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Abstract� We describe a method for determining a�ne and metric cal�
ibration of a camera with unchanging internal parameters undergoing
planar motion� It is shown that a�ne calibration is recovered uniquely�
and metric calibration up to a two fold ambiguity�
The novel aspects of this work are� �rst� relating the distinguished objects
of �D Euclidean geometry to �xed entities in the image� second� showing
that these �xed entities can be computed uniquely via the trifocal tensor
between image triplets� third� a robust and automatic implementation of
the method�
Results are included of a�ne and metric calibration and structure recov�
ery using images of real scenes�

� Introduction

From an image sequence acquired with an uncalibrated camera� structure of ��
space can be recovered up to a projective ambiguity ��� ��� However� if the camera
is constrained to have unchanging internal parameters then this ambiguity can
be reduced to metric by calibrating the camera using only image correspon�
dences �no calibration grid	� This process is termed 
self�calibration� ��� ����
Previous attempts to make use of the constraint for image pairs have generated
sets of polynomial equations that are solved by homotopy continuation �� or it�
eratively �� ��� over a sequence� In this paper we demonstrate the advantages of
utilizing image triplets directly in the case of planar motion� both in the reduced
complexity of the equations� and in a practical and robust implementation�

To reduce the ambiguity of reconstruction from projective to a�ne it is nec�
essary to identify the plane at in�nity� ��� and to reduce further to a metric
ambiguity the absolute conic �� on �� must also be identi�ed ��� ���� Both ��
and �� are �xed entities under Euclidean motions of ��space� The key idea in
this paper is that these �xed entities can be accessed via �xed entities �points�
lines� conics	 in the image�

To determine the �xed image entities we utilise geometric relations between
images that are independent of three dimensional structure� The fundamental
geometric relation between two views is the epipolar geometry� represented by
the fundamental matrix ���� This provides a mapping from points in one image
to lines in the other� and consequently is not a suitable mapping for determining
�xed entities directly� However� between three views the fundamental geometric



relation is the trifocal tensor ��� ��� ���� which provides a mapping of points to
points� and lines to lines� It is therefore possible to solve directly for �xed image
entities as �xed points and lines under transfer by the trifocal tensor�

In the following we obtain these �xed image entities� and thence the camera
calibration� from a triplet of images acquired by a camera with unchanging
internal parameters undergoing 
planar motion�� Planar motion is the typical
motion undergone by a vehicle moving on a plane � the camera translates in a
plane and rotates about an axis perpendicular to that plane� This extends the
work of Moons et al� who showed that a�ne structure can be obtained in the
case of purely translational motion ����� We show that

�� A�ne structure is computed uniquely�
�� Metric structure can be computed up to a one parameter family� and this

ambiguity resolved using additional constraints�

Section �� describes the �xed image entities and their relation to �� and
��� and describes how these are related to a�ne and metric structure recov�
ery� Section � gives an algorithm for computing the image �xed points and lines
uniquely using the trifocal tensor� Section ��� describes results of an implemen�
tation of this algorithm� and section ��� results for a�ne and metric structure
recovery based on these �xed points from image triplets� All results are for real
image sequences�

Notation We will not distinguish between the Euclidean and similarity cases�
both will be loosely referred to as metric� Generally vectors will be denoted by
x� matrices as H� and tensors as Tjki � Image coordinates are lower case ��vectors�
e�g� x� world coordinates are upper case ��vectors� e�g� X� For homogeneous
quantities� � indicates equality up to a non�zero scale factor�

� Fixed Image Entities for Image Triplets

Planar Motion Any rigid transformation of space may be interpreted as a rota�
tion about a screw axis and a simultaneous translation in the direction of the
axis ���� There are two special cases � pure translation and pure rotation� In this
paper we consider the latter case� A planar motion of a camera consists of a
rotation and a translation perpendicular to the rotation axis� This is equivalent
to a pure rotation about a screw axis parallel to the rotation axis� but not in
general passing through the camera centre� The plane through the camera centre
and perpendicular to the rotation axis is the plane of motion of the camera� We
consider sequences of planar motions of a camera� by which we mean a sequence
of rotations about parallel but generally distinct rotation axes� The plane of
motion is common to all the motions� For visualisation� we assume the plane of
motion is horizontal and the rotation axes vertical�

�D �xed entities The plane at in�nity and absolute conic are invariant under
all Euclidean actions� These are the entities that we desire to �nd in order



to compute respectively a�ne or metric structure� These entities can not be
observed directly� however� so we attempt to �nd them indirectly� To this end
we consider �xed points of a sequence of planar motions� A single planar motion
has additional �xed entities� the screw axis ��xed pointwise	� and the plane
of motion ��xed setwise	� In fact� any plane parallel to the plane of motion is
�xed� The intersection of this pencil of planes with the plane at in�nity is a line
��xed setwise	� Although this line is �xed only as a set� its intersection with the
absolute conic� ��� consisting of two points� is �xed pointwise by the motion�
These two points are known as the circular points� denoted I and J � and lie
on every plane parallel to the plane of motion� Knowledge of these two circular
points is equivalent to knowing the metric structure in each of these planes �����	�

The two circular points are �xed for all motions in a sequence of planar
motions with common plane of motion� This is not true of the �xed screw axes�
since we assume in general that the screw axis is not the same for all motions�
However� since the screw axes are parallel� they all intersect at the plane at
in�nity at a point which we shall denote by V � The points I� J and V and
their relation to �� is shown in �gure �� They are �xed by all motions in the
sequence�
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Fig� �� The �xed entities on �� of a sequence of Euclidean planar motions of ��space�
V is the ideal point of the screw axis� and L the ideal line of the pencil of planes�
orthogonal to the screw axis� I and J are the circular points for these planes� de�ned
by the intersection of L with ��� V and L are pole and polar with respect to the
absolute conic�

If by some means we are able to �nd the locations of the points I� J and V in
space� then we are able to determine the plane at in�nity �� as the unique plane
passing through all three of them� This is equivalent to determining the a�ne
structure of space� Although we do not know ��� and hence can not determine
metric structure� we at least know two points on this absolute conic� and hence
know the Euclidean geometry in every plane parallel to the plane of motion�



Fixed image entities Our goal is to �nd the three points I� J and V � Since
they are �xed by the sequence of motions� their images will appear at the same
location in all images taken by the moving camera �assuming �xed internal
calibration	� We are led to inquire which points are �xed in all images of a
sequence� A �xed point in a pair of images is the image of a point in space that
appears at the same location in the two images� It will be seen that apart from
the images of I� J and V there are other �xed image entities� We will be led to
consider both �xed points and lines�

The locus of all points in space that map to the same point in two images
is known as the horopter curve� Generally this is a twisted cubic curve in ��
space passing through the two camera centres ����� One can �nd the image of
the horopter using the fundamental matrix of the pair of images� since a point on
the horopter satis�es the equation x�Fx � �� Hence� the image of the horopter
is a conic de�ned by the symmetric part of F� namely Fs � F� F

��
In the case of planar motion� the horopter degenerates to a conic in the plane

of motion� plus the screw axis� The conic passes through �and is hence de�ned
by	� the two camera centres� the two circular points� and the intersection of the
screw axis with the plane of motion� It can be shown that for planar motion
Fs is rank � ����� and the conic x�Fx � x�Fsx � �� which is the image of
the horopter� degenerates to two lines� These lines are the image of the screw
axis and the image of the plane of motion � the horizon line in the image ����
The epipoles and imaged circular points lie on this horizon line� The apex �the
vanishing point of the rotation axis	 lies on the imaged screw axis� These points
are shown in �gure �a� Although the lines can be computed from Fs� and the
imaged circular points and apex lie on these lines� we have not yet explained
how to recover these points�
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Fig� �� Fixed image entities for planar motion� �a	 For two views the imaged screw
axis is a line of �xed points in the image under the motion� The horizon is a �xed line
under the motion� �b	 The relation between the �xed lines obtained pairwise for three
images under planar motion� The image horizon lines for each pair are coincident� and
the imaged screw axes for each pair intersect in the apex� All the epipoles lie on the
horizon line�



We now consider �xed points in three views connected via planar motions�
To do this� we need to consider the intersection of the horopter for cameras �
and � with that for cameras � and �� Each horopter consists of a conic in the
plane of motion� plus the vertical axis� The two vertical axes� supposed distinct�
meet at in�nity at the point V � The two conics meet in � points� namely the
circular points I and J � the centre of the second camera� plus one further point
that is �xed in all three views� The horopter for cameras � and � will not pass
through the second camera centre� Thus we are left with � points that are �xed
in all three images� These are the circular points I and J � a third point X lying
on the plane of motion� and the ideal point V �

Any two �xed points de�ne a �xed line� the line passing through them� Since
three of the points� namely the images of points I� J and the third point are
collinear� there are just � �xed lines� There can be no others� since the intersection
of two �xed lines must be a �xed point� We have sketched a geometric proof of
the following theorem�

Theorem For three views from a camera with �xed internal parameters undergo�
ing general planar motion� there are four �xed points� three of which are collinear�

�� The vanishing point of the rotation axes� v �the apex��
	� Two complex points� the images of the two circular points I� J on the horizon

line�
�� A third point x on the horizon line and peculiar to the image triplet�

There are four �xed lines passing through pairs of �xed points�

�D Structure Determination A method for determining a�ne and metric struc�
ture is as follows� One determines the �xed points in the three images using the
trifocal tensor as described in the following section� The third real collinear �xed
point x can be distinguished from the complex circular points� the images of I
and J � This third point is discarded� The ��D points I� J and V corresponding
to these �xed image points may be reconstructed� These three points de�ne the
plane at in�nity� and hence a�ne structure� Planar metric structure is deter�
mined by the circular points I and J � Thus� in the absence of other constraints�
�D structure is determined up to a Euclidean transformation in planes paral�
lel to the plane of motion� and up to a one dimensional a�ne transformation
perpendicular to the plane of motion�

Following Luong and Vieville ��� an additional constraint is provided by as�
suming the skew parameter is zero i�e� that the image axes are perpendicu�
lar� This is a very good approximation in practice� This constraint results in a
quadratic polynomial giving two solutions for the internal calibration matrix�
and hence for the recovery of metric structure� Alternatively� an assumption of
equal scale factors in the two coordinate axis directions will allow for unique
metric reconstruction�

We have now described the structure ambiguity once the �xed image entities
are identi�ed� The next section describes a method of identifying the �xed image
entities using the trifocal tensor�



� Fixed image entities via the trifocal tensor

Suppose the � � � camera projection matrices for the three views are P� P� and
P
��� Let a line in space be mapped to lines l� l� and l�� in three images� A trilinear
relationship exists between the coordinates of the three lines� as follows �

li � l
�

j l
��

kT
jk
i ��	

where Tjki is the trifocal tensor ���� Here and elsewhere we observe the convention
that indices repeated in the contravariant and covariant positions imply summa�
tion over the range ��� � � � � �	 of the index� A similar relationship holds between
coordinates of corresponding points in three images�

The trifocal tensor can be computed directly from point and line matches
over three views� It can also be directly constructed from the camera projection
matrices P� P� and P

�� as follows� Assuming that P � �I j ��� we have the formula

T
jk
i � p

�j
i p

��k
� � p

�j
� p

��k
i ��	

where p�ij and p��ij are the �ij	�th entry of the respective camera matrices� index
i being the contravariant �row	 index and j being the covariant �column	 index�

Now in order to �nd �xed lines� we seek solutions l to the equations �from ��		

li � lj lkT
jk
i ��	

In ��	 as well as ��	 the equality sign represents equality up to a non�zero scale
factor� We may remove the unknown scale factor in ��	 by taking the cross
product of the two sides and equating the result to the zero vector� This results
in three simultaneous homogeneous cubic equations for the components of l� In
the following we discuss methods for obtaining the solutions to these cubics�
First we describe the general case� and then show that this can be transformed
to a special case where the solution reduces to a single cubic in one variable�
The transformation required is a plane projective transformation of the images�
Finally� we arrive at a two step algorithm� tailored to real images� for determining
the �xed image points and lines�

��� General Planar Motion

We consider three views taken by a camera undergoing planar motion� Without
loss of generality� we may assume that the camera is moving in the plane Y � ��
The rotation axes are perpendicular to this plane� and meet at the point at in�n�
ity ��� �� �� �	� � We assume that the camera has �xed� but unknown calibration�
The origin of coordinates may be chosen at the location of the �rst camera�
which means that the camera has matrix P � H�I j ��� for some matrix H� The
other two camera di�er by a planar motion from this �rst camera� which means
that the three camera have the form

P � H�I j �� P
� � H�R� j t�� P

�� � H�R�� j t��� ��	



where R
� and R

�� are rotations about the Y axis� and t� and t�� are translations
in the plane Y � ��

One may solve for the �xed lines using the trifocal tensor T
jk
i � Denoting a

�xed line l for convenience as l � �x� y� z	 instead of �l�� l�� l�	� the �xed line

equation li � lj lkT
jk
i may be written as

�
�x

y

z

�
A �

�
� h����x� y� z	

h�����x� y� z	
h������x� y� z	

�
A ��	

where the superscript ��	 denotes the degree of the polynomial� Setting the cross�
product of the two sides of this equation to zero� one obtains a set of three cubic
equations in x� y and z� By the discussion of section �� there should be four �xed
lines as solutions to this set of equations�

The �rst thing to note� however� is that the three equations derived from
��	 are not linearly independent� There are just two linearly independent cubics�
Inevitably� for a trifocal tensor computed from real image correspondences� the
solutions obtained depend on just which pair of the three equations one chooses�
Furthermore� if there is noise present in the image measurements� then the num�
ber of solutions to these equations increases� In general� two simultaneous cubics
can have up to � solutions� What happens is that one obtains a number of dif�
ferent solutions close to the four ideal solutions� Thus� for instance� there are a
number of solutions close to the ideal horizon line� Generally speaking� proceed�
ing in this way will lead into a mire of unpleasant numerical computation�

��� Normalized Planar Motion

One can simplify the problem by applying a projective transformation to each
image before attempting to �nd the �xed lines� The transformation to be applied
will be the same for each of the images� and hence will map the �xed lines to
�xed lines of the transformed images� The transformation that we apply will
have the e�ect of mapping the apex point v to the point at in�nity ��� �� �	�

in the direction of the y�axis� In addition� it will map the horizon line to the
x�axis� which has coordinates ��� �� �	�� The transformed images will correspond
to camera matrices

�P � GH�I j �� �P
� � GH�R� j t�� �P

�� � GH�R�� j t���

where G represents the applied image transformation� We considering now the
�rst camera matrix �P� This matrix maps ��� �� �� �	�� the vanishing point of the
Y axis� to the apex ��� �� �	� in the image� Furthermore the plane Y � � with
coordinates ��� �� �� �	 is mapped to the horizon line ��� �� �	� as required� This
constrains the camera matrix �P � �GH j �� to be of the form

�P � �GH j �� �

�
�� � � �
� � � �
� � � �

�
� ��	



where � represents a zero entry and � represents a non�zero entry�
Consider now the other camera matrices �P

� and �P
��� Since R

� and R
�� are

rotations about the Y axis� and t� and t�� are translations in the plane Y � ��
both �R� j t�� and �R�� j t��� are of the form ����

�
�� � � �
� � � �
� � � �

�
� ��	

Premultiplying by GH� we �nd that both �P
� and �P

�� are of the same form ��	�
This particularly simple form of the camera matrices allows us to �nd a simple
form for the trifocal tensor as well� In order to apply formula ��	� we require
matrix P to be of the form P � �I j ��� This can be achieved by right multiplica�

tion of all the camera matrices by the �D transformation matrix

�
�GH	�� �

� �

�
� It

may be observed that this multiplication does not change the format ��	 of the
matrices �P� and �P

��� Now� for i � � or �� we see that �p�i and �p
��
i are of the form

��� ���	�� whereas for i � �� they are of the form ����� �	�� Further� �p�� is of
the form ��� ���	�� One easily computes the following form for �T��i �

�T��i �

�
�� � �
� � �
� � �

�
� for i � �� � �T��� �

�
� � � �
� � �
� � �

�
� �	

Using this special form of the trifocal tensor� we see that ��	 may be written
as �

�x

y

z

�
A �

�
� a�x

� � b�xz � c�z
�

d�xy � e�yz

a�x
� � b�xz � c�z

�

�
A ��	

where l � �x� y� z	� represents a �xed line� This set of equations has eight
parameters fa� � � � c�g� The �xed lines may be found by solving this system of
equations� One �xed point in the three views is the apex� v � ��� �� �	�� Let us
consider only lines passing through the apex �xed in all three views� Such a line
has coordinates �x� �� z	� Thus� we may assume that y � �� The equations ��	
now reduce to the form 	

x

z



�

	
a�x

� � b�xz � c�z
�

a�x
� � b�xz � c�z

�



���	

Cross�multiplying reduces this to a single equation

z�a�x
� � b�xz � c�z

�	 � x�a�x
� � b�xz � c�z

�	 ���	

This is a homogeneous cubic� and may be easily solved for the ratio x � z� The
solutions to this cubic are the three lines passing through the apex joining it
to three points lying on the horizon line� These three points are the images of
the two circular points� and the third �xed point� The third �xed point may
be distinguished by the fact that it is a real solution� whereas the two circular



points are a pair of complex conjugate solutions� The third �xed point is of no
special interest� and is discarded�

This analysis is an example of a generally useful technique of applying geo�
metric transformations to simplify algebraic computation�

��� Algorithm Outline

We now put the parts of the algorithm together� The following algorithm de�
termines the �xed lines in three views� and hence the apex and circular points
on the horizon line� The �rst four steps reduce to the case of normalized planar
motion� The �xed points and lines are then computed in steps � to �� and the
last step relates the �xed points back to the �xed points in the original images�

�� Compute the fundamental matrix for all pairs of image� and obtain the
epipoles�

�� Find the orthogonal regression line �t to the epipoles� This is the horizon
line l�

�� Decompose the symmetric part of the F�s into two lines� this generates the
image of the screw axis for each pair� Find the intersection of the imaged
screw axes� or in the presence of noise� the point with minimum squared
distance to all the imaged screw axes� This determines the apex v�

�� Find a projective transformation G taking the horizon line to the line ��� �� �	
and the apex to the point ��� �� �	� Apply this projective transform to all
images�

�� For three views� compute the trifocal tensor from point and line matches�
enforcing the constraint that it be of the form described in �	�

�� Compute the cubic polynomial de�ned in ��	 and ���	� and solve for the
ratio x � z� There will be two imaginary and one real solution� Discard the
real solution� The imaginary solutions will be lines with coordinates ��� �� z	
and ��� �� �z	 passing through the apex and the two circular points on the
horizon line�

�� Compute the intersection of the horizon line ��� �� �	 and the line ��� �� z	�
This is the point ��z� �� �	� Do the same for the other solution ��� �� �z	�

� Apply the inverse transform G
�� to the two circular points to �nd the image

of the two circular points in the original images�

� Results

Numerical results are improved signi�cantly by enforcing that both F and Fs are
rank � during the minimization to compute the fundamental matrix� Implemen�
tation details of the algorithms are given in ����

��� Fixed image points and lines

In this section we describe the results of obtaining the �xed points�lines over
image triplets� These points are used for a�ne and metric calibration� which is
described in section ����



The image sequences used are shown in �gure � �sequence I	 and �gure �
�sequence II	� The �rst sequence is acquired by a camera mounted on an Adept
robot� the second by a di�erent camera mounted on an AGV� The latter sequence
has considerably more camera shake� and consequently is not perfect planar
motion�

Figure � shows the two view �xed lines obtained from the seven sequential
image pairs from sequence I� The trifocal tensor is computed for the six sequen�
tial image triplets� and the circular points computed from the �xed points of
the tensor� The results are given in table �a� The circular points are certainly
stable� but it is di�cult to quantify their accuracy directly because they are
complex� In the next section the circular points are used to upgrade projec�
tive structure to a�ne and metric� The accuracy of the circular points is hence
measured indirectly by the accuracy of the recovered structure� For comparison�
the estimated circular points� based on approximate internal parameters� are
����� ����i������ �	��

The camera undergoes a smaller rotation in sequence II and the images are
noisier due to camera shake� Superior results are obtained by using fundamen�
tal matrices from image pairs which are separated by � time steps �i�e� pairs
f���g�f���g�f���g����	� rather than sequential image pairs� Figure � shows these
results� The tensor is calculated using image triplets separated by one time step
�i�e� triplets f�����g�f�����g����	� The circular points computed are shown in ta�
ble �b� The estimated circular points� based on approximate internal parameters�
are ����� ��i� ���� ��i� �	��

��� Structure Recovery

Section ��� obtained the � �xed points of image triplets using the algorithm of
section ���� These points de�ne the position of the plane at in�nity ��� which
allows a�ne structure to be recovered� In this section we describe the results
of an implementation of a�ne and metric structure recovery� and assess the
accuracy by comparing with ground truth�

A
ne Structure Using the image sequence in �gure �� and the circular points
listed in table �a� a�ne structure is recovered� We can quantify the accuracy of

Fig� �� Image sequence I� four images from an eight image sequence acquired by a
camera mounted on an Adept robot arm� Planar motion with the rotation axis at
approximately 
�o to the image y axis and perpendicular to the image x axis� ��
corners are automatically matched and tracked through the � images� The Tsai grids
are used only to provide ground truth� not to calibrate�



Fig� �� Image sequence II� four images from a nine image sequence� Planar motion
with the rotation axis approximately aligned with the image y axis� �� corners are
automatically matched across the � images� The sequence was acquired by a camera
mounted on an AGV�
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Fig� �� The �xed points and lines obtained from all � possible sequential image pairs
from sequence I ��gure �	� with axes in pixels� � are the epipoles� dashed and solid
lines are the screw axes and the horizon respectively� � is the apex at ����
���	� The
horizon line is at y � �
���

the a�ne structure by comparing the values of a�ne invariants measured on the
recovered structure to their veridical values� The a�ne invariant used is the ratio
of line segment lengths on parallel lines� The lines in the scene are de�ned by the
corners on the partially obscured calibration grid shown in �gure �� The veridical
value of these ratios is ���� and the results obtained are shown in table �� Clearly�
the projective skewing has been largely removed�

Metric Structure Metric structure in planes parallel to the motion plane �the
ground plane here	 is recovered for the sequence in �gure �� The accuracy of the
metric structure is measured by computing an angle in the recovered structure
with a known veridical value� We compute two angles for each image triplet�
First is the angle between the planes of the calibration grid� We �t planes to ��
and � points on the left and right faces respectively and compare the interplane
angle to a veridical value of ��o� Second is the angle between the three computed
camera centres for each image triplet which is known from the robot motion� The
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Table �� The circular points obtained �complex conjugates	 for �a	 sequence I ��gure �	
and �b	 sequence II ��gure 	� Note� the stability of the points estimated from di�erent
triplets�
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Fig� �� The �xed points and lines sequence II� �gure � with axes in pixels� � are the
epipoles� dashed and solid lines are the screw axes and the horizon line respectively� �
is the image apex at ��������	� The horizon line passes through �����
	�

camera centres are computed from the camera projection matrices�
Table � shows the computed angles for the � image triplets from sequence I�

while �gure � shows a plan view of the recovered metric structure from the �rst
image triplet�

� Conclusions and extensions

We have demonstrated the geometric importance of �xed points and lines in an
image sequence as calibration tools� These �xed entities have been measured�
and used to recover a�ne and partial metric structure from image sequences of
real scenes� There are a number of outstanding questions� both numerical and
theoretical�

�� We have demonstrated that estimates of the plane at in�nity and camera
internal parameters can be computed from image triplets� It now remains
to derive the variance of these quantities� Then a recursive estimator can



A�ne Invariants Metric Invariants
standard Plane angle Motion Angle

Image Triplet max min average deviation ���o � �o	 Actual Computed
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 ����� ���� ���� ����

Table �� A�ne Invariants The ratio of lengths of parallel lines measured on the re�
covered a�ne structure of the calibration grid� The veridical value is unity� Metric

Invariants Angles measured in the ground plane� The interplane angle for the calibra�
tion grid� and the angle between the computed camera centres�

Fig� �� Plan view of the structure recovered from the �rst image triplet of sequence
I� The �rst three camera centres are marked with �� The calibration grid and other
objects are clearly shown�

be built� such as an Extended Kalman Filter� which updates the plane at
in�nity and camera calibration throughout an image sequence�

�� The image of the absolute conic is a �xed entity over all images with un�
changing internal parameters� The study of �xed image entities opens up the
possibility of solving for this directly as the �xed conic of a sequence�
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