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Abstract. This paper gives a practical and accurate algorithm for the
computation of the quadrifocal tensor and extraction of camera matrices
from it. Previous methods for using the quadrifocal tensor in projective
scene reconstruction have not emphasized accuracy of the algorithm in
conditions of noise. Methods given in this paper minimize algebraic error
either through a non-iterative linear algorithm, or two alternative iter-
ative algorithms. It is shown by experiments with synthetic data that
the iterative methods, though minimizing algebraic, rather than more
correctly geometric error measured in the image, give almost optimal
results.
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1 Introduction

In the study of the geometry of multiple views, the fundamental matrix and more
recently the trifocal tensor have proven to be essential tools. The quadrifocal
tensor which relates coordinates measured in four views is the natural extension
of these techniques to four views. Because of the added stability of a fourth
view, and the more tightly it constrains the position of reconstructed points
in space, use of the quadrifocal tensor should lead to greater accuracy than two
and three-view techniques. This hypothesis is supported by the results of Heyden
([6, 5]). However, the four-view tensor has not been given much attention in the
literature. One of the main impediments to its use is the fact that the quadrifocal
tensor is very greatly overparametrized, using 81 components of the tensor to
describe a geometric confuguration that depends only on 29 parameters. This can
lead to severe inaccuracies if additional constraints are not applied. One method
of doing this was proposed by Heyden, who defined the reduced quadrifocal
tensor. This has the effect of partially constraining the solution, but still leaves
many (in fact 32) unresolved constraints.

In this paper, a method is given for computing the quadrifocal tensor and
extracting camera parameters in a way so as to satisfy all constraints on the



tensor, while at the same time minimizing the algebraic measurement error. The
results obtained prove to be near optimal in terms of minimizing residual error
in the measured image coordinates.

2 The Quadrifocal Tensor

The quadrifocal tensor was discovered by Triggs ([8]) and an algorithm for us-
ing it for reconstruction was given by Heyden ([6, 5]). However, because the
quadrifocal tensor is not so widely understood as the fundamental matrix, or
the trifocal tensor, a derivation of its properties and description of existing al-
gorithms is given here. The only previously existing algorithm for computation
of the quadrifocal tensor and extraction of the camera matrix is due to Heyden
([6, 5]). This algorithm will be described below, since most of the material will
be needed for the description of a new algorithm.

Consider four cameras P, P′, P′′ and P′′′, and let x be a point in space imaged
by the four cameras. Let the corresponding image points in the four images be
denoted by u, u′, u′′ and u′′′ respectively. We write u ≈ Px, and similarly for
the other images. The notation ≈ indicated that the two sides of the equation
are equal, up to an unknown scale factor. Taking account of the scale factor,
there are constants k, k′, k′′ and k′′′ such that ku = Px, k′u′ = P′x, and so on
for the other two images. This set of equations may be written as a single matrix
equation as follows:
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where vectors ai, bi, ci and di are the row vectors of the matrices P, P′, P′′ and
P′′ respectively.

Since this equation has a solution, the matrixX on the left has rank at most 7,
and so all 8×8 determinants are zero. Any determinant containing fewer than two
rows from each of the camera matrices gives rise to a trilinear or bilinear relation
between the remaining cameras. A different case occurs when we consider 8× 8



determinants containing two rows from each of the camera matrices. Expansion
of the determinant leads directly to a quadrilinear relationship of the form

uiu′ju′′ku′′′lεipwεjqxεkryεlszQ
pqrs = 0wxyz (2)

where 0wxyz is a zero tensor with four indices w, x, y and z, and the rank-4
tensor Qpqrs is defined by

Qpqrs = det



ap·
bq·
cr·
ds·


 (3)

The tensor εijk is defined to be zero unless i, j and k are distinct, and otherwise
equal to 1 or −1 depending on whether (ijk) is an even or odd permutation of
(123). We use the tensor summation convention in which an index repeated in
upper (contravariant) and lower (covariant) positions implies summation of all
values 1, 2, 3 of the index.

Note that the four indices of the four-view tensor are contravariant A discus-
sion of tensors, contravariant and covariant indices is found in an appendix of
[3]. Note that for this quadrifocal tensor there is no distinguished view as there
is in the case of the trifocal tensor. There is only one quadrifocal tensor corre-
sponding to four given views. More details of this derivation, and the equations
that may be derived from it are given in [2].

Each point correspondence across four views gives rise via (2) to 81 equations
in the entries of Q, one equation for each of the choices of indices w, x, y, z.
Among these equations, there are 16 linearly independent equations in the 81
entries of the quadrifocal tensor Q. From a set of several point correspondences
across four views one obtains a set of linear equations of the form Aq = 0 where q
is a vector containing the entries of Q. Since Q is defined only up to scale, it may
appear that from 5 point correspondences there are enough equations to compute
Q. However, the sets of equations arising from different point correspondences
have a linear relationship, as shown in [2]. It turns out that 6 points are required
to solve for Q. With 6 points or more, one may solve a linear least-squares
problem to find Q.

It is also possible to derive equations involving the quadrifocal tensor from
line correspondences, or mixed line-point correspondences, as explained in [2].
All the techniques of this paper are applicable to line or mixed point-line corre-
spondences as well, but we omit further mention of this point.

2.1 Algebraic Error

In the presence of noise, one can not expect to obtain an exact solution to an
overconstrained set of equations of the form Aq = 0 such as those that arise from
a point correspondence in 4 views. The linear least-squares algorithm instead
finds the unit-norm vector q that minimizes ||Aq||. The vector ε = Aq is the
error vector and it is this error vector that is minimized. The solution is the unit
singular vector corresponding to the smallest singular value of A.



Consider an estimate for the quadrifocal tensor Q, represented by a vector
q, and let A be the matrix of equations corresponding to a set of point corre-
spondences ui ↔ u′i ↔ u′i ↔ u′′′i across 4 views. The vector Aq is the algebraic
error vector associated with the estimate q, relative to the measurements. Thus,
our goal is to find the unit norm vector q minimizing the algebraic error ||Aq||.
In finding this minimum, the vector q may be allowed to vary freely over the
whole linear space R81, or be constrained to some subset of R81. In any case,
the principle is the same, namely that Aq is the algebraic error vector.

Constraints. The simplest manner of estimating the tensor Q is the linear least
squares method, that finds the unit vector q that minimizes algebraic error,
where q is allowed to vary over the whole space R81. As with the fundamental
matrix and the trifocal tensor, the tensor Q that one finds in this way will not in
general correspond (as in (3)) to a set of four camera matrices. This will only be
the case when Q is appropriately constrained. To be more precise, a quadrifocal
tensor Q is determined by the four camera matrices. These have a total of 44
degrees of freedom. However, the quadrifocal tensor (just as the fundamental
matrix and trifocal tensor) is unchanged by a projective transformation of space,
since its value is determined only by image coordinates. Hence, we may subtract
15 for the degrees of freedom of a 3D projective transformation. The quadrifocal
tensor depends on only 29 essential parameters. Thus, it must satisfy a total
of 51 = 80 − 29 constraints, in addition to the scale ambiguity. As one may
see, the 81 entries of the quadrifocal tensor are very greatly redundant as far as
describing the projective configuration of the cameras is concerned.

By constrast, the fundamental matrix has 8 entries up to scale, and must
satisfy a single constraint (detF = 0). The trifocal tensor has 27 entries and
must satisfy 8 constraints, since the projective configuration of three cameras
has 18 = 33 − 15 degrees of freedom. Although one may perhaps hope to get
reasonable results by ignoring the constraints on the fundamental matrix and
even the trifocal tensor, it is clear that one can not ignore the 51 constraints of
the quadrifocal tensor and hope to get reasonable results.

The method described in this paper for computation of the quadrifocal ten-
sor is to find q that minimizes algebraic error, while at the same time being
constrained to correspond to a set of four camera matrices, according to (3).

2.2 Minimization subject to constraints

In the case where the vector q is constrained to lie on a linear submanifold
(an affine subspace) of R81, a simple linear method exists for carrying out the
minimization. The following algorithm was give in [4]. Since it is an essential
part of our method for finding the quadrifocal tensor, it is repeated below for
convenience.
Algorithm : Given a “measurement” matrix A and “constraint” matrix C

find the unit norm vector q that minimizes ||Aq|| subject to constraints q = Ca
for some vector a. Equivalently, minimize ||ACa|| subject to ||Ca|| = 1, then set
q = Ca.



Solution :

1. Compute the SVD C = UDV� such that the non-zero values of D appear first
down the diagonal.

2. Let U′ be the matrix comprising the first r columns of U, where r is the rank
of C. Further, let V′ consist of the first r columns of V and D′ consist of the
r first rows and columns of D.

3. Find the unit vector q′ that minimizes ||AU′q′||. This is the singular vector
corresponding to the smallest singular value of AU′.

4. The required vector q is given by q = U′q′, A vector a such that q = Ca is
given by a = V′D′−1q′.

2.3 Geometric Distance

A common assumption is that measurement error is confined to image measure-
ments, and image measurements conform to a gaussian error model. Given a set
of measured correspondences ui ↔ u′i ↔ u′′i ↔ u′′′i , the optimal estimate for the
quadrifocal tensor under this error model is the one that satisifies equations of
the form

ûai û
′b
i û
′′c
i û
′′′d
i εapwεbqxεcryεdszQ

pqrs = 0wxyz (4)

as in (3) for each matched point, where ûi, . . . , û′′′i are estimated image points
that minimize the geometric error

∑
i

d(ûi,ui)2 + d(û′i,u
′
i)

2 + d(û′′i ,u
′′
i )

2 + d(û′′′i ,u
′′′
i )

2 (5)

subject to the condition that (4) is satisfied exactly. Here, d(·, ·) represents Eu-
clidean distance in the image. The quantity d(ui, ûi) is known as the geometric
distance between ui and ûi. Thus the error to be minimized is the sum of squares
of geometric distances between measured and projected points.

Geometric error may be minimized using the technique of bundle adjust-
ment, to carry out a projective reconstruction of the scene. A method for do-
ing this using sparse techniques to minimize time complexity is given in [1]. In
general, minimization of geometric error can be expected to give the best pos-
sible results (depending on how realistic the error model is). This algorithm is
not implemented here for use in comparison with the algebraic minimization
algorithm. Nevertheless, one may easily derive a theoretical bound (the Cramer-
Rao lower bound) for the minimum error obtainable using the geometric error
model. This bound is used to evaluate the algebraic minimization algorithms.
Consider an estimation problem involving N measurements each of a Gaussian
random variable with standard deviation σ, and d parameters, the minimum
residual error (distance between measured and modelled values) is equal ([7])
to ε = σ(1 − d/N)1/2. In this particular case, with four images and n points,
two coordinates per point, there are 8n measurement. Counting parameters, we
count 3n for the coordinates of the points in space, plus 29 for the degrees of
freedom of the quadrifocal tensor. Hence, the optimal residual error is

E = σ((5n− 29)/8n)1/2 . (6)



2.4 The Reduced Measurement Matrix

In general, the matrix A may have a very large number of rows. As described
in [4] it is possible to replace A by a square matrix Â such that ||Aq|| = ||Âq||
for any vector q. Such a matrix Â is called a reduced measurement matrix. An
efficient way of obtaining Â is to use the QR decomposition A = QÂ, where Q has
orthogonal columns and Â is upper-triangular and square.

In this way, all the information we need to keep about the set of matched
data ui ↔ u′i ↔ u′′i ↔ u′′′i is contained in the single matrix Â. If we wish to
minimize algebraic error ||Aq|| as q varies over some restricted set of transforms,
then this is equivalent to minimizing the norm ||Âq||.

2.5 The reduced quadrifocal tensor

A method introduced by Heyden ([6, 5]) for reducing the number of unsatisfied
constraints involving the quadrifocal tensor involves the reduced quadrifocal ten-
sor. Heyden applied the same techniques to defined also a reduced fundamental
matrix and reduced trifocal tensor, but these will not be considered in this paper.

Suppose that among the set of correspondences, three correspondences ui ↔
u′i ↔ u′′i ↔ u′′′i for i = 1, . . . , 3 are selected. This selection should be done in
such a way that points u1, u2 and u3 are not collinear, and neither are the
corresponding points in the other images. Now, a projective transformation T
exists that maps the points represented in homogeneous coordinates as e1 =
(1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�. to the points u1,u2,u3. Note that
T is not an affine transformation, since it does not keep the plane at infinity
fixed. As such, it is not fully defined by three point correspondences. However,
a simple choice of T is the one represented by a matrix

T =



u1 u2 u3

v1 v2 v3

w1 w2 w3


 (7)

where (ui, vi, wi)� are the coordinates of ui. One verifies easily that indeed Tei =
ui. We assume that each point ui in the image is subjected to the transformation
T−1, resulting in a new set of points. Let us assume that this transformation has
been carried out, and agree to denote the new transformed points by the same
symbol ui. Thus, one has a set of image points ui of which the first three points
u1, u2 and u3 are equal to ei, i = 1, . . . , 3.

Let the points in space mapping to the points ui be denoted xi. Thus, ui =
Pui. We focus on the first three points x1, x2 and x3. Since image points u1,
u2 and u3 are not collinear (by assumption), neither are the points xi that
project to them. It is possible, therefore to select a projective coordinate frame
in which these points have coordinates x1 = (1, 0, 0, 0)�, x2 = (0, 1, 0, 0)� and
x3 = (0, 0, 1, 0)�. Since these points map to image points ei, one verifies that



the form of the projection matrix must be

P =



p1 q1

p2 q2

p3 q3


 . (8)

We may make the further assumption that the centre of the camera is at the
point (0, 0, 0, 1)�, which means that P(0, 0, 0, 1)� = (0, 0, 0)�. Consequently,
q1 = q2 = q3 = 0.

Now, applying a similar argument to each of the other cameras, one sees that
each of P, P′, P′′ and P′′′ has a similar form, consisting of a left hand diagonal
block, plus an arbitrary 4-th column. Finally, one may multiply each of the
camera matrices on the right by the matrix



p−1

1 −p−1
1 q1

p−1
2 −p−1

2 q2

p−1
2 −p−1

3 q3

1


 .

This reduces the first matrix P to the particular simple form [I | 0] while retaining
the form (8) of the other matrices. This is the reduced form for the camera
matrices.

Notation : To avoid continually having to count the number of primes to dis-
tinguish the elements from the three cameras, we will write the four cameras
as

P = [I | 0] ; P′ =



a1 a′1

a2 a′2
a3 a

′
3




P′′ =



b1 b′1
b2 b′2
b3 b
′
3


 ; P′′′ =



c1 c′1
c2 c′2
c3 c

′
3


 . (9)

We now consider the quadrifocal tensor Qijkl defined by (3), in terms of the
matrices in (9). This tensor is known as the reduced quadrifocal tensor. Each
entry is defined as a determinant made up of one row from each of the four
camera matrices. Note that if one of the three indices 1, 2 or 3 is absent from
the indices of Qijkl, then the corresponding column of the determinant contains
only zeros, and the entry of Qijkl is zero. Thus, the only nonzero entries are
those in which all three indices occur. Since in total there are four indices, one
index must appear twice. Simple counting reveals that there are only 36 non-
zero entries in the reduced quadrifocal tensor – 6 to account for the choice of
which pair of the four indices i, j, k, l are the same, and 6 to account for the
permutations of the indices 1, 2, 3.

We may now summarize an algorithm due to Heyden ([6, 5]) for computing
the reduced quadrifocal tensor from a set of point correspondences.



1. Select three point correspondences ui ↔ u′i ↔ u′′i ↔ u′′′i for i = 1, . . . , 3 and
compute transformations T, T′, T′′ and T′′′ that map points ei i = 1, . . . , 3 to
these selected points. Apply the inverse transformation to the complete set
of points in each image, to obtain a new set of transformed point correspon-
dences.

2. Each transformed point correspondence gives a set of linear equations in
the 36 non-zero entries of the quadrifocal tensor, according to (2). One ig-
nores the first three point correspondences, since they give null equations.
Solve these equations in a least-squares manner to find the entries of the
quadrifocal tensor.

Transforming the quadrifocal tensor. The quadrifocal tensor corresponding to
the original set of point correspondences (not the transformed set) may be re-
trieved by transforming the reduced quadrifocal tensor found by the above algo-
rithm. To do that, we need to consider how the quadrifocal tensor transforms.
Note that the quadrifocal tensor has 4 contravariant (upper) indices. Similarly,
points, such as ui have a contravariant index. This means that Q transforms in
the same way as points. In particular, denote by ûi the set of transformed points,
ûi = T−1ui, and let û

′
i, û
′′
i and û

′′
i be defined similarly. Suppose Q̂ is the quadri-

focal tensor corresponding to the set of correspondences ûi ↔ û′i ↔ û′′i ↔ û′′′i ,
and Q is derived from ui ↔ u′i ↔ u′′i ↔ u′′′i . Since ui = Tûi, the tensor Q̂ also
transforms via transform T. More precisely, one finds that

Qijkl = Q̂abcdT iaT
′j
b T
′′k
c T ′′′ld (10)

If Q̂ is the tensor computed from the transformed points, then (10) allows us to
retrieve the tensor corresponding to the original points.

2.6 Retrieving the Camera Matrices

Following Heyden, we give a method for computing the camera matrices once the
reduced tensor has been computed. In contrast with the methods for computing
the camera matrices from the fundamental matrix or the trifocal tensor, in which
one computes first the epipoles, in the method to be described, one computes
first the diagonal elements of the matrices in (9), and then computes the final
columns, which represent the epipoles. To understand this, we consider the two
entries Q2311 and Q3211. From (3) one finds that

Q2311 = det




1
a3 a

′
3

b1 b′1
c1 c′1


 = a3(b1c

′
1 − c1b

′
1)

On the other hand, similarly, one finds that Q3211 = −a2(b1c
′
1 − c1b

′
1). Hence,

one sees that the ratio a3 : a2 = Q2311 : −Q3211. Continuing in this manner, one



may solve for the diagonal elements of the matrices (9) by solving the following
equations :




0 Q2311 Q3211

Q1322 0 Q3122

Q1233 Q2133 0





a1

a2

a3


 = 0




0 Q2131 Q3121

Q1232 0 Q3212

Q1323 Q2313 0





b1

b2

b3


 = 0 (11)




0 Q2113 Q3112

Q1223 0 Q3221

Q1332 Q2331 0





c1

c2

c3


 = 0

These equations have a pattern to them, which the reader may easily discover.
(The first index of Qijkl corresponds to the column of each matrix in (11),
and the repeated index corresponds to the row.) In this way, one computes the
diagonal elements of (9). Each of the solution vectors (a1, a2, a3)�, (b1, b2, b3)�

and (c1, c2, c3)� may be chosen to have unit norm.

2.7 Retrieving the epipoles.

Once one knows the values of (a1, a2, a3)�, (b1, b2, b3)� and (c1, c2, c3)�, the
values of the entries of Q are linear in the remaining entries

a′1, a
′
2, a
′
3, b
′
1, b
′
2, b
′
3, c
′
1, c
′
2, c
′
3 .

This is because these entries will all appear in the last column of the determinant
(3) representing Qijkl. Hence the determinant expression can not contain higher
order terms in these entries. The exact form of the linear relationship can be
computed by cofactor expansion of the determinant expression (3) for Qijkl

down the last column. We will be content to express it in the form q̂ = Ma′,
where Q̂ is the vector of entries of the reduced quadrifocal tensor, and a′ is
the vector (a′1, a

′
2, a
′
3, b
′
1, b
′
2, b
′
3, c
′
1, c
′
2, c
′
3)
�. The unit-norm least-squares solution

of this set of equations gives the entries of vector a′. Along with the values of
a = (a1, a2, a3, b1, b2, b3, c1, c2, c3)� previously computed, this gives a complete
solution for the camera matrices, according to (9).

The complete algorithm (due to Heyden) for computing the camera matrices
from the reduced quadrifocal tensor is therefore as follows.

1. Compute the diagonal entries of the camera matrices (9) by solving (the
unit norm least-squares solution) of the equations (11). Denote the vector of
diagonal entries by a.

2. Express the entries of the reduced quadrifocal tensor in terms of the vector
a′ of last-column entries of the matrices in (11). This gives a set of equations
q̂ = Ma′, where the entries of M are quadratic expressions in the entries of a.
Solve this set of equations (once more the unit-norm least-squares solution)
to find a′.



3. If required, the reduced quadrifocal tensor may be computed using (3). Fi-
nally, the quadrifocal tensor corresponding to the original data may be com-
puted using (10). Alternatively, if one requires only the original camera ma-
trices, they may be obtained by transforming the reduced camera matrices
found in steps 1 and 2.

It is important to note that this method, along with the algorithm for finding the
reduced quadrifocal tensor together give a method for computing a quadrifocal
tensor corresponding to a valid choice of camera matrices, and hence satisfying
all needed constraints. This is done, of course, without explicitly finding the form
of the constraints.

3 Minimizing Algebraic Distance

The algorithm given in the last section, though apparently performing ade-
quately ([6, 5]) has various weaknesses, from a computational viewpoint.

1. In computing the transformations T, . . . , T′′′ according to (7) one risks en-
countering the case where the three points used to define the transforms are
nearly collinear. In this case T may be close to being invertible. This means
that the positions of the transformed points computed by applying T−1 to
the original data points may not be very stable.

2. In solving for the epipoles, using (11) the matrices involved will not generally
be singular. The solution is found in effect by computing the nearest singular
matrix (in Frobenius norm) and taking the null space of that matrix. How-
ever, there is really no theoretical justification for finding the nearest singular
matrix in Frobenius norm. The problem is analogous with that encountered
when enforcing the singularity constraint for the fundamental matrix.

3. In the computation of the vector a′, we solve a set of equations once more
using a least-squared method. However, once more the quantity that we are
minimizing has no meaningful interpretation in terms of errors in the original
data.

It will now be shown how we may avoid these problems in a way so as to
minimize algebraic error. The result is that in carrying out the three steps of
the algorithm one is minimizing always the same algebraic cost function, and
numerical performance is improved.

3.1 Minimizing Algebraic Error

Solving for the quadrifocal tensor. The transformation formula (10) is seen to
be linear in the entries of Q̂. More specifically, we may write q = T q̂. In this
equation q̂ and q are vectors of entries of the reduced and full quadrifocal tensors,
and T is an 81×36 matrix. Let A be the reduced measurement matrix computed



from the original point correspondences. One wishes to compute the unit-norm
vector q that minimizes the algebraic error ||Aq|| subject to the constraint that q
is derived from a reduced quadrifocal tensor according to the constraint q = T q̂.
In other words, we wish to minimize ||AT q̂|| subject to the condition ||T q̂|| = 1.
This is the type of constrained minimization problem considered in section 2.2.
It is important to note here, that the transformation Q̂ �→ Q given by (10)
depends on the matrices T, . . . , T′′′ given by a formula such as (7) which is built
from the coordinates of the matched points. It is not necessary ever to invert this
matrix to find T−1, . . . , T′′′−1. In addition, the reduced measurement matrix A is
formed from the coordinates of the original untransformed points. In fact, it is
never necessary to invert the matrices T, . . . , T′′′ at all. Thus, one computes the
reduced quadrifocal tensor, while completely avoiding the problem of inverting
matrices, which could potentially be near-singular.

Solving for the epipoles. It does not seem to be possible to find the diagonal
entries of the reduced camera matrices in a way so as to minimize algebraic
error, in a linear manner. Therefore, we adopt the method of Heyden of finding
the least-squares solution to equations (11). This leaves the problem of finding
the final columns of the matrices, namely the vector a′. As before, the reduced
quadrifocal tensor Q̂ may be expressed linearly in terms of the entries of a′,
writing q̂ = Ma′, assuming as we do that the diagonals of the reduced camera
matrices are known.

Now, we wish to find q of unit norm that minimizes ||Aq|| subject to the
additional constraints that q = T q̂ and q̂ = Ma′. These last two constraints
become a single constraint q = T Ma′. Thus, the problem may be cast as follows
: minimize ||A(T M)a′|| subject to the condition ||(T M)a′|| = 1. Once more this is
a minimization problem of the sort solved in section 2.2. The solution method
provides values for either a′ or q. Thus, we may compute the quadrifocal tensor
directly by computing q, or we may retrieve the reduced camera matrices by
computing a′.

The complete proposed algorithm is therefore as follows.

1. Form the reduced measurement matrix A from the original data.
2. Obtain the transformation matrices T, . . . , T′′′ from three of the correspon-

dences, using formula (7).
3. Compute the 81× 36 transformation matrix T such that q = T q̂ from the

transformation rule (10)
4. Solve the minimization problem : minimize ||AT q̂|| subject to ||T q̂|| = 1 to

find Q̂, an initial estimate of the reduced fundamental matrix.
5. Find the diagonal elements (vector a) of the reduced camera matrices by

solving (11).
6. Compute the 36 × 9 matrix M such that q̂ = Ma′, where a′ is the 9-vector

containing the elements of the last columns (representing epipoles relative
to the first camera) of the reduced camera matrices.



7. Solve the minimization problem : minimize ||AT Ma′|| subject to ||T Mâ′|| =
1. From this we may derive the vector q = T Mâ′ corresponding to a full
quadrifocal tensor.

8. If desired, we may compute the reduced camera matrices (9) from the vectors
a and a′. These may be transformed to camera matrices for the original set
of data by left-multiplication by the transforms T, . . . , T′′′.

The quadrifocal tensor found in this way is a valid tensor satisfying all appro-
priate constraints, since it is derived from a set of camera matrices. In addition,
it minimizes algebraic error subject to the two conditions :

1. The camera matrix diagonals have the value given by the 9-vector a, com-
puted at step 5 of the algorithm.

2. The three points used to compute transforms T, . . . , T′′′ correspond precisely.

3.2 Iterative Estimation

The algorithm of the last section gives a way of computing an algebraic error
vector Aq assuming that the 9-vector a representing the diagonals of the reduced
camera matrices is known. This mapping a �→ Aq is a map from R9 to R81. This
suggests an iterative approach in which the goal is to vary a in a way such as to
minimize the algebraic error ||Aq||. Such an iteration may be carried out using a
parameter minimization program such as the Levenberg-Marquardt algorithm.

The solution that one obtains in this manner minimizes algebraic error sub-
ject to the the condition that the points Tei ↔ T′ei ↔ T′′ei ↔ T′′′ei correspond
exactly for i = 1, . . . , 3, where transformations T, . . . , T′′′ are fixed during the
computation. These transformations are derived (using (7)) from the coordi-
nates of the first three measured points. One may further let the entries of the
three transformation matrice T′, T′′, T′′′ vary to find an absolute minimum of al-
gebraic error. Since T′, . . . , T′′′ are determined by the coordinates u′i,u

′′
i ,u

′′′
i for

i = 1, . . . 3, this accounts for a further 18 variable parameters, a total of 27 in
all. It is unnecessary to let the points ui (or equivalently the transformation T)
vary as well, since there must exist some points u′i,u

′′
i ,u
′′′
i that truly correspond

to ui.
Note the advantage of this method of computingQ is that the iterative part of

the algorithm is of fixed size independent of the number of point correspondences
involved.

3.3 4 points on a plane

It may be observed that if 4 of the points are known to lie on a plane, then the
minimization of algebraic error can succeed without iteration in a single step.
(We do not consider the case where three of these points are collinear.) To be
specific, one may choose the first three correspondences to have homogeneous



image coordinates e1 = (1, 0, 0)�, e2 = (0, 1, 0)�, e3 = (0, 0, 1)� as before and
the fourth point can be chosen as e4 = (1, 1, 1). In a real computation, one needs
to find transformations T, . . . , T′′′ that map these basis points to the actual image
points. Now, since the points are known to be coplanar, one may assume that
they lie on the plane at infinity, as the points (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�

and (1, 1, 1, 0)�. One assumes further that the first camera centre is at the origin
(0, 0, 0, 1)�. In this case, it is easily verified that the camera matrices have the
form (9) in which the diagonal elements are all equal to 1. This means that we
can skip steps 4 and 5 of the algorithm of section 3.1. The complete algorithm
is as follows :

1. Compute the reduced measurement matrix from the original data.
2. Compute the transforms T, . . . , T′′′ that take the image basis points e1, . . . , e4

to the measured coordinate values.
3. Compute the 81× 36 matrix T from (10) as before, such that q = T q̂.
4. Compute the 36×9 matrix M such that q̂ = Ma′, assuming that the diagonals

of the reduced camera matrices (9) are all 1. This matrix has a given fixed
form independent of the data.

5. Compute a′ by solving the problem : minimize ||AT Ma′|| subject to ||T Ma′|| =
1. The quadrifocal tensor is given by q = T Ma′.

The tensor derived in this way minimizes algebraic error, subject to the first four
point correspondences (those for the coplanar points) being correct.

One should note that essentially the same technique works for the fundamen-
tal matrix and the trifocal tensor. If there exist four points known to lie in a
plane, then there exists a straight-forward linear method that finds the matrix,
or tensor, satisfying all constraints and minimizing algebraic error.

4 Experimental Results

The new algorithm for computation of the quadrifocal tensor was was tested
with synthetic data. The data were created to simulate a standard 35mm camera
with a 35mm focal length lens. A set of points were synthesized inside a sphere
of radius 1m, and cameras were located at a distance of about 2.5m from the
centre of the sphere aimed at the point set from random directions. The image
is sampled so that the magnification factors are αu = αv = 1000.0, the same
in each direction. This corresponds to a pixel size of 35µm for a 35mm camera.
The expected optimum value of the residual error was computed using formula
((6)). The results are shown in Fig 1.

The results given in Fig 1 are for a set of arbitrarily placed cameras and
arbitrarily chosen points. An experiment was carried out to determine how the
algorithms performed in near-critical configurations. A similar configuration of
points and cameras was chosen as in the previous test. However, the first camera
centre was located on the line through the first two world points x1 and x2. The
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Fig. 1. The residual error achieved by the algorithm of this paper is compared with the
optimal value as well as with the algorithm of Heyden. Each of the graphs shows the
residual error RMS-averaged over 200 runs. In the left hand graph, the residual error
is plotted against the amount of injected noise, for a set of 20 points. The right hand
graph shows the effect of varying the number of points used to compute the tensor.
It starts with 7 points, since none of the algorithms seems to perform well with just 6
points. The noise level is fixed at 1 pixel (in each coordinate direction). In each case, the
lower plot is the optimum error given by (6)) while the two upper plots are the residual
error for the algorithm of this paper (middle curve) and for Heyden’s algorithm (top
curve). One sees that the presently considered algorithm performs significantly better
than Heyden’s algorithm, but misses the optimal result by about a factor of 2. Note that
the error is closely proportional to the amount of injected noise.



result of this is that the points u1 and u2 (the images with respect to the
first camera) are close together (in fact without noise, they coincide). Thus the
transformation T is close to being singular. The result of this experiment is shown
in Fig 2.

0.01

0.1

1

10

100

1000

104

105

106

0.1 1 10

R
es

id
ua

l N
oi

se

Noise

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

R
es

id
ua

l E
rr

or
Noise

0.1

1

10

100

1000

104

105

7 8 9 10 20 30

R
es

id
ua

l N
oi

se

Number of Points

Fig. 2. In near singular cases, the present algorithm still performs well, as shown in
these graphs. On the left is shown the residual as a function of increasing noise, and on
the right the residual is plotted against the number of points. These are shown as log-log
plots, so that the top curve will fit on the graph. It is seen that in this case Heyden’s
algorithm (represented by the top curve) fails completely. The center graph is a linear
plot of just the optimal and the present non-iterative algorithm results.

Iterative Algorithms We now compare the iterative algorithms with the non-
iterative algorithm. The results are shown if Fig 3. Two iterative algorithms are
compared. In the first algorithm, the transformations T, . . .T′′′ are kept fixed,
and the 9 diagonal entries of the reduced camera matrices vary. Thus, there
are 9 varying parameters and 81 measured values. In the second method the
transformation matrices T′, T′′, T′′′ are allowed to vary also. There are 27 varying
parameters in this case. This second method should be expected to give better
results.

5 Conclusion

The method of computing the quadrifocal tensor by minimizing algebraic er-
ror gives results almost indistinguishable from minimizing geometric error, and
almost optimal. It avoids singular configurations in which Heyden’s algorithm
fails entirely, and in general gives numerically superior results. It is true that it
is possible to be careful in selecting the three points used in Heyden’s method
for defining the reduced tensor. If this is done, then it is possible to avoid catas-
trophic failure of the algorithm. However this involves additional uncertainties
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Fig. 3. These graphs show the performance of iterative algorithms for computing the
quadrifocal tensor. The data set used is the same as for Fig 1. Each graph shows 4
curves. From top to bottom they are (i) the non-iterative algorithm, (ii) the 9-parameter
iterative method, (iii) the 27 parameter iterative method and (iv) the theoretical optimal
method. As may be seen, the 27-parameter iterative method gives very nearly optimal
results (in fact the two last curves are indistinguishable). The two graphs shown are
for varying noise and 20 points (on the left), and for fixed noise of 1 pixel and varying
numbers of points (right).



in the algorithm. The present algorithm avoids such difficulties by avoiding the
problems with singular configurations of points altogether.
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