.0 -1.7 2.0 -2.2
0.25 992.9 994.3 -3.4 4.4 -4.3
0.5 986.0 988.9 -6.8 8.5 -8.6
1.0 970.7 976.6 -14.2 16.2 -17.4
2.0 945.8 958.0 -29.0 28.7 -33.3
4.0 1224.9 1163.7 -30.8 -310.8 -44.6
8.0 739.1 815.4 -95.0 15.4 -83.0

Table 4: Calibration from ten images in the presence of various degrees of noise. The
three views directions lie in a circle of radius 30◦. The table shows the results of the
non-iterative algorithm. The first row shows the expected parameter values. For noise
level of 16 pixels, the calibration failed due to failure of the Choleski factorization, the
matrix KK� not being positive-definite.

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 -0.0 0.0
0.125 1000.8 1000.6 0.1 -0.2 -0.2
0.25 1002.3 1001.8 -0.0 -0.6 -0.3
0.5 1004.5 1003.7 -0.1 -1.2 -0.6
1.0 1008.8 1007.0 -0.2 -2.7 -1.2
2.0 972.2 968.1 -10.8 17.6 -0.8
4.0 1489.0 1467.2 -27.7 -240.2 -16.3
8.0 984.5 971.9 -14.0 5.0 -3.2

Table 5: Calibration from ten views in the presence of various degrees of noise. Results
of iterative Levenberg-Marquardt algorithm. The results of the non-iterative calibration
algorithm are used for initialization. Results are satisfactory, except for noise-level 4
pixels, where a local minimum has been found.
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Method ku kv pu pv skew residual
Choleski 964.4 966.4 392.8 282.0 -4.9 unknown
Marquardt 956.8 959.3 392.0 281.4 -6.4 0.33

Table 6: Calibration results for five images of the Capitol with a 35mm camera. The
results from the two methods of calibration are very similar. The calibration seems very
plausible, since the measured skew is small, magnification is almost the same in both
directions and the principal point is near the centre of the image. The last column gives
the difference in pixels between predicted image coordinates (given the calibration and
reconstruction) and the measured values. A value of ku or kv of 960 corresponds to a
focal length of approximately 35× 960/776 = 43.3mm.

Figure 1: Five images of the capitol, numbered 1 – 5 left-to-right and top-to-bottom.

10.2 Tests with Real Images

Calibration tests were carried out on two sets of real images. In the first set of images five
images of the Capitol building in Washington (Fig 1) were taken with a 35mm camera
with a zoom lens. The focal length of the lens was approximately 40mm (though not
known exactly, since it was a zoom lens). The camera was hand-held, and no particular
care was taken to ensure that the camera centre remained stationary. The images were
printed, enlarged and digitized. The images were then scanned at 150 pixels per inch,
resulting in images of size 776 × 536 pixels. Corresponding points were found between
the images according to the algorithm of section 9, and the calibration was carried out.
A composite of the five images is shown in Fig 2. The calibration results are summarized
in Table 6.

A second set of 29 images were taken covering a region of about 48× 22 degrees with a
105mm lens. The images were of size 470×320 pixels. The lens has a fairly small field of
view, which increases the difficully of calibration using the methods of this paper. The
results of this experiment were as shown in Table 7. Two of the images used are shown
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Figure 2: A composite image constructed from five different views of the Capitol. The
composite image shows very clearly the projective distortion necessary for matching the
images. Analysis of this projective distortion provides the basis for the calibration algo-
rithm.

Method ku kv pu pv skew residual
Choleski 1226.1 1226.5 238.1 170.4 -5.1 unknown
Marquardt 1242.1 1242.7 245.5 169.4 -6.6 0.26

Table 7: Results of camera calibration of a set of image of a parking lot. The results
suggest that the focal length of the camera shows some instability, but that the ratio of
the magnifications ku and kv is very stable.

in Fig 3. The Levenberg-Marquardt iteration was carried out using an extra parameter
to estimate the radial distortion in the image proportional to the square of the radius.
However, the effect was found to be minimal.
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Figure 3: Two images of a parking lot

11 Calibration from only two views

The constraint that the transformation matrix P must be the conjugate of a rotation is
not sufficient to determine the conjugating element K exactly. Nevertheless, with just
one additional constraint on the calibration matrix it is possible to determineK uniquely.
For instance, it will be shown that under the assumption that the skew parameter s = 0,
calibration matrix K is uniquely determined, and it is possible to calibrate from only two
views. Since s is usually very small, the assumption that s = 0 is a very reasonable one,
commonly used by other authors ([2]). Alternatively, one may make other assumptions
about the calibration, for instance that the camera has square pixels, ku = kv.

According to Proposition 3.1, given two views the transformation taking one image to the
other is of the form P = KRK−1 where K is the calibration matrix and R is a rotation
representing the relative orientation of the two cameras. Matrix P may be normalized
so that its determinant detP = 1. Given such a P , it will next be shown how to find
an upper-triangular matrix K such that P = KRK−1. It will turn out that there exist
many such K (in fact a one-parameter family), but for now, we will concentrate on how
to find just one of them. Later it will be shown how to find such a K with given desired
properties (such as zero skew).

The fact that P is a conjugate of a rotation matrix has the immediate consequence that
P and R have the same eigenvalues. The eigenvalues of a rotation matrix are equal
to 1, exp(iθ) and exp(−iθ), where θ is the angle of rotation. Therefore, by finding the
eigenvalues of P , we are able to find the angle of rotation of R. Furthermore, it is possible
to find a matrix K ′ such that P = K ′diag(1, exp(iθ), exp(−iθ))K ′−1. The columns of K ′

are the eigenvectors of P . Since the eigenvectors are defined only up to multiplication by a
non-zero factor, so are the columns of K ′. Multiplying the columns of K ′ by independent
factors preserves the condition that P = K ′diag(1, exp(iθ), exp(−iθ))K ′−1. One could
continue this line or reasoning to determine the required calibration matrix, but this
involves computations using complex numbers. Instead, we proceed slightly differently.

Any rotation is conjugate to a rotation about the x axis. Since P is conjugate to a
rotation, it is therefore conjugate to a rotation about the x axis. From the eigenvalues
of P one may determine the angle of rotation, θ. Then one may write P = HRxH

−1,
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and hence PH = HRx. We write

Rx =


 1

c −s
s c




where c = cos(θ) and s = sin(θ). Further, write H = (h1,h2,h3) where hi is the i-th
column of H . Then from PH = HRx we obtain equations

Ph1 = h1

Ph2 = ch2 + sh3

Ph3 = −sh2 + ch3

This gives rise to a pair of equations

(P − I)h1 = 0 (5)

and (
P − cI −sI

sI P − cI

)(
h2

h3

)
= 0 . (6)

Because of the choice of c and s, the matrices in (5) and (6) will be singular. Consequently,
we can solve (5) to find h1 and (6) to find h2 and h3. In the presence of noise, P will
not be exactly equal to a conjugate of a rotation. In this case, the equations (5) and (6)
will not have an exact solution. The least-squares solution is to be used. From the hi
we may resassemble a matrix H . This matrix will satisfy P = HRxH

−1. Now, using
QR decomposition, we may obtain H = KR, where K is upper-triangular and R is a
rotation. It follows that P = KRRxR

−1K−1 = KR̂K−1 as required.

It was shown above how to find a matrix H such that HRxH
−1 = P . Such an H is

not unique, and so we now inquire how other solutions may be found. Suppose that
HRxH

−1 = P = H ′RxH
′−1. It follows that (H−1H ′)Rx = Rx(H−1H ′), in other words,

H−1H ′ commutes with Rx. It may be shown by direct symbolic manipulation that if
Rx is not a rotation through 0 or π radians, then H−1H ′ = diag(α1, α2, α2)R′x where
R′x is some other rotation about the x axis. Hence, H

′ = Hdiag(α1, α2, α2)R′x. Since we
are only concerned with finding H up to a non-zero scale factor, we may assume that
H ′ = Hdiag(α, 1, 1)R′x. Now, if H = KR, and Rdiag(α, 1, 1) has QR decomposition
K ′′R′′, then

H ′ = Hdiag(α, 1, 1)R′x = KRdiag(α, 1, 1)R′x = KK ′′R′′R′x .

The foregoing discussion may be summarized in the following proposition.

Proposition11.3. Let P be a 2D projective transformation matching two images taken
from the same location with the same camera. Let P = HRxH

−1 where Rx is a rotation
about the x axis. Further, let H = KR be the QR decomposition of H. Then K is
a calibration matrix for the camera, consistent with the transformation P . Any other
calibration matrix K ′ consistent with P is of the form K ′ = KK ′′ where K ′′R′′ is the
QR decomposition of Rdiag(α, 1, 1) for some α.

This shows that the set of calibration matricesK corresponding to a given transformation
matrix P is a one-parameter family. To find a unique calibration matrix, one extra
constraint is necessary.

19



We next turn to the problem of finding a calibration matrix K satisfying additional
constraints. To do this, we investigate the QR decomposition of a matrix Rdiag(α, 1, 1).
Let (rij) be the entries of the matrix R. The QR decomposition may be computed
explicitly. Indeed, it may be verified after some computation that Rdiag(α, 1, 1) = K ′′R′′

with K ′′ defined by

K ′′ =
1√
AB


 α

√
A (α2 − 1)r11r21 (α2 − 1)r11r31

√
B

0 B (α2 − 1)r21r31

√
B

0 0 A
√
B


 (7)

where A = (1 − r2
31) + α2r2

31 and B = r2
11 + α2(1− r2

11).

There seems to be no pretty way of demonstrating the truth of this formula, and so
it must be done by algebraic manipulation. The best way is probably to verify that
K ′′K ′′� = I + (α2 − 1)r1r1� = Rdiag(α, 1, 1)(Rdiag(α, 1, 1))� where r1 is the first
column of R. From this it follows that Rdiag(α, 1, 1) = K ′′R′′ for some rotation R′′ as
required. This formula leads us to the following extension to Proposition 11.3.

Proposition11.4. Let P = HRxH
−1 and H = KR. Any calibration matrix consistent

with P may be written as KK ′′ where K ′′ is of the form given in (7) for some α > 0.

The condition that α > 0 is required to ensure that the magnification factor ku of KK ′′

remains positive. Now, it is an easy matter to choose α so that the calibration matrix
KK ′′ has desired properties.

Zero skew. We consider the condition that the skew parameter is zero. Suppose
K = (kij) and R = (rij). The (1, 2)-entry (that is, the skew) in the product KK ′′ is zero
exactly when k11(α2 − 1)r11r21 + k12B = 0. Solving for α gives

α2 =
k11r11r21 − k12r

2
11

k11r11r21 − k12(r2
11 − 1)

; α > 0 (8)

This gives a simple algorithm for the calibration of a camera from two views, assuming
that the skew is zero.

1. Compute the transformation matrix P that matches points in the two images, such
that detP = 1.

2. Compute the rotation angle θ which is the argument of one of the complex eigen-
values of the matrix P .

3. Find a matrix H such that P = HRxH
−1 where Rx is a rotation through angle θ

about the x-axis. This is done by solving the equations (5) and (6).

4. Take the QR-decomposition H = KR.

5. Find α > 0 by solving (8).

6. Compute the QR decomposition Hdiag(α, 1, 1) = K ′R′. The matrix K ′ is the
calibration matrix.
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Square pixels. An alternative to setting the skew to zero is to set the two magni-
fications ku and kv in the two axial directions to be equal. Multiplying out KK ′′ and
equating the first two diagonal entries leads to an equation k11α

√
A = k22B. Squaring

both sides of this equation leads to a quadratic equation in α2. In particular, we obtain

α4(k2
11r

2
31) + α2

(
k2

11(1 − r2
31)− k2

22(1− r2
11)
)
− k2

22r
2
11 = 0

This equation is easily solved for α, but in this case there may be two solutions, since
a quadratic equation is involved. We have chosen the strategy of selecting the solution
that has the smaller skew. The algorithm for finding the calibration matrix is otherwise
the same as the previous one.

12 Exceptional Cases

It was seen that the calibration algorithm fails if P represents a rotation through 0 or π
radians. The first case means that the two images are identical, and the second means
that two images are taken with the camera pointing in opposite directions. These special
cases are of no interest. There are, however other exceptional cases.

Rotation about the x-axis. If the rotation is about the x axis, then the trans-
formation matrix P is of the form P = KRxK

−1 where Rx is a matrix of the form
previously given. Any other conjugating element K ′ satisfying this relationship is of the
form K ′ = Kdiag(α, 1, 1) for any α. However, the matrix K ′ so obtained is the same as
K, except that the (1, 1) entry, representing the parameter ku is multiplied by α. The
skew is unchanged. It follows therefore, that constraining the skew to be zero may be an
impossible constraint, and in any case puts no restriction on ku. In other words, we can
not determine ku if the rotation is about the x axis.

Rotation about the y-axis. Similar considerations apply to rotations about the
y-axis. In this case, if P = KRyK

−1, then any other conjugating element K ′ must be of
the form K ′ = Kdiag(1, α, 1). In this case, the the value of kv can not be determined.

Rotation about the z-axis. Unless the camera is calibrated, we do not know
precisely where the principal axis (that is the z-axis) is. However, if the rotation does
happen to be about the z axis, so that K satisfies the condition P = KRzK

−1, then any
other matrix of the form K ′ = Kdiag(α, α, 1) will do so as well. This means that the
two magnification factors, ku and kv as well as the skew are multiplied by the factor α.
Consequently, it is not possible to determine any of these parameters. Only the position
of the principal point and the ratio ku/kv may be computed.

13 Experiments with Calibration from Two Images

13.1 Tests with Synthetic Data

First of all, the calibration algorithm was applied to synthetic data to determine its
performance in the presence of noise.

21



Non-iterative algorithm Levenberg-Marquardt
Noise ku skew pu pv angle ku pu pv
0.0 1000.0 0.0 20.0 30.0 19.29 1000.0 20.0 30.0
0.1 1002.3 0.7 19.8 31.0 19.25 1002.3 19.9 31.0
0.25 1005.7 1.9 19.6 32.6 19.18 1005.7 19.7 32.5
0.5 1011.7 3.8 19.2 35.2 19.07 1011.4 19.4 35.1
1.0 1023.5 9.6 18.2 40.7 18.86 1022.5 18.7 40.4
2.0 1050.7 21.2 16.3 52.4 18.38 1046.6 17.4 51.9
3.0 1082.3 35.5 14.4 65.5 17.85 1072.5 15.9 64.5
4.0 1119.0 53.4 12.4 80.2 17.27 1100.3 14.3 78.5
5.0 1162.2 76.0 10.4 97.0 16.62 1130.4 12.5 94.1

Table 8: Calibration from two images with 50% overlap assuming the condition ku = kv.
For the Levenberg-Marquardt iteration, the condition that skew s = 0 was also assumed.
The 6-th column shows the computed rotation angle between the two views. The rotation
was 19.29 degrees about the x axis.

The synthetic data was created to simulate the images taken with a 35mm camera with
a 50mm lens, and digitized with 20 pixels per mm. For such a camera, the image
measures approximately 35mm by 23mm. When digitized with 20 pixels per mm, the
image measures 700 × 460 pixels. The field of view is approximately 38◦ × 26◦. This
is approximately the resolution of the images used for the experiments with real images
described later. For such images, the magnification factors, ku and kv in the two image-
plane axial directions are equal to the focal length in pixels. In other words, ku = kv =
1000. The skew calibration parameter, s was taken to be zero, and the principal point
was taken to have coordinates (pu, pv) = (20, 30).

The square-pixel constraint: A first set of experiments were conducted with two
images overlapping by 50% side-by-side. Thus, the rotation was through an angle of
19.29◦ (that is, half the image width) about the y axis. A set of 100 matched points were
generated, and varying degrees of noise were added. Noise was zero mean Gaussian noise,
with the indicated standard deviation. The quoted noise levels are for the deviation
applied to each of the u and v image coordinates, hence the root-mean-squared pixel
displacement is

√
2 times as great. The calibration algorithm was run with the constraint

that magnification factors were equal : ku = kv. First the non-iterative calibration
algorithm was run. It was found that for large amounts of noise the skew parameter
s became substantially different from zero. Therefore, starting from the calibration
already obtained, an iterative Levenberg-Marquardt optimization was run, clamping the
skew to zero and maintaining the condition ku = kv. The results of these experiments
are found in table 8. As may be seen, the calibration becomes progressively less exact as
noise increases, but for noise levels of the order of 0.5 pixels, which may be obtained in
practice, the magnification is accurate to about 1% and the principal point is displaced
by about 5 pixels. The results obtained by the Levenberg Marquardt algorithm are not
significantly better, except for the zero skew. Note that setting skew to zero does not
affect the other parameters very much, which suggests that skew is somewhat hard to
estimate exactly.
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Non-iterative algorithm Levenberg-Marquardt
Noise ku kv pu pv angle ku pu pv
0.0 1000.0 1000.0 20.0 30.0 90.63 1000.0 20.0 30.0
0.1 1002.6 1002.5 19.7 30.5 90.60 1002.3 19.7 30.4
0.25 1006.6 1006.4 19.2 31.2 90.57 1005.9 19.2 30.9
0.5 1013.6 1013.0 18.4 32.3 90.51 1012.3 18.3 31.7
1.0 1028.2 1027.1 16.6 34.7 90.39 1027.0 16.0 33.0
2.0 1088.8 1086.5 0.1 34.2 90.18 1080.4 4.4 28.5
3.0 1160.8 1157.4 -17.4 36.4 89.96 1150.3 -10.6 25.0
4.0 1260.1 1255.8 -43.0 38.4 89.72 1253.3 -34.5 20.2
5.0 1409.2 1404.6 -85.4 40.4 89.48 1457.3 -85.3 15.4

Table 9: Calibration from two images assuming no skew. For the Levenberg-Marquardt
iteration, the condition that ku = kv was also assumed. The rotation angle is 10◦ about
the x-axis and 90◦ about the z axis, for a combined rotation of 90.63◦.

The zero-skew constraint: A second set of experiments were conducted with the
second image panned sideways through 10◦ and then rotated 90◦ about the principal
axis. In this case, calibration was carried out assuming zero skew. Because of the 90◦

rotation about the principal axis, the ratio of ku/kv was computed very exactly, and a
complete Levenberg-Marquardt optimization makes little difference to the final result.
These results are shown in table 9.

Using knowledge of the rotation: During the Levenberg-Marquardt parameter
fitting it is easy to add a constraint fixing the camera rotation to the known value. This
was done for comparison using the same data as in table 8 for noise level of 2.0 pixels.
The results of the calibration were then :

ku = kv = 1000.35 ; pu = 15.9 ; pv = 47.7

This is (as expected) considerably more accurate that the results for with unknown
camera motion. The magnification factors are determined almost exactly, though there
is still some error in the estimated position of the principal point (about 20 pixels).

Experiments with real data: Finally, calibration was carried out on the Capitol
data set (Fig 1). The calibration computed using all five views is provided as a good
approximation to truth, since it is derived from more images and is expected to be
accurate. Pairs of images were then taken and calibration carried out. Between 100 and
200 matched points were found between image pairs. The results are given in table 10.

In general, magnification is accurate within 10%, usually much less, and the principal
point is accurate within 30 pixels. These results verify the conclusion suggested by the
results with synthetic data that best results are obtained using panning rotations and
the square-pixel constraint.
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Image numbers constraint ku kv skew pu pv angle
1,2,3,4,5 – 964.4 966.4 -4.9 392.8 282.0 –
2,3 k 1002.9 1002.9 -25.0 330.1 214.8 25.49
2,5 k 963.6 963.6 -11.3 396.5 286.6 31.43
3,5 k 882.2 882.2 38.0 386.1 277.2 23.40
4,5 k 943.7 943.7 -4.7 389.3 250.8 9.57
1,5 k 1197.3 1197.3 -43.7 531.4 416.7 54.15
1,5 s 812.7 819.4 -0.0 381.3 224.3 54.15

Table 10: Calibration from real images. The second column shows the type of con-
straint used (k = square-pixels, s = zero-skew). The first line gives the result of a cal-
ibration using all five images, provided as (approximate) ground truth. The next four
lines show results of calibration for pairs of images for which the main component of
rotation is a panning rotation. For such a rotation, the constraint skew = 0 will not
give good results. The sixth and seventh lines show the result for a pair of images that
differ by a rotation with its major component about the principal axis. As demonstrated
theoretically, rotations about the principal axis do not lead to good calibration results.
Accordingly, the results in the last two lines are substantially inferior.

14 Handling translations

It is a basic assumption of the method described in this paper that the camera centre
remains fixed for all the images. In practice, the camera centre is not easily determined.
Furthermore, for cameras mounted on a robot, the task of rotating about the camera
centre, even if it is accurately known, may require careful calibration of the robot. For this
reason, we are led to consider what strategy to adopt to account for small translatory
motions of the camera from view to view. The methods described here are given as
suggestions only, and no results are given to validate their performance.

In the images used for the experiments reported in this paper, no particular care was
taken to fix the camera centre. For instance the parking lot images were taken with
a hand-held camera, only a token effort being made to keep the camera approximately
fixed. In this case, the possible displacements of the camera are very small compared
with the distance to the scene, and the displacements of the image points caused by
translatory motion of the camera will be small, and may be safely ignored. In fact if the
points in the scene are at infinite distance, then translations of the camera centre have
no effect whatever. In a general case, therefore, we wish to determine the image of the
plane at infinity. The projective transformations of the image of the plane at infinity,
caused by the camera rotation, may be used to determine the camera calibration.

Finding the plane at infinity. A strategy will be suggested now for handling outdoor
scenes in which most of the scene is distant from the camera. We suppose, however that
there are near-by objects that may be displaced appreciably by the translatory motion
of the camera. Our task is to ignore these points and determine the transformation of
the points at infinity only (or distant points). A way to do this is provided in [5], where
a method is described for determining a 2D transformation between two images of a
plane. In this method, determination of the 2D transformation is cast as a parameter
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optimization problem in which the variable parameters are the 8 parameters of a plane-
to-plane transformation and the quantity to be minimized is the difference in image
intensity at corresponding points, summed over the image. One proceeds from coarse
to fine resolution using a multi-resolution pyramid, the 2D transformation found at one
level being used as the initial estimate at the next level. As observed in [5], the 2D
projective transformation ultimately determined by this method will “lock” on to the
dominant plane in the images. If this plane is the plane at infinity, then we obtain the
desired transformation. One minor difference between the method of [5] and what is
proposed here is that the transformation model they use is a quadratic model, and not
the projective motion model assumed here, but with this minor modification, the method
should apply unchanged.

Even in cases where the plane at infinity is not the dominant plane in the image, this
method may be valuable if the plane at infinity can be determined, at least approxi-
mately, by other means. For instance, points on the plane at infinity may be determined
by vanishing points in the image, or by known ratios of distances along a line. If four
corresponding points on the plane at infinity are determined, then these may be used
to initialize the transformation between the images. This should cause the transforma-
tion found by iteration to lock onto the plane at infinity. Relying on such extraneous
information, however, restricts the generality of the method.

Note that this method of determining the transformations Pj does not require the explicit
identification of matched points in the two images. Even if there is no effect due to
translational motion of the camera, this method provides an attractive alternative to the
methods described in this paper (Sections 5 and 9) for determining the transformations.

Determining the translations. A more generally applicable method is to allow for
small translations of the camera centre and solve for the rotation, and the translations
all together. According to [17], it is possible to find the camera calibration explicitly
from three views or more taken from a camera undergoing arbitrary motions. In [11]
an iterative algorithm was given to find this calibration, provided that a sufficiently
good initial estimate was known. In the algorithm described in the present paper, a
final iterative refinement of the camera calibration is suggested (Section 8) as a method
of improving the calibration results. It would be an easy matter to modify this final
iterative step to allow for a full 3 × 4 matrix camera model, which includes camera
translation. For details of the iterative solution method, refer to section 8, or [11]. As in
section 8, initialization is important. In section 8, the projection matrices are initialized
to KRj, and the points to values x′ = (x′, y′, z′)�. Instead of this, we initialize the
cameras to (KRj | 0), and the points to values (αx′, αy′, αz′, 1)�, where α is chosen
such that α2(x′2 + y′2 + z′2) = 1. Thus, the point lies on a unit sphere centred at the
origin. In addition, the sign of α should be chosen such that the point lies in front of the
cameras in which it is visible. This will be possible for all the cameras simultaneously,
unless some gross error of calibration has occurred.

15 Conclusions

The self-calibration algorithm given here represents a practical approach to camera cali-
bration, giving good accuracy, and showing graceful degradation in the presence of noise.
The non-iterative algorithm based on Choleski factorization does not show markedly
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inferior results to the optimal Levenberg-Marquardt method, and should be preferred
except where highest possible accuracy is needed.

The use of the iterative Levenberg-Marquardt method allows the calibration problem to
be cast as a general parameter fitting problem and allows the imposition of additional
constraints, such as the known aspect ratio ku/kv, zero skew, or even known rotation
angles for the various images. In addition, it allows the possibility of small translations
of the camera to be taken into account.

The two-view algorithm given in this paper derives the camera calibration from the
smallest possible number of views, without using calibration rigs with known geometry.
Naturally, the results are inferior to those obtained with a greater number of views, but
they suggest that for suitable rotations, particularly panning rotations, the results are
quite good. Further work is required to determine the optimal rotation that should be
applied to give best calibration.

The mathematical derivations in this paper make clearer the theory behind self-calibration
schemes such as those of [2, 7]). As was demonstrated in Section 13, knowledge about
the actual motion of the camera (which was assumed in [2, 7]) may be incorporated into
our algorithm to give high quality results.

Clearly, the algorithms in this paper can not hope to give such accurate results as will
be obtained by calibration methods involving calibration grids, or other metric data.
Nevertheless, for many purposes they will be adequate. As a means of calibrating cameras
in the field, the methods of this paper seem much more practical than methods based on
a moving camera ([17]), both because of the ease of point matching and the simplicity
of the calibration algorithms (for instance compare with [16, 12]).

The greatest use of such algorithms is expected to be in the calibration of robot-mounted
cameras. The calibration obtained by this method could be used to do euclidean scene
reconstruction, for purposes of navigation, or grasping. This would be particularly useful
for cameras for which the calibration is subject to change, such as a camera with a zoom
lens. Beardsley et. al. ([3, 4]) discuss navigation in a “quasi-euclidean” frame obtained
by making a rough guess at the camera calibration. They also use purely translational
motions of the camera to obtain an affine estimate of the coordinate frame. The algorithm
of this paper provides an alternative method, which furnishes euclidean, rather than just
affine information, and which eliminates the need to guess at the camera calibration.

Also in [3, 4] a method is described for projective scene reconstruction from image se-
quences, using a Kalman filter. That method could be adapted to carry out euclidean
scene reconstruction. The methods of the present paper would provide a good initial es-
timate for calibration which could be refined by the Kalman filter. In this way, Euclidean
reconstruction would be possible from a sequence of images from a camera undergoing
unrestrained motion, provided the sequence begins with a series of purely rotational
camera motions.

Finally, it is important to realize the restrictions on the self-calibration algorithms of this
paper. The algorithm relies ultimately on detecting the curvature of the vision sphere.
As such, it works best for wide angle images. For the parking-lot images the field of
view was only 18.92◦ in the maximum dimension (a 105mm lens in a 35mm camera).
Calibration was possible, but a mosaic of 29 images was used. For a 40mm lens, only 5
images were needed.
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