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Abstract

This paper gives a widely applicable technique
for solving many of the parameter estimation
problems encountered in geometric computer
vision. A commonly used approach in such pa-
rameter minimization is to minimize an alge-
braic error function instead of a possibly prefer-
able geometric error function. It is claimed in
this paper, however, that minimizing algebraic
error will usually give excellent results, and in
fact the main problem with most algorithms
minimizing algebraic distance is that they do
not take account of mathematical constraints
that should be imposed on the quantity be-
ing estimated. This paper gives an efficient
method of minimizing algebraic distance while
taking account of the constraints. This pro-
vides new algorithms for the problems of resec-
tioning a pinhole camera, computing the fun-
damental matrix, and computing the tri-focal
tensor.

1 Introduction

For many problems related to camera calibration and
scene reconstruction, linear algorithms are known for
solving for the entity required. In the sort of problem
that will be addressed in this paper, a set of data (such
as point correspondences) is used to construct a set of
linear equations, and solution of these equations provides
an estimate of the entity being computed. As examples
of such problems we have :

1. The DLT algorithm for computing a camera ma-
trix given a set of points in space, and correspond-
ing points in the image. Provided at least 6 corre-
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spondences are give (more precisely 5 1
2 correspon-

dences), one can solve for the camera matrix.

2. Computation of the Fundamental Matrix. From 8
point correspondences ui ↔ u′i between two im-
ages one can construct the fundamental matrix us-
ing equations u′i

�Fui = 0.

3. Computation of the trifocal tensor given a set of
feature correspondences across three views.

In these three examples, and many others, a linear
algorithm exists. However, the linear algorithm will lead
to a solution that does not satisfy certain constraints
that the estimated quantity must satisfy. In the cases
considered here, the constraints are

1. The skew parameter of a camera matrix estimated
using the DLT method will not generally be zero.
This constraint, meaning the pixels are rectangular,
should be enforced in cases where it is known to
hold.

2. The fundamamental matrix must satisfy a con-
straint detF = 0.

3. The trifocal tensor must satisfy 8 non-linear con-
straints. The form of these constraints is not easily
determined, but it is essential to constrain the ten-
sor to correspond to a valid set of camera matrices.

These constraints are not in general linear constraints,
and in general, it will be necessary to resort to iterative
techniques to enforce them. Since iterative techniques
are slow and potentially unstable, it is important to use
them sparingly. Further, the smaller the dimension of
the minimization problem, the faster and generally more
stable the solution will be. In this paper an iterative al-
gorithm is used to solve the three problems posed above.
In each case the algorithms are based on a common tech-
nique of data reduction, whereby the input data is con-
densed into a reduced measurement matrix. The size of
the iteration problem is then independent on the size of
the input set. In the case of estimation of the funda-
mental matrix, only three homogeneous parameters are



used to parametrize the minimization problem, whereas
for the trifocal tensor, just six parameters are used.
The problem of camera calibration solved using the

DLT algorithm will be treated first. It will be used to
illustrate the techniques that apply to the other prob-
lems.

2 Computing the Camera Matrix

We consider a set of point correspondences xi ↔ ui be-
tween 3D points xi and image points ui. Our problem
is to compute a 3 × 4 matrix P such that Pxi = ui for
each i.

2.1 The Direct Linear Transformation (DLT)
algorithm

We begin with a simple linear algorithm for determin-
ing P given a set of 3D to 2D point correspondences,
xi ↔ ui. The correspondence is given by the equation
ui = Pxi. Note that this is an equation involving homo-
geneous vectors, thus ui and Pxi may differ by a non-
zero scale factor. One may, however write the equation
in terms of the vector cross product as ui × Pxi = 0.
If the j-th row of the matrix P is denoted by pj�, then

we may write Pxi = (p1�xi,p2�xi,p3�xi)�. Writing
ui = (ui, vi, wi)�, The cross product may then be given
explicitly as

ui × Pxi =


 vip3�xi − wip2�xi

wip1�xi − uip3�xi
uip2�xi − vip1�xi


 .

Since pj�xi = xi�pj for j = 1, . . . , 3, this gives a set of
three equations, in the entries of P, which may be written
in the form
 0 −wixi� vixi�

wixi� 0 −uixi�
−vixi� uixi� 0




 p1

p2

p3


 = 0 . (1)

Note that (p1,p2,p3)� which appears in (1) is a 12-
vector made up of the entries of the matrix P. Although
there are three equations, only two of them are linearly
independent. Thus each point correspondence gives two
equations in the entries of P. One may choose to omit
the third equation, or else include all three equations,
which may sometimes give a better conditioned set of
equations. In future, we will assume that only the first
two equations are used, namely

[
0 −wixi� vixi�

wixi� 0 −uixi�
] p1

p2

p3


 = 0 . (2)

Solving the Equations. The equations (2) may be
denoted by Mip = 0. where the vector p is a 12-vector,
corresponding to the 12 entries of P. The set of all equa-
tions derived from several point correspondences may be

written Mp = 0 where M is the matrix of equation coef-
ficients. This matrix M will be called the measurement
matrix. The obvious solution p = 0 is of no interest to
us, so we seek a non-zero solution p.

2.2 Scaling

One of the most important things to do in implement-
ing an algorithm of this sort is to prenormalize the data.
This type of data normalization was discussed in the pa-
per [2]. Without this normalization, all these algorithms
are guaranteed to perform extremely poorly.
Data normalization is designed to improve the condi-

tioning of the measurement matrix M. The appropriate
scaling is to translate all data points so that their cen-
troid is at the origin. Then the data should be scaled so
that the average distance of any data point from the ori-
gin is equal to

√
2 for image points and

√
3 for 3D points.

The algorithms are then carried out with the normalized
data, and final transformations are applied to the result
to compensate for the normalizing transforms.

2.3 Algebraic Error

In the presence of noise, one can not expect to obtain
an exact solution to an overconstrained set of equations
of the form Mp = 0 such as those that arise in the DLT
method.
The DLT algorithm instead finds the unit-norm vector

p that minimizes ||Mp||. The vector ε = Mp is the error
vector and it is this error vector that is minimized. The
solution is the unit singular vector corresponding to the
smallest singular value of M.
Define a vector (ûi, v̂i, ŵi)� = ûi = Px. Using this

notation, we may write

Mip = εi =
(

viŵi − wiv̂i
wiûi − uiŵi

)
= 0 . (3)

This vector is the algebraic error vector associated
with the point correspondence ui ↔ xi and the cam-
era mapping P. Thus,

dalg(ui, ûi)
2 = (viŵi − wiv̂i)2 + (wiûi − uiŵi)2 . (4)

Given several point correspondences, the quantity ε =
Mp is the algebraic error vector for the complete set, and
one sees that

∑
i

dalg(ui, ûi)
2 = ||Mp||2 = ||ε||2 (5)

The main lesson that we want to keep from this dis-
cussion is :

Proposition 2.1. Given any set of 3D to image corre-
spondences ui ↔ xi, let M be the measurement matrix as
in (2). For any camera matrix P the vector Mp is the
algebraic error vector, where p is the vector of entries of
P.



2.4 Geometric Distance

Under the assumption that measurement error is con-
fined to image measurements, and an assumption of a
gaussian error model for the measurement of 2D image
coordinates, the optimal estimate for the camera matrix
P is the one that minimizes the error function

∑
i

d(ui, ûi)2 (6)

where d(·, ·) represents Euclidean distance in the image.
The quantity d(ui, ûi) is known as the geometric distance
between ui and ûi. Thus the error to be minimized is the
sum of squares of geometric distances between measured
and projected points.
For points ui = (ui, vi, wi)� and ûi = (ûi, v̂i, ŵi)�,

the geometric distance is

d(ui, ûi) =
(
(ui/wi − ûi/ŵi)2 + (vi/wi − ûi/ŵi)2

)1/2
= dalg(ui, ûi)/wiŵi (7)

Thus, geometric distance is related to, but not quite the
same as algebraic distance. Nevertheless, it will turn
out that minimizing algebraic distance gives very good
results in general.

2.5 The Reduced Measurement Matrix

Let ui ↔ xi be a set of correspondences, and let M be
the corresponding measurement matrix. Let P be any
camera matrix, and let p be the vector containing its
entries. The algebraic error vector corresponding to P is
Mp, and its norm satisfies ||Mp||2 = p�M�Mp.
In general, the matrix M may have a very large number

of rows. It is possible to replace M by a square matrix M̂
such that ||Mp|| = ||M̂p|| for any vector p. Such a matrix
M̂ is called a reduced measurement matrix. One way to do
this is using the Singular Value Decomposition (SVD).
Let M = UDV� be the SVD of M, and define M̂ = DV�.
Then

M�M = (VDU�)(UDV�) = (VD)(DV�) = M̂�M̂

as required. Another way of obtaining M̂ is to use the QR
decomposition M = QM̂, where Q has orthogonal columns
and M̂ is upper-triangular and square. This shows the
following result.

Theorem 2.2. Let ui ↔ xi be a set of n world to image
correspondences. Let M be the measurement matrix de-
rived from the point correspondences. Let M̂ be a reduced
measurement matrix. Then, for any 3D to 2D projective
transform P and corresponding 3-vector p, one has

∑
i

dalg(ui, Pxi)
2 = ||M̂p||2

In this way, all the information we need to keep about
the set of matched points ui ↔ xi is contained in the

single 12×12 matrix M. If we wish to minimize algebraic
error as P varies over some restricted set of transforms,
then this is equivalent to minimizing the norm of the
12-vector ||M̂p||.

2.6 Restricted Camera Mappings

The camera mapping expressed by a general 3D projec-
tive transformation is in some respects too general. A
non-singular 3× 4 matrix P with center at a finite point
may be decomposed as P = K[R | −Rt] where R is a
3× 3 rotation matrix and

K =


 αu s u0

αv v0

1


 . (8)

The non-zero entries of K are geometrically meaning-
ful quantities, the internal calibration parameters of P .
A common assumption is that s = 0, while for a true
pinhole camera, αu = αv.
Given a set of world to image correspondences, one

may wish to find a matrix P that minimizes algebraic
error, subject to a set of constraints on P . Usually, this
will require an iterative solution. For instance, suppose
we wish to enforce the constraints s = 0 and αu = αv.
One can parametrize the camera matrix using the re-
maining 9 parameters ( pu, pv, α plus 6 parameters rep-
resenting the orientationR and location t of the camera).
Let this set of parameters be denoted collectively by q.
Then, one has a map p = g(q), where p is as before the
vector of entries of the matrix P. According to Theorem
2.2, minimizing algebraic error over all point matches is
equivalent to minimizing ||Mg(q)||. Note that the map-
ping q �→ Mg(q) is a mapping from R9 to R12. This
is a simple parameter-minimization problem that may
be solved using the Levenberg-Marquardt method. The
important point to note is the following :

Given a set of n world-to-image correspon-
dences, xi ↔ ui, the problem of finding a con-
strained camera matrix P that minimizes the
sum of algebraic distances

∑
i dalg(ui, Pxi)

2

reduces to the minimization of a function R9 →
R12, independent of the number n of correspon-
dences.

If this problem is solved using the Levenberg-
Marquardt (LM) method, then an initial estimate of the
parameters may be obtained by decomposing a camera
matrix P found using the DLT algorithm. A central
step in the LM method is the computation of the deriva-
tive matrix (Jacobian matrix) of the function being min-
imized, in this case Mg(q). Note that ∂Mg/∂q =
M∂g/∂q. Thus, computation of the Jacobian reduces
to computation of the Jacobian matrix of g, and subse-
quent multiplication by M .
Minimization of ||Mg(q)|| takes place over all values

of the parameters q. Note, however, that if P = K[R |



−Rt] with K as in (8) then P satisfies the condition
p2

31 + p2
32 + p2

3 = 1, since these entries are the same as
the last row of the rotation matrix R. Thus, minimizing
Mg(q) will lead to a matrix P satisfying the constraints
s = 0 and ku = kv and scaled such that p2

31+p
2
32+p

2
3 = 1,

and which in addition minimizes the algebraic error for
all point correspondences.

2.7 Experimental Evaluation

Experiments were carried out with synthetic data to
evaluate the performance of this algorithm. The data
were created to simulate a standard 35mm camera with
a 35mm focal length lens. A set of points were synthe-
sized inside a sphere of radius 1m, and the camera was
located at a distance of about 2.5m from the centre of
the sphere. The image is sampled so that the magnifi-
cation factors are αu = αv = 1000.0, the same in each
direction. This corresponds to a pixel size of 35µm for a
35mm camera.
Experiments were carried out to find the camera ma-

trix with four different assumptions on known camera
parameters.

1. The pixels are square : s = 0. The number of re-
maining degrees of freedom d for the camera matrix
is equal to 10.

2. The pixels are square and the pixels are square : s =
0 and αu = αv. This corresponds to the situation
for a true pinhole camera where image coordinates
are measured in a Euclidean coordinate frame. In
this case, d = 9.

3. In addition to the above assumptions, the principal
point (u0, v0) is assumed to be known. There remain
d = 7 degrees of freedom.

4. The complete internal calibration matrix K in (8)
is assumed to be known. However, the pose of the
camera is unknown. Thus d = 6.

To evaluate the performance of the algorithm, the re-
sult was compared with the optimal estimate with dif-
ferent degrees of noise. Thus, gaussian noise with a
given variance was added to the image coordinates of
each point, and the camera matrix was estimated. The
residual error was then computed, that is the difference
between the measured and projected pixel. It is known
(see [?]) that the expected lower bound on the root mean
squared residual error is equal to σ(1 − d/N)1/2 where
σ is the standard deviation of the input noise, N is the
number of measurements (in this case 2 × number of
points), and d is the number of degrees of freedom of
the object being estimated. This represents the perfor-
mance of an optimal estimation technique, and we can
not do better. Since the residual error appeared to grow
proportionally to injected noise (at least for noise levels
less than about 10 pixels), a value of v = 1 pixel was

used in the experiments. For each level of noise σ, the
camera matrix was estimated 100 times with different
noise. The residual error was averaged over all 100 runs
and compared to the optimal value.
Results of the experiments are shown in Fig 1. The

results show that minimizing algebraic error gives an al-
most optimal estimate of the camera matrix. In fact,
the residual error is scarcely distingushable from the op-
timal value. This is true in each of the four calibration
problem types tried.

3 Computation of the Fundamental
Matrix

We now turn to the computation of the Fundamental
Matrix. It will turn out that very similar methods apply
to its computation as were used in the DLT algorithm.
Given a set of correspondences ui ↔ u′i between two

images, the fundamental matrix is defined by the relation
u′Ti Fui = 0 for all i. In the presence of noise, this relation
will not hold precisely, and so one seeks a least-squares
solution. Note that the equation u′iFui = 0 is linear
in the entries of F. From 8 or more point matches, one
may solve for the entries of F by finding the least-squares
solution to a set of linear equations ([2]). Let the set of
equations be denoted by M f = 0. The vector M f has
components equal to u′Ti Fui, and ||M f ||2 =

∑
i(u
′
iFui)

2.
Thus, in this case, as before with the DLT algorithm ,
M f represents the algebraic error vector. Matrix F is
found my minimizing ||M f || subject to ||f || = 1.
The fundamental matrix F must, however satisfy a

constraint det F = 0, and this constraint will not gen-
erally be satisfied by the matrix F found by this linear
algorithm. One would therefore like to minimize the al-
gebraic error ||M f̂ || over all vectors f̂ corresponding to
singular matrices F̂.
In [2], the matrix F̂ was taken to be the closest sin-

gular matrix to F under Frobenius norm, where F is the
linear solution. This is not an especially good way of
proceeding, since it weights errors in each of the entries
of F equally. A preferable method is to proceed as with
the DLT. One parametrizes the matrix F̂ by a set of pa-
rameters q in a way so as to ensure it is singular. Then
letting f̂ = g(q), one uses an iterative algorithm to min-
imize ||Mg(q)||. This is the general scheme which will
be followed, but there are details to be filled out, and a
new twist will arise, which allows a parametrization with
only three parameters.

3.1 Parametrization of the Fundamental
Matrix

Consider the fundamental matrix F, which can be writ-
ten as a product F = Q[e]× where Q is a non-singular
matrix, and e is the epipole in the first image.
Suppose we wish to compute the fundamental matrix

F of the form F = Q[e]× that minimizes the algebraic
error ||Mf || subject to the condition ||f || = 1. The vector
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Figure 1: The residual error was averaged over 100 runs for each n = 6, . . . , 25, where n is the number of points
used to estimate the camera matrix. Four different levels of knowledge of the internal camera matrix were tried,
corresponding to the four different graphs. In each of the graphs, the solid line represents the result of our iterative
DLT algorithm, and the almost identical dotted line is the optimal estimate. In all four graphs, these two lines
are barely distinguishable. For comparison, the results of a further method are also plotted. In this method, the
complete calibration matrix K in (8) is estimated using the QR decomposition, and the known internal parameters
are subsequently set to their known values. This method performs very poorly for small numbers of points, lying well
off the graph, and is markedly inferior to the optimal estimation method even for larger numbers of points.



f is the 9-vector containing the entries of F. It has been
seen that the 8-point algorithm finds such an f , without
the condition that F = Q[e]×. We now wish to enforce
that condition.
Let us assume for now that the epipole e is known.

Later we will let e vary, but for now it is fixed. The
equation F = Q[e]× can be written in terms of the vectors
f and q comprising the entries of F and Q as an equation
f = Eq where E is a 9× 9 matrix. Supposing that f and
q contain the entries of the corresponding matrices in
row-major order, then it can be verified that E has the
form

E =


 [e]× [e]×

[e]×


 . (9)

Now, our minimization problem is : minimize ||MEq||
subject to the condition ||Eq|| = 1.1 This problem is
solved as follows. Let the Singular Value Decomposi-
tion of E be E = UDV�. It is easily seen that the ma-
trix E has rank 6, since each of the diagonal blocks has
rank 2. It follows that D has 6 non-zero diagonal en-
tries. Let U′ be the 9 × 6 matrix consisting of the first
6 columns of U, and let V′ consist of the first 6 columns
of V and let D′ be the top-left 6 × 6 minor of D, con-
taining the non-zero diagonal entries. The minimization
problem them becomes : minimize ||MU′D′V′�q|| subject
to ||U′D′V′�q|| = 1. This last condition is equivalent to
||D′V′�q|| = 1, since U′ has orthogonal columns. Now
writing q′ = D′V′�q, the problem becomes : minimize
||MU′q′|| subject to ||q′|| = 1, which is our standard min-
imization problem. The solution q′ is the singular vector
corresponding to the smallest singular value of MU′. Sub-
sequently, we can compute f = Eq = U′D′V′�q = U′q′,
and the algebraic error is Mf = MU′q′.
The complete algorithm is :

Algorithm3.3. Given the epipole e, find the funda-
mental matrix F of the form F = Q[e]× that minimizes
the algebraic error ||Mf || subject to ||f || = 1.

Solution :

1. Compute the SVD E = UDV�, where E is given in
(9).

2. Let U′ be the matrix comprising the first 6 columns
of U

3. Find the unit vector q′ that minimizes ||MU′q′||.

4. The required matrix F corresponds to the vector f =
U′q′, and the minimum algebraic error is Mf .

1It does not do to minimize ||MEq|| subject to the condition
||q|| = 1, since a solution to this occurs when q is a unit vector
in the right null-space of E. In this case, Eq = 0, and hence
||MEq|| = 0.

3.2 Iterative Estimation

The algorithm of the last section gives a way of com-
puting an algebraic error vector Mf given a value for the
epipole e. This mapping e �→ Mf is a map from R3toR9.
Note that the value of Mf is unaffected by scaling e.
Starting from a value of e derived as the generator of
the right null-space of an initial estimate of F, one may
iterate to find the final F that minimizes algebraic er-
ror. The initial estimate of F may be obtained from the
8-point algorithm, or any other simple algorithm.
Note the advantage of this method of computing F

is that the iterative part of the algorithm consists of
a very small parameter minimzation problem, involving
the estimation of only three parameters. Despite this,
the algorithm finds the fundamental matrix that min-
imizes the algebraic error for all matched points. The
matched points themselves do not come into the final
iterative estimation.

Simplifying the computation Because of the sim-
ple form of the matrix E, it is easy to compute its SVD
without having to resort to a full SVD algorithm. This
may be important in the iterative algorithm to achieve
maximum speed, since this SVD is computed repeat-
edly during the minimization. As seen in (9),the ma-
trix E has a diagonal block structure consisting of three
blocks [e]×. The SVD consequently has a correspond-
ing block-structure. Specifically, if [e]× = ÛD̂V̂

′
, then

the SVD of E = diag([e]×, [e]×, [e]×) is E = UDV� where
U = diag(Û, Û, Û), and similarly for D and V.
The SVD of [e]× itself can be computed easily as fol-

lows. Suppose that Û is an orthogonal matrix such that
eÛ = (0, 0, 1). Such a matrix Û is a Householder transfor-
mation and is easily computed ([1]). Then one sees that
[e]× = ±ÛZÛ� = ±Ûdiag(1, 1, 0)ẐÛ� = ±ÛD̂V̂� where

Z =


 0 −1 0
1 0 0
0 0 0


 ; Ẑ =


 0 −1 0
1 0 0
0 0 1




This is easily verified by observing that both [e]× and
±ÛZÛ� are skew-symmetric matrices with the same null-
space, generated by e in each case. We are interested
in Û′ consisting of the first two columns of Û. Turning
now to the SVD of E = diag([e]×, [e]×, [e]×), we see that
U′ = diag(Û

′
, Û
′
, Û
′
). If we partition the 9 × 9 matrix M

into blocks M = [M1, M2, M3] where each Mi has 3 columns,
then one computes that MU′ = [M1Û

′
, M2Û

′
, M3Û

′
]. Thus,

the computation of MU′ required in Algorithm 3.3 has
two simple steps

1. Compute the 3× 3 Householder matrix Û such that
e�Û = (0, 0, 1), and let Û

′
comprise its first two

columns.

2. Set MU′ = [M1Û
′
, M2Û

′
, M3Û

′
].



3.3 Experimental Evaluation of the Algorithm

A set of experiments were carried out similar to those in
[2]. One image from each pair of images used is shown in
Fig 2. These images contain a wide variation of measure-
ment noise and placement of the epipoles. For each pair
of images, a number n of matched points were chosen
and the fundamental matrix was computed. The funda-
mental matrix computed was shown evaluated against
the full set of all matched points, and the residual error
was computed. This experiment was done 100 times for
each value of n and each pair of images, and the average
residual error was plotted against n. This gives an idea
of how the different algorithms behave as the number of
points is increased.
The results of these experiments are shown and ex-

plained in Fig 3. They show that minimizing algebraic
error gives essentially indistinguishable results from min-
imizing the geometric error, but both perform better
than the linear normalized 8-point algorithm ([2]).

4 Computation of the Trifocal Tensor

The trifocal tensor ([5, 3]), relates the coordinates of
points or lines seen in three views in a similar way to
that in which the fundamental matrix relates points in
two views.
The basic formula relates a point u in one image and a

pair of lines λ′ and λ′′ in the other two images. Provided
there is a point x in space that maps to u in the first
image and a point on the lines λ′ and λ′′ in the other
two images, the following identity is satisfied :

uiλ′jλ
′′
kT

jk
i = 0 . (10)

Here we are using tensor notation, in which a repeated
index appearing in covariant (lower) and contravariant
(upper) positions implies summation over the range of
indices ( namely, 1, . . . , 3).
This equation may be used to generate equations given

either point or line correspondences across three images.
In the case of a line correspondence, λ ↔ λ′ ↔ λ′′

one selects two points u0 and u1 on the line λ, and for
each of these points one obtains an equation of the form
(10). In the case of a point correspondence u ↔ u′ ↔
u′′ one selects any lines λ′ and λ′′ passing through u′

and u′′ respectively. Then (10) provides one equation.
Four equations are generated from a single 3-view point
correspondence by choosing two lines through each of u′

and u′′, each pair of lines giving rise to a single equation.
The equations (10) give rise to a set of equations of

the form Mt = 0 in the 27 entries of the trifocal tensor.
From these equations, one may solve for the entries of the
tensor. As before, for any tensor T jki the value of Mt
is the algebraic error vector associated with the input
data.
Consider the analogy with the 8-point algorithm for

computing the fundamental matrix in the two-view case.

The fundamental matrix has a constraint detF = 0 that
is not in general precisely satisfied by the solution found
from linear algorithm. In the case of the trifocal tensor,
there are 27 entries in the tensor, but the camera geome-
try that it encodes has only 18 degrees of freedom. This
means that the trifocal tensor must satisfy 8 constraints,
apart from scale ambiguity to make up the 27 degrees of
freedom of a general 3× 3× 3 tensor. The exact form of
these constraints is not known precisely. Nevertheless,
they must be enforced in order that the trifocal tensor
should be well behaved. It will now be shown how this
can be done, while minimizing algebraic error.

Formula for the Trifocal Tensor. We denote the
three camera matrices P ′ and P ′′ by aij and bij respec-
tively, instead of by p′ij and p′′ij . Thus, the three cam-
era matrices P , P ′ and P ′′ may be written in the form
P = [I | 0], P ′ = [aij ] and P ′′ = [bij ].
In this notation, the formula for the entries of the

trifocal tensor is :

T jki = aji b
k
4 − aj4b

k
i . (11)

Our task will be to compute a trifocal tensor T jki of
this form from a set of image correspondences. The ten-
sor computed will minimize the algebraic error associ-
ated with the input data. The algorithm is quite similar
to the one given for computation of the fundamental ma-
trix. Just as with the fundamental matrix, the first step
is the computation of the epipoles.

4.1 Retrieving the epipoles

We consider the task of retrieving the epipoles from the
trifocal tensor. If the first camera has matrix P = [I |
0], then the epipoles e21 and e31 are the last columns
ai4 and bi4 of the two camera matrices P ′ = [aij ] and
P ′′ = [bij ] respectively. These two epipoles may easily be
computed from the tensor T jki according to the following
proposition.

Proposition 4.4. For each i = 1, . . . , 3, the matrix T ··i
is singular. Furthermore, the generators of the three left
null-spaces have a common perpendicular, the epipole
e21. Similarly epipole e31 is the common perpendicular
of the right nullspaces of the three matrices T ··i .

This proposition translates easily into an algorithm
for computing the epipoles ([5, 3]). This algorithm may
be applied to the tensor T jki obtained from the linear
algorithm to obtain a reasonable approximation for the
epipoles.

4.2 Constrained Estimation of the Trifocal
Tensor

From the form (11) of the trifocal tensor, it may be seen
that once the epipoles e21 = aj4 and e31 = bk4 are known,
the trifocal tensor may be expressed linearly in terms of
the remaining entries of the matrices aji and bki .



Figure 2: The images used in the experiments
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Figure 3: Results of the experimental evaluation of the algorithms. In each case, three methods of computing F were
compared. In each graph, the top (solid) line shows the results of the normalized 8-point algorithm. Also shown are
the results of minimizing geometric error and algebraic error, using the algorithm of this paper. In most cases, the
result of minimizing algebraic error is almost indistinguishable from minimizing geometric error. Both are noticeably
better than the non-iterative 8-point algorithm, though that algorithm gives reasonable results.



Assuming the epipoles aj4 and bk4 to be known, we
may write t = Ha where a is the vector of the re-
maining entries aij and bij, t is the vector of entries of
the trifocal tensor, and H is the linear relationship ex-
pressed by (11). We wish to minimize the algebraic error
||Mt|| = ||MHa|| over all choices of a constrained such
that ||a|| = 1. The solution is the eigenvector corre-
sponding to the least eigenvalue of H�M�MH .
In solving this set of equations to find a it is ad-

visable to restrict the dimensionality of the solutions
set by applying the constraint that

∑
i a
i
4a
i
j = 0 for

each j = 1, . . . , 3. This constraint is discussed in [5,
3]. Given that ai4 is known, it is a linear constraint that
may be expressed by a matrix equation Ca = 0. Thus,
the minimization problem is to minimize ||MHa|| sub-
ject to the ||a|| = 1 and the linear constraint Ca =
0. This may be done by the algorithm given in [5,
3].
Writing t̂ = Ha where a is the solution vector, we see

that t̂ minimizes algebraic error ||M t̂|| subject to the
condition that T jki is of the correct form (11), for the
given choice of epipoles.

Iterative Solution The two epipoles used to compute
a correct constrained tensor T jki are computed using
the estimate of T jki obtained from the linear algorithm.
Analogous to the case of the fundamental matrix, the
mapping (e21, e31) �→ MHa is a mapping R6 → R27. An
application of the Levenberg-Marquardt algorithm to op-
timize the choice of the epipoles will result in an optimal
(in terms of algebraic error) estimate of the trifocal ten-
sor. Note that the iteration problem is of modest size,
since only 6 parameters, the homogeneous coordinates
of the epipoles, are involved in the iteration problem.
This contrasts with an iterative estimation of the op-

timal trifocal tensor in terms of geometric error. This
latter problem would require estimating the three cam-
era paramters, plus the coordinates of all the points, a
large estimation problem.

5 Conclusion

Experimental evidence backs up the assertion that min-
imizing algebraic distance can usually give good results
at a fraction of the computation cost associated with
minimizing geometric distance. The great advantage of
the method for minimizing algebraic error given in this
paper is that even for problems that need an iterative
solution the size of the iteration problem is very small.
Consequently, the iteration is very rapid and there is re-
duced risk of falling into a local minimum, or otherwise
failing to converge.
The method has been illustrated by applying it to

three problems. For the computation of the fundamental
matrix, iteration is over only three homogeneous param-
eters. For the trifocal tensor, iteration is over 6 param-
eters. This leads to more efficient methods than have

been previously known.
The general technique is applicable to problems other

than those treated here. It may be applied in a straight-
forward manner to estimation of projective transforma-
tions between 2 or 3-dimensional point sets. In these
problems, iteration is necessary if one restricts the class
of available transformations to a subgroup of the projec-
tive group, such as planar homologies (used in [6]), or
conjugates of rotations ([4]).
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