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1 Introduction

Notation : The symbol u (in bold type) represents a column vector. We
will use the letters u, v and w for homogeneous coordinates in image-space In
particular, the symbol u represents the column vector (u, v, w)�. Object space
points will also be represented by homogeneous coordinates x, y, z and t, or more
often x, y, z and 1. The symbol x will represent a point in three-dimensional
projective plane represented in homogeneous coordinates.

When a vector is represented by a single letter (for example a), it is assumed to
be a column vector. The correponding row vector is written a�. On the other
hand (a1, a2, a3) represents a row vector. The corresponding column vector is
denoted by (a1, a2, a3)�

If two vectors or matrices, A and B are equal up to a non-zero scale factor, then
we write A ≈ B to express this fact.

If A is a square matrix then its matrix of cofactors is denoted by A∗. The
following identities are well known : A∗A = AA∗ = det(A)I where I is the
identity matrix. In particular, if A is an invertible matrix, then A∗ ≈ (A�)−1.

2 Camera Models

The general model of a perspective camera that will be used here is that repre-
sented by an arbitrary 3× 4 matrix, P , of rank 3, known as the camera matrix.
The camera matrix transforms points in 3-dimensional projective space to points
in 2-dimensional projective space according to the equation

u = Px

where u = (u, v, w)� and x = (x, y, z, 1)�. The camera matrix P is defined
up to a scale factor only, and hence has 11 independent entries. This was the
representation of the imaging process considered by Strat [9]. As shown by
Strat, this model allows for the modeling of several parameters, in particular:

2



1. The location and orientation of the camera.

2. The principal point offsets in the image space.

3. Unequal scale factors in two directions parallel to the axes in image space.

This accounts for 10 of the total 11 entries in the camera matrix. It may be
seen that if unequal stretches in two directions not aligned with the image axes
are allowed, then a further 11-th camera parameter may be defined. Thus, the
imaging model considered here is quite general. In practical cases, the focal
length (magnification) of the camera may not be known, and neither may be
the principal point offsets. Strat [9] gives an example of an image where the
camera parameters take on surprising values. Our purpose in treating general
camera transforms is to avoid the necessity for arbitrary assumptions about the
image.

In general it will be assumed that the camera matrix P can be subdivided into
blocks as P = (M | −MT ) where M is a 3 × 3 non-singular matrix and T
is a column vector. The assumption of non-singularity of M means precisely
that the camera is not at infinity. That is, we are assuming perspective, rather
than orthographic projection. This is not a serious restriction, since a projective
transformation of 3-space can be applied to bring the camera to a non-infinite
point without altering the validity of much of the discussion.

So, given that P = (M | −MT ) with M non-singular, the QR-factorization
([5]) method may be applied to matrix M to provide a factorization M = KR,
where R is a rotation matrix and K is upper triangular. So we may write

P = (M | −MT ) = K(R | −RT ) . (1)

The upper-triangular matrix K represents the “internal parameters” of the cam-
era and may be thought of as describing a transformation in image space. The
task of determining the internal parameters of the camera is known as “calibra-
tion”. Matrix (R | −RT ) represents the “external parameters” of the camera
and describes a transformation of coordinates in object space. The reason for
writing the external parameter matrix in the form (R | −RT ) will be explained
now.

The matrix of external parameters represents a simple pinhole camera model. If
the camera is located at a point T ′ = (tx, ty, tz, 1)� with orientation represented
by the rotation matrix R′ relative to a fixed coordinate frame , then a simple
pinhole camera model will take a point x = (x, y, z, 1)� to u = (u, v, w)� =
R′ ((x, y, z)� − (tx, ty, tz)�). Using homogeneous coordinates in both object
and image space, this equation may be represented in matrix form as

u = (R′ | −R′T ′)x
Comparing this equation with (1) it may be seen that vector T = T ′ represents
the location of the camera, and R = R′ is the rotation of the camera.
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3 Calibrated Cameras

First, I will derive the 8-point algorithm of Longuet-Higgins in order to fix
notation and to gain some insight into its properties. Alternative derivations
were given in [11] and [12]. This section deals with calibrated cameras, that is,
the matrix K of internal camera parameters is assumed to be the identity.

3.1 The 8 point Algorithm

We consider the case of two cameras, one of which is situated at the origin of
object space coordinates, and one which is displaced from it. Thus the two
camera matrices are assumed to be P = (I | 0) and P ′ = (R | −RT ).

A transformation will now be defined between the 2-dimensional projective plane
of image coordinates in image 1 and the pencil of epipolar lines in the second
image. As is well known, given a point u = (u, v, w)� in image 1, the corre-
sponding point u′ = (u′, v′, w′)� in image 2 must lie on a certain epipolar line,
which is the image under P ′ of the set L of all points (x, y, z, 1)� which map
under P to u. To determine this line one may identify two points in L, namely
the camera origin (0, 0, 0, 1)� and the point at infinity, (u, v, w, 0)�. The images
of these two points under P ′ are −RT and Ru respectively and the line that
passes through these two points is given in homogeneous coordinates by the
cross product,

(p, q, r)� = RT ×Ru = R (T × u) . (2)
Here (p, q, r)� represents the line pu′ + qv′ + rw′ = 0.

Now, a new piece of notation will be introduced. For any vector t = (tx, ty, ty)�

we define a skew-symmetric matrix, S(t) according to

S(t) =


 0 −tz ty

tz 0 −tx
−ty tx 0


 . (3)

An important fact about S(t) is given by

Proposition 1. For any vectors t and u, t× u = S(t)u.

Matrix S(t) is a singular matrix of rank 2, unless t = 0. Furthermore, the null-
space of S(t) is generated by the vector t. This means that t� S(t) = S(t) t = 0
and that any other vector annihilated by S(t) is a scalar multiple of t.

With this notation, equation (2) may be written as

(p, q, r)� = RS(T )u . (4)
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Since a point u′ in the second image corresponding to u must lie on the epipolar
line, we have the important relation

u′�Qu = 0 (5)

where Q = RS(T ). This relationship is due to Longuet-Higgins ([11]).

As is well known, given 8 correspondences or more, the matrix Q may be com-
puted by solving a (possibly overdetermined) set of linear equations. In order
to compute the second camera transform, P ′, it is necessary to factor Q into
the product RS of a rotation matrix and a skew-symmetric matrix. Longuet-
Higgins ([11]) gives a rather involved, and apparently numerically somewhat
unstable method of doing this. I will give an alternative method of factoring
the Q matrix based on the Singular Value Decomposition ([?]). The following
result may be verified.

Theorem 2. A 3× 3 real matrix Q can be factored as the product of a rotation
matrix and a non-zero skew symmetric matrix if and only if Q has two equal
non-zero singular values and one singular value equal to 0.

A proof is contained in [10]. This theorem leads to an easy method for factoring
any matrix into a product RS, when possible.

Theorem 3. Suppose the matrix Q can be factored into a product RS where R
is orthogonal and S is skew-symmetric. Let the Singular Value Decomposition of
Q be UDV � where D = diag(k, k, 0). Then up to a scale factor the factorization
is one of the following:

S ≈ V ZV � ; R ≈ UEV � or UE�V � ; Q ≈ RS . (6)

where

E =


 0 1 0
−1 0 0
0 0 1


 , Z =


 0 −1 0

1 0 0
0 0 0


 . (7)

Proof. That the given factorization is valid is true by inspection. It was shown
in [11] that there are only two possible factorizations of the matrix Q, so they
must be the ones given in (6). ��

For the factorization given in (6) the translation vector T is equal to V (0, 0, 1)�

since this ensures that ST = 0 as required by (3). Furthermore ||T || = 1,
which is a convenient normalization suggested in [11]. As remarked by Longuet-
Higgins, the correct solution to the camera placement problem may be chosen
based on the requirement that the visible points be in front of both cameras
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([11]). There are four possible rotation/translation pairs that must be con-
sidered based on the two possible choices of R and two possible signs of T .
Therefore, since −RT = −UEV � V (0, 0, 1)� = −U(0, 0, 1)� the requisite cam-
era matrix P ′ = (R | −RT ) is equal to (UEV � | −U(0, 0, 1)�) or one of the
obvious alternatives.

3.2 Numerical Considerations

In any practical application, the matrix Q found will not factor exactly in the
required manner because of inaccuracies of measurement. In this case, the
requirement will be to find the matrix closest to Q that does factor into a
product RS. To quantify the notion of “closeness” of two matrices, we use the
(Frobenius norm [?]), which is defined by

||X || =
(∑

X2
ij

)1/2

for any matrix X . A useful property of the Frobenius norm is

Lemma4. If U is an orthogonal matrix, then ||X || = ||UX || for any matrix X.

The proof is straightforward, and is therefore omitted.

Given Q, we wish to find the matrix Q′ = RS such that ||Q−Q′|| is minimized.
The following theorem gives the solution to that problem, and shows that the
factorization given 6 is numerically optimal.

Theorem 5. Let Q be any 3× 3 matrix and Q = UDV � be its Singular Value
Decomposition in which D = diag(r, s, t) and r ≥ s ≥ t. Define the matrix Q′

by Q′ = UD′V � where D′ = diag(k, k, 0) and k = (r + s)/2. Then Q′ is the
matrix closest to Q in Frobenius norm which satisfies the condition Q′ = RS,
where R is a rotation and S is skew-symmetric. Furthermore, the factorization
is given up to sign and scale by (6).

The proof of Theorem 5 will be given in a series of lemmas. The first lemma
gives bounds for the singular values of a matrix in terms of the entries of the
matrix.

Lemma6. Suppose X is a matrix with singular values s1, s2, . . . sn where s1 is
the largest and sn is the smallest. Let c be any column of X, then sn ≤ ||c|| ≤ s1.

Proof. Let X = UDV � be the Singular Value Decomposition of X , and D =
diag(s1, s2, . . . , sn). Let the i-th column of DV � be c′i and the i-th row of V
be vi�. Then, c′i = (s1vi1, s2vi2, . . . , snvin)�. Therefore, sn||vi�|| ≤ ||c′i|| ≤
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s1||vi�||, and so sn ≤ ||c′i|| ≤ s1, since ||vi�|| = 1. Now the i-th column of
X = UDV � is ci = Uc′i. The required result now follows from the fact that
||Uc′i|| = ||c′i||. ��

As a simple consequence of Lemma 6, we have

Lemma7. Suppose

X = U diag(r, s, t)V � =


 a b c

d e f
g h j




with r ≥ s ≥ t ≥ 0 and U , V orthogonal. Then

1. t2 ≤ c2 + f2 + j2 .

2. rs ≥ ae− bd .

Proof. The first statement of Lemma 7 follows directly from Lemma 6. To
prove the second statement, note that ae− bd is one of the entries of the matrix
X∗, whereas rs is the largest singular value of X∗ = U diag(st, rt, rs)V �. By
Lemma 6, the largest singular value of any matrix is greater than any individual
element in the matrix. ��

We are now ready to prove the particular case of Theorem 5 for the case where
Q is a diagonal matrix.

Lemma8. Let Q = diag(r, s, t) with r ≥ s ≥ t ≥ 0 and Q′ = diag(λ, λ, 0) where
λ = (r + s)/2. If Q′′ is any other matrix of the form Q′′ = U�D′′V where
D′′ = diag(λ, λ, 0), and λ > 0, then

||Q−Q′′|| ≥ ||Q−Q′||.

Proof. Since ||Q−Q′′|| = ||UQV � − UQ′′V �|| = ||UQV � −D′′|| it is sufficient
to prove that for all U , V and D′′,

||UQV � −D|| ≥ ||Q−Q′|| .

Let UQV � be the matrix denoted X in Lemma 7. By choosing a different Q
if necessary to change the signs and order of the rows of UQV �, it may be
assumed that a ≥ e ≥ j ≥ 0, since this can be done without increasing the
value of ||UQV � − D′′||. Furthermore, this norm takes on its minimum value
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when the non-zero singular values of D′′ are equal to (a + e)/2, and so we may
assume that this is the case. Let

E1 = ||Q−Q′||2

= 2
(
r − s

2

)2

+ t2

= (r2 + s2 + t2)/2 + (t2/2− rs)

and

E2 = 2
(
a− e

2

)2

+ (b2 + c2 + d2 + f2 + g2 + h2 + j2) .

We need to prove that E1 ≤ E2. Now since U and V are orthogonal, ||UQV �|| =
||Q||, byLemma4. In other words, r2 + s2 + t2 = a2 + b2 + · · ·+ j2. Therefore,

E1 =
a2 + b2 + · · ·+ j2

2
+

t2

2
− rs

= 2
(
a− e

2

)2

+ b2 + c2 + d2 + f2 + g2 + j2

+ae− (b2 + c2 + d2 + f2 + g2 + j2)/2 + t2/2− rs

= E2 − (b2 + d2)/2− (c2 + f2 + j2)/2− g2/2 + (ae− rs) + t2/2

Now, using the inequalities of Lemma 7 we have

E1 ≤ E2 − (b2 + d2)/2− g2/2 + bd
= E2 − (b − d)2/2− g2/2
≤ E2

as required. ��

Now we can prove Theorem 5.

Proof. Suppose Q′′ = U ′′D′′V ′′� and D′′ = diag(λ, λ, 0). Then

||Q−Q′′|| = ||UDV � − U ′′D′′V ′′�||
= ||D − (U�U ′′)D′′(V ′′�V )||
≥ ||D −D′|| by Lemma 8
= ||Q−Q′|| by Lemma 4

��

3.3 Algorithm Outline

The algorithm for computing relative camera locations for calibrated cameras
is as follows.
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1. Find Q by solving a set of equations of the form (5).

2. Find the Singular Value DecompositionQ = UDV � , where D = diag(a, b, c)
and a ≥ b ≥ c.

3. The transformation matrices for the two cameras are P = (I | 0) and P ′

equal to one of the four following matrices.

(UEV � | U(0, 0, 1)�)
(UEV � | −U(0, 0, 1)�)
(UE�V � | U(0, 0, 1)�)
(UE�V � | −U(0, 0, 1)�)

The choice between the four transformations for P ′ is determined by the re-
quirement that the point locations (which may be computed once the cameras
are known [11]) must lie in front of both cameras. Geometrically, the camera
rotations represented by UEV � and UE�V � differ from each other by a ro-
tation through 180 degrees about the line joining the two cameras. Given this
fact, it may be verified geometrically that a single pixel-to-pixel correspondence
is enough to eliminate all but one of the four alternative camera placements.

4 Epipolar Geometry

We consider two cameras C and C′ in space. Data related to one of the cameras
will be denoted using unprimed quantities, and the corresponding data for the
second camera will be denoted using primed quantities. The images correspond-
ing to the two cameras will be denoted by J and J ′ respectively. We suppose
that the two cameras are imaging a common set of points. We investigate the
correspondence between where a point is seen in one image and where it is seen
in the other. Consider a point x in space which is imaged at position u in
the first image, J . Knowing u, it may be deduced that the point x must lie
somewhere on a line in space, denoted locus(x), extending radially from the
camera centre of camera C. This line locus(x) will be imaged by camera C′

as a line, temporarily denoted L(u), representing the locus of possible image
points u′ for a point that is imaged at u in the first image. Line L(u) is known
as the epipolar line corresponding to u. Since the line locus(x) passes through
the camera centre of C, the corresponding epipolar line L(u) must pass through
the point in image J ′ at which the first camera is seen in the second image. In
other words, as u varies, the lines L(u) are all concurrent. The common point of
intersection is known as the epipole, p′. Reversing the roles of the two cameras
we may define an epipole, p in the first image. Now, given a pair of coordinates,
u and u′ which are the images in J and J ′ of a common point x in space, then
point u′ must lie on the epipolar line L(u), and u must lie on the epipolar line
L(u′).
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We consider a general pair of camera matrices represented by P = (M | −MT )
and P ′ = (M ′ | −M ′T ′) and suppose that {u} and {u′} are matching sets of
image points as seen by the two cameras. The essential matrix Q corresponding
to the matching points was defined by Longuet-Higgins ([11]) to be a matrix
defined by the relation

ui�Qui = 0
for all i. We will determine what the form of the matrix Q is in terms of P and
P ′. First, however, we need some algebraic lemmas.

Proposition 9. For any 3× 3 matrix M and vector t

M∗S(t) = S(Mt)M

This formula is true without any restriction on M , as may be verified by direct
computation, perhaps using a symbolic manipulation program such as Math-
ematica [13]. This proposition leads us to a property of the vector (cross)
product.

Corollary 10. If M is any 3× 3 matrix, and u and v are column vectors, then

(Mu)× (Mv) = M∗(u× v) . (8)

Proof.

(Mu)× (Mv) = S(Mu)Mv by Proposition 1
= M∗S(u)v by Proposition 9
= M∗(u× v) by Proposition 1

��

Now it is possible to give the form of the essential matrix for uncalibrated
cameras.

Theorem 11. The essential matrix corresponding to the pair of camera matrices
(M | −MT ) and (M ′ | −M ′T ′) is given by

Q ≈M ′∗M� S(M(T ′ − T )) .

Proof. As with calibrated cameras (see Section 3.1), it is possible to determine
the epipolar line corresponding to a point u in image 1. Two points that must
lie on the ray from the first camera center extending through the point u are the

camera center
(

T
1

)
of the first camera and the point at infinity

(
M−1u

0

)
.
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Transform P ′ takes these two points to the points M ′T −M ′T ′ and M ′M−1 u.
The line through these points is given by the cross product

M ′(T − T ′)×M ′M−1u . (9)

Using (8) it is easy to evaluate the cross product (9).

M ′(T − T ′)×M ′M−1u ≈M ′∗M�((M(T − T ′))× u) (10)

Now, writing S = S(M(T−T ′)) as defined in (3), the epipolar line corresponding
to the point u in image 1 is given by :

(p, q, r)� ≈M ′∗M�Su . (11)

Furthermore, setting Q = M ′∗M�S

u′Qu� = 0 . (12)

��

We may use Lemma 9 to give a different form for the essential matrix.

Proposition 12. The essential matrix corresponding to the pair of camera ma-
trices (M | −MT ) and (M ′ | −M ′T ′) is given by

Q ≈M ′∗ S(T ′ − T ) .M−1

Proof. If M is invertible, it follows from Lemma 9 that M� S(MT ) = S(T )M−1

and so the required formula follows immediately from Theorem 11. ��

From this, we may deduce a useful fact.

Proposition 13. If Q is the essential matrix corresponding to a pair of cameras
(P, P ′), then Q� is the essential matrix corresponding to the pair (P ′, P ).

Proof. Taking the transpose of the matrix Q given in Proposition (12) simply
reverses the roles of P and P ′. ��

4.1 Condition for Q to be an essential matrix.

We may call any matrix that arises from a pair of camera matrices according to
the formula given in Proposition (12) an essential matrix. We can give the
following characterization of essential matrices.

Proposition 14. The following three conditions are equivalent for any 3×3 real
matrix Q.
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1. Q is an essential matrix.

2. Q can be factored as a product Q = RS, where S is a non-zero skew-
symmetric matrix and R is non-singular.

3. Q has rank 2.

Proof. Proposition 11 shows that an essential matrix can be factored as Q = RS.
Conversely, if Q = RS(T ) where R is non-singular, then Q is the essential matrix
corresponding to the pair (I | 0) and (R∗ | −R∗−1T ). Hence, conditions 1 and
2 are equivalent. Further, since a non-zero skew-symmetric matrix has rank 2,
condition 2 implies condition 3. It remains to prove that condition 3 implies
condition 2. Therefore, suppose that Q has rank 2, and let the singular value
decomposition of Q be Q = UDV � where U and V are orthogonal and D is a
diagonal matrix diag(r, s, 0), where r and s are non-zero. Defining matrices E
and Z as in (7), it can be be seen that Q factors as

Q =
(
Udiag(r, s, 1)EV �

)
.
(
V ZV �

)
(13)

The first bracketed term of this product is non-singular, and the second is skew-
symmetric. This completes the proof. ��

4.2 Interpretation of the matrix Q

We list some properties of the essential matrix Q.

Proposition 15. Suppose that Q is the essential matrix corresponding to a pair
of images (J, J ′).

1. If u is a point in image J , then the corresponding epipolar line, L(u) in
image J ′ is equal to Qu.

2. If u′ is a point in image J ′, then the corresponding epipolar line, L(u′) in
image J is equal to Q�u′.

3. If u and u′ are corresponding points in the two images, then u′�Qu = 0.

4. The epipole p is the unique point such that Qp = 0

5. Let u1 and u2 be points in J , neither of which is equal to the epipole p.
Points u1 and u2 are on the same epipolar line if and only if Qu1 ≈ Qu2.

Proof.

1. The derivation of Q given in Theorem 11 showed that Q has this property.
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2. Reversing the roles of the two cameras is equivalent to replacing Q by Q�

as was shown in Proposition 13.

3. This property expresses the fact that the point u′ must lie on the epipolar
line Qu.

4. The epipole p is characterized by the fact that for any point u′, the epipo-
lar line L(u′) = Q�u′ passes through p. This means that p�Q�u′ = 0 for
all u′, and hence p�Q� = 0. In using the phrase “unique point such that
Qp = 0”, the solution p = (0, 0, 0)� is excluded as not being a valid set of
homogeneous coordinates. Further, since we are dealing in homogeneous
coordinates, non-zero scale factors are insignificant.

5. If u1 and u2 are on the same epipolar line, then there exist parameters α
and β such that u2 = αu1 + βp, from which it follows that Qu1 ≈ Qu2,
since Qp = 0. Conversely, suppose Qu1 ≈ Qu2. Then, there exists α such
that Q(u1 + αu2) = 0. From this it follows by the characterization of p
that p ≈ u1 + αu2, and so u1 and u2 lie on the same line through p.

��

In the same way that part 2 of Theorem 15 is derived from part 1, it is possible
to derive from parts 4 and 5 of the theorem corresponding statements relating
to points in the second image J ′ in which Q is replaced by Q�.

Part 5 of Proposition 15 shows that Q defines a one-to-one correspondence
between the pencil of epipolar lines in one image and the pencil of epipolar lines
in the other image. This correspondence may be understood geometrically as
follows. If P is a plane in 3-space passing through the two camera centres, then
the image of the plane in each camera is an epipolar line, and so P defines a pair
of corresponding epipolar lines. As P varies, the complete pencil of epipolar
lines is traced out in each image. It should be remarked that Q acts not by
mapping the coordinates of a line in one image to the coordinates of a line in
the other image, but rather by mapping the coordinates of an arbitrary point
on an epipolar line in the first image to the coordinates of the corresponding
epipolar line in the second image.

5 Computation of the Essential Matrix

We now consider the computation of the essential matrix Q from a set of image
correspondences {ui} ↔ {u′i}. First, of all it will be seen that the essential
matrix can be computed using only 7 points. Higgins [11] gave a method for
computing Q from 8 points or more. The method of computing Q from only
7 points is non-linear in contrast to the method of [11] but it is sufficiently
simple to be useful if the number of matched points is only 7. In using only 7
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matched points to compute the essential matrix accuracy of the matched points
is essential, otherwise the result can be badly wrong.

The essential matrix, Q, has 7 degrees of freedom. The matrix has 9 entries, but
the scale is insignificant, so we are reduced to 8 degrees of freedom. Furthermore,
the determinant of Q must equal zero, and this accounts for one more degree
of freedom, reducing the number to 7. It should be no surprise therefore, that
Q may be computed from only seven matched points. On the other hand, any
number fewer than 7 of arbitrary matched points is insufficient to compute the
essential matrix. This is in contrast with known methods for computing the
essential matrix from only 5 matched points ([?]) in which the essential matrix
computed is that of a calibrated camera, and is therefore more restricted, having
only 5 degrees of freedom.

5.1 Solution given 7 image correspondences

Suppose that we have seven image-to-image correspondences. From this we can
get seven linear equations in terms of the entries of the matrix Q, given by
u′i
�Qui = 0. Since the matrix is defined only up to a scale factor one of the

entries in the matrix could be chosen to have a value of 1, for instance q11 = 1.
This choice could cause trouble if the actual value of q11 were equal to zero, and
hence we prefer to proceed slightly differently.

We have a set of seven linear equations in nine unknowns. If these equations are
not linearly independent, then the image-to-image correspondences have been
badly chosen, and the system is underdetermined. There will be a family of solu-
tions for the essential matrix. We will not investigate here the problem of spec-
ifying which systems of image correspondences are degenerate. This problem
was considered for the case of callibrated cameras in [?] and [?]. Assuming that
the equations are linearly independent, then the solution set is two-dimensional
and it is possible to find the solution in terms of two parameters λ and µ. Each
qij will be a homogeneous linear expression in λ and µ. Then substituting for
each qij , equation det(Q) = 0 gives a homogeneous cubic equation in λ and
µ. This equation may be solved to find solutions (λ, µ) such that λ2 + µ2 = 1.
The solutions (λ, µ) = (1, 0) and (λ, µ) = (0, 1) may be checked individually. If
neither solution exists, then we can solve for the ratio λ/µ by solving a cubic
equation in one variable. The cubic may be solved either numerically or else by
using an exact formula ([?]). Finally, the value or values for λ and µ may be
used to compute the values of qij .

Since a cubic equation has at most three solutions of which at least one is real,
we have the following existence theorem for essential matrices.

Theorem 16. If {ui} ↔ {u′i} is a set of seven image correspondences in general
position, then there exist at least one and at most three essential matrices Q such
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that
u′i
�Qui = 0

for all i.

The phrase “general position” is used as in [?] to exclude special degenerate
cases in which the the linear equation set given by the point correspondences is
rank deficient, or in which the resulting matrix Q has rank less than 2. Such
degenerate cases are nowhere dense in the set of all possible image correspon-
dences. Theorem 16 giving a count on the number of solutions is related to
the main result of [?] where it is shown that for calibrated cameras, 5 image-
to-image correspondences give rise to at most 10 solutions and the question is
asked what happens when 6 or 7 image correspondences are known. This the-
orem solves that problem for 7 image correspondences under a less restrictive
definition of the camera model. Theorem 16 relates to uncalibrated cameras,
whereas [?] consider calibrated cameras.

5.2 Solution given 8 or more points

The method of solving for the essential matrix given 8 image correspondences
or more is well known but will be repeated here for later reference. Each image
correspondence gives rise to an equation u′i

�Qui = 0 in the entries of Q. The
complete set of such correspondences may be written as a possibly overcon-
strained set of equations Ax = 0 where x is a vector containing the entries of Q.
It must be assumed that A has rank at least 8, otherwise we are dealing with
a degenerate set of image correspondences. Since we do not expect an exact
solution, the problem becomes

Problem 17. Minimize ||Ax|| subject to ||x|| = 1.

Solution This problem is easily solved by taking the Singular Value Decom-
position A = UDV � of A. Here, D is a diagonal matrix and V is a 9 × 9
orthogonal matrix. Writing x′ = V �x, since V is orthogonal, ||x|| = ||x′|| and
the problem now becomes : minimize ||UDx′|| subject to ||x′|| = 1. Since U
is orthogonal, this becomes : minimize ||Dx′|| subject to ||x′|| = 1. Now D is
diagonal so the solution is x′ = ej where ej is the vector containing all zeros,
except for a 1 in the j-th position, and j is the index of column of D containing
the smallest singular value. The solution to the original problem is now given
by x = V x′ = Vj where Vj is the j-th column of V . ��
The solution given by the method described here will not in general give rise
to a matrix Q with determinant zero, hence not a valid essential matrix. If
the matrix is used to analyze the epipolar geometry, then the fact that Q is
not singular means that the lines Qu as u ranges over points of the first image
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will not be concurrent. Therefore, in many applications it will be appropriate
to find the nearest valid essential matrix to the matrix Q found by the above
algorithm. The following theorem shows how this is done.

Theorem 18. If X is any non-singular 3 × 3 matrix with Singular Value De-
composition X = U diag(r, s, t)V � where r ≥ s ≥ t ≥ 0, then the nearest (in
Frobenius norm) rank 2 matrix to X is given by X ′ = U diag(r, s, 0)V �.

Proof. As with the proof of Theorem 5, we begin by proving this theorem in the
case where X is diagonal, say X = diag(r, s, t) Now if X ′′ is the matrix U�DV
where D′′ = diag(r′′, s′′, t′′), then writing

UQV � =


 a b c

d e f
g h j




we see that

||UQV � −D′′||2 = (a− r′′)2 + b2 + c2 + d2 + (e− s′′)2 + f2 + g2 + h2 + j2

≥ c2 + f2 + j2

≥ t2 by Lemma 7
= ||Q−Q′||2

.

From this it follows that ||Q−Q′′|| ≥ ||Q−Q′|| for the case where Q is diagonal.
The general case may be proven using the same argument as in the proof of
Theorem 5. ��

6 Realization of Essential Matrices.

Given camera matrices P and P ′ and an essential matrix Q satisfying the rela-
tionship expressed in Theorem 11, we say that P and P ′ give rise to the matrix
Q, or conversely that {P, P ′} is a realization of the essential matrix Q. The
realization of an essential matrix by a pair of camera matrices is not unique,
and the goal of this section is to see which camera matrix pairs may realize a
given essential matrix.

As is indicated by Proposition (14), an essential matrix Q factors into a product
Q = RS, where R is a non-singular matrix and S is skew-symmetric. The next
lemma shows to what extent this factorization is unique.

Proposition 19. Let the 3 × 3 matrix Q factor in two different ways as Q ≈
R1S1 ≈ R2S2 where each Si is a non-zero skew-symmetric matrix and each Ri
is non-singular. Then S2 ≈ S1 ≈ S(t) for some vector t uniquely determined
up to a non-zero scale factor. Further, R2 = R1 + a.t� for some vector a.
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Proof. Since R1 and R2 are non-singular, it follows that Qt = 0 if and only if
Sit = 0. From this it follows that the null-spaces of matrices S1 and S2 are
equal, and so S1 ≈ S2. Matrices R1 and R2 must both be solutions of the linear
equation Q ≈ RS. Consequently, they differ by the value a.t� as required. ��

We now prove a theorem which indicates when two pairs of camera matrices
correpond to the same essential matrix.

Theorem 20. Let {P1, P
′
1} and {P ′2, P ′2} be two pairs of camera transforms.

Then {P1, P
′
1} and {P2, P

′
2} correspond to the same essential matrix Q if and

only if there exists a 4 × 4 non-singular matrix H such that P2H = P1 and
P ′2H = P ′1.

Proof. First we prove the if part of this theorem. To this purpose, let {x(1)
i } be

a set of at least 8 points in 3-dimensional space and let {ui} and {u′i} be the
corresponding image-space points as imaged by the two cameras P1 and P ′1. By
the definition of the essential matrix, Q is defined by the condition

u′i
�Qui = 0

for all i. We may assume that the points {x(1)
i } have been chosen in such a

way that the matrix Q is uniquely defined up to scale by the above equation.
The point configurations to avoid that defeat this definition of the Q matrix are
discussed in [?], [?]. Suppose now that there exists a 4× 4 matrix H taking P1

to P2 and P ′1 to P ′2 in the sense specified by the hypotheses of the theorem. For
each i let x(2)

i = H−1x(1)
i . Then we see that

P2x
(2)
i = P1HH−1x(1)

i = P1x
(1)
i = ui

and the same holds for the primed system. In other words, the image points
{ui} and {u′i} are a matching point set with respect to the cameras P2 and P ′2,
corresponding to a set of object-space points {x(2)

i }. The essential matrix for
this pair of cameras is defined by the same relationship

u′i
�Qui = 0

that defines the essential matrix of the pair P1 and P ′1. Consequently, the two
camera pairs have the same essential matrix.

Now, we turn to the only if part of the theorem and assume that two pairs of
cameras give rise to the same essential matrix, Q. First, we consider the camera
pair {(Mi | −MiTi), (M ′i | −M ′iT ′i )}. It is easily seen that the 4× 4 matrix

(
M−1
i Ti
0 1

)
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transforms this pair to the camera pair {(I | 0), (M ′iM
−1
i | −M ′i(T ′i − Ti))}.

Furthermore by the if part of this theorem (or as verified directly using Lemma
11), this new camera pair gives rise to the same Q-matrix as the original pair.

Applying this transformation to each of the camera pairs

{(M1 | −M1T1), (M ′1 | −M ′1T ′1)} and {(M2 | −M2T2), (M ′2 | −M ′2T ′2)}

we see that there is 4× 4 matrix transforming one pair to the other if and only
if there is such a matrix transforming

{(I | 0), (M ′1M−1
1 | −M ′1(T ′1 − T1))} to {(I | 0), (M ′2M−1

2 | −M ′2(T ′2 − T2))}

Thus, we are reduced to proving the theorem for the case where the first cameras,
P1 and P2 of each pair are both equal to (I | 0). Consequently, simplifying the
notation, let {(I | 0), (M1 | −M1T1)} and {(I | 0), (M2 | −M2T2)} be two pairs
of cameras corresponding to the same essential matrix. According to Theorem
11, the Q-matrices corresponding to the two pairs are M∗1S(T1) and M∗2S(T2)
respectively, and these must be equal (up to scale). According to Lemma 19,
T1 ≈ T2 and

M∗2 = M∗1 + aT1
�

for some vector a. Taking the transpose of this last relation yields

M2
−1 = M−1

1 + T1a� . (14)

At this point we need to interrupt the proof of the theorem to prove a lemma.

Lemma21. For any column vector t and row vector a�, if I−ta� is invertible
then

(I + ta�)−1 = I − k.ta�

where k = 1/(1 + a�t).

Proof. The proof is done by simply multiplying out the two matrices and observ-
ing that the product is the identity. One might ask what happens if 1+a�t = 0
in which case k is undefined. The answer is that in that case, I+ta� is singular,
contrary to hypothesis. Details are left to the reader. ��

Now we may continue with the proof of Theorem 20. Referring back to (??), it
follows that

M2 = (M−1
1 + T1a�)−1

= (M−1
1 (I + M1T1a�))−1

= (I − k.M1T1a�)M1

= M1 − k.M1T1(a�M1)
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and

M2T1 = M1T1 − k.M1T1(a�M1T1)
= k′.M1T1 (15)

where k′ = 1 − k.a�M1T1. Since T2 is a constant multiple of T1 we have
M2T2 = k′′M1T1. From these results, it follows that

(M2 | −M2T2) = (M1 | −M1T1)
(

I 0
k.a�M1 k′′

)

This completes the proof of the theorem. ��

7 Special Realizations

This section of the paper will be devoted to the question, given an essential
matrix, Q, can one compute the camera transformations that give rise to it.
In a general context, the answer is clearly no, since the matrix Q, does not
contain enough information. First, we will investigate this from a point of view
of degrees of freedom.

Each camera has 11 degrees of freedom, one for each of the entries of a 3 × 4
matrix, less one for indeterminate scale. Thus the two cameras have a total of
22 degrees of freedom, and clearly they can not all be determined from the 7
degrees of freedom of Q. In fact, Theorem 20 showed that Q determines the two
cameras up to an arbitrary 3-dimensional projective transformation. There are
15 degrees of freedom belonging to an arbitrary 3-D projective transformation
(one for each entry of a 4×4 matrix, less one for indeterminate scale). We verify
that 22 degrees of freedom for the cameras, less 15 for the projective transform
equals 7 degrees of freedom in the essential matrix.

Even without this analysis is it obvious that the two cameras can not be fully
determined fromQ, for Q may be derived from image correspondences, and there
is nothing in a set of image correspondences that can be used to derive absolute
position, or orientation of the two camera, or global scale. The best one might
wish for is a determination of relative parameters of the two cameras, in other
words determination of the cameras up to a common Euclidean (or similarity)
transformation of 3-space. Such a transformation has 7 degrees of freedom (3
rotations, 3 translations and one scale) which may be used to fix the position
and orientation of one of the cameras and the distance between them. The paper
of Longuet-Higgins [?] shows that for calibrated cameras the determination of
relative camera placements is possible. In our case, after factoring out similarity
transforms, we are left with 22−7 = 15 degrees of freedom, certainly more than
can be determined from the essential matrix.
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The 15 degrees of freedom of relative camera determination may be broken up
into 5 “external” parameters giving the relative position and orientation of one
camera with respect to the other and 10 “internal” parameters. The 5 external
parameters are accounted for by the position and orientation of both cameras (a
total of 12 parameters) modulo a similarity transformation (7 parameters). The
10 internal parameters are made up as follows : for each camera, two indepen-
dent magnifications along image axis directions, two components of principal
point offset and one skew. This makes 5 internal parameters for each camera,
10 in all.

Longuet-Higgins in his paper ([?]) introducing the essential matrix assumes that
all the internal parameters are known (in fact assuming that internal camera
transformation is the identity transformation). He then shows how to determine
the 5 external camera parameters. However, the essential matrix has 7 degrees
of freedom, and so there are two extra pieces of information in the essential
matrix. It will be shown here how this extra information may be exploited.

7.1 Determination of Camera Magnifications

In many cases it may be assumed that many of the internal camera parameters
are known. For instance usually one may assume that the skew parameters of the
camera is zero and that the image magnifications in the two image coordinate
directions are the same. Often also the position of the principal point is known,
either by the presence of fiduccial marks or by an assumption that it lies at the
centre of the image. For an image of unknown origin the assumption that the
principal point is known is the one most likely to be faulty, and later we will
examine the effect of this assumption.

Under the assumptions of the last paragraph, the only remaining internal pa-
rameter is the image magnification. The 5 relative external camera parameters
plus the two image magnifications makes a total of 7 parameter, and we will
show that these may all be derived from the essential matrix Q with its 7 degrees
of freedom.

As remarked in [?] knowing the internal parameters of the two cameras is equiv-
alent to being able to set them to zero (or other appropriate standard values).
Let us make this more explicit.

Proposition 22. Suppose that an essential matrix, Q corresponds to a pair of
cameras with principal point offsets (u0, v0, 1)� and (u′0, v

′
0, 1)

�. Define a matrix

G =


 1 0 −u0

0 1 −v0

0 0 1
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and let G′ be similarly defined. Then the matrix

Q′ = G′�QG

is the essential matrix corresponding to a pair of cameras with zero principal
point offsets and all other parameters equal to those of the original cameras.

Proof. If P and P are the original camera matrices, then the matrices GP and
G′P ′ are the camera matrices of cameras with zero principal point offset and all
other parameters the same. The result then follows from Proposition (??). ��

In the same way if other internal camera parameters are known, it is possible to
set them to zero values (or other appropriate standard values) by changing the
Q matrix. Therefore, we assume during the rest of this section that the principal
point offsets and skew of the two cameras are zero, and that the magnifications
in the two image axial directions are equal. Let the magnifications of the two
cameras be 1/k and 1/k′. Define the matrix

K =


 1 0 0

0 1 0
0 0 k




and let K ′ be similarly defined. We assume that the first camera is placed
at the origin of the coordinate system and is unrotated with respect to these
coordinates. The two camera matrices, therefore are of the form

P = (K | 0) and P ′ = (K ′R′ | −K ′R′T ′) (16)

where R′ is a rotation matrix. The next theorem gives a general condition for
an essential matrix to have a realization of the type (16).

Theorem 23. An essential matrix Q has a realization of the form 16 if and
only if there is a factorization Q = Y S where Y is non-singular and S is skew-
symmetric, such that

Y ∗ = K ′2Y ∗K−2 (17)

Proof. To prove the only if part of the theorem, suppose Q has a realization
of the form (16). Then, according to Theorem ??, Q can be written as Q ≈
K ′∗R′∗K�S(KT ′). Since R is orthogonal and K and K ′ are diagonal, this
becomes

Q ≈ K ′−1R′KS(KT ′) .

Letting Y = K ′−1R′K, it follows that Y ∗ ≈ K ′R′K−1 and so

R′ ≈ K ′Y K−1 ≈ K ′−1Y ∗K
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and so K ′2Y ≈ Y ∗K2. If in fact K ′2Y = xY ∗K2 for some scalar multiple x,
then K ′2(xY ) = (xY )∗K2 and so the equality (17) holds for the matrix xY .

Conversely, suppose that Q = Y S(t) where Y ∗ = K ′2Y K−2. Define R′ =
K ′YK−1 and T ′ = K−1t. It is easily verified that R′∗ ≈ R′. Therefore, there
exists a constant x such that (xR′)∗ = xR′ and so xR′ is a rotation matrix.
Furthermore, the pair of matrices (16) is a realization of Q. ��

Because matrices K and K ′ are of the form diag(1, 1, k) and diag(1, 1, k′), mul-
tiplication by such matrices does not affect the top left-hand 2×2 block. There-
fore, if Y is a matrix satisfying (16) then Y and Y ∗ are the same in their top
left hand four elements. The converse of this is almost true, as the following
lemma shows.

Lemma24. Let Y be any 3 × 3 matrix, then Y and Y ∗ agree in their top left
hand 4 elements if and only if one of the following conditions hole.

1. diag(1, 1, 0)Y = Y ∗diag(1, 1, 0)

2. Y diag(1, 1, 0) = Y ∗diag(1, 1, 0)

3. there exist matrices K = diag(1, 1, k) and K ′ = diag(1, 1, k′) such that
Y ∗ = K ′YK.

Notice that unlike in (17), the matrices K and K ′ are not squared in option 3
of this lemma.

Proof. (Lemma 24.) Let

Y =


 a b c

d e f
g h j




and

Y ∗ =


 a b c′

d e f ′

g′ h′ j′




First, we consider a few special cases. If c = f = 0, then g′ = 0 and h′ = 0. It
follows that diag(1, 1, 0)Y = Y ∗diag(1, 1, 0) as required. On the other hand, if
g = h = 0, then c′ = f ′ = 0 and so Y diag(1, 1, 0) = diag(1, 1, 0)Y ∗.

Excluding these special cases, we may assume that one of c and f is non-zero,
and one of g and h is non-zero. Suppose then that c �= 0 and g �= 0. The other
cases are handled by changing the roles of the first two rows or columns of the
matrix in what follows.

Define k = g′/g and k′ = c′/c.
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Next, we use the relation Y �Y ∗ = det(Y )I where I is the identity matrix.
Computing the (1, 2) entry of Y �Y ∗ yields ab + de + gh′ = 0, and the (2, 1)
entry gives ab + de + g′h = 0. From this it follows that gh′ = g′h, and since
g �= 0 and g′ = kg, it follows that h′ = kh. In a similar fashion, we obtain
f ′ = k′f . Similarly, computing the (1, 3) and (3, 1) entries of Y �Y ∗ gives
ac′ + df ′ + gj′ = 0 and ac + df + g′j = 0. Multiplying the second of these two
equalities by k′ and subtracting from the first gives gj′ − g′k′j = 0, from which
follows that j′ = kk′j. From these equalities, it may be seen that

diag(1, 1, g′)Y diag(1, 1, c′) = diag(1, 1, g)Y ∗ diag(1, 1, c)

Since g and c are non-zero, condition 3 of the lemma holds. ��

We can get more information about the form of the two matrices K1 and K2 in
Lemma 24.

Lemma25. If Y is a 3 × 3 matrix of rank at least 2, satisfying the condition
Y ∗ = K ′YK for some matrices K = diag(1, 1, k) and K ′ = diag(1, 1, k′), then
if both k and k′ are non-zero then they have the same sign.

Proof. Assume that k �= 0 and k′ �= 0. Let k = ±c2 and k′ = ±c′2. Consider
the matrix Y ′ = diag(c′−1, c′−1, 1)Y diag(c−1, c−1, 1). Then

Y ′∗ = diag(c′−1, c′−1, c′−2 Y ∗ diag(c−1, c−1, c−2)
= diag(c′−1, c′−1, c′−2)K ′Y K diag(c−1, c−1, c−2)
= diag(c′−1, c′−1,±1)Y diag(c−1, c−1, 1)
= diag(1, 1,±1)Y ′ diag(1, 1,±1)

Thus, we have reduced to the case where both k and k′ are ±1. It remains to
prove that it can not occur that k = 1 and k′ = −1. Assume the opposite,
namely that

Y ′∗ = diag(1, 1,−1)Y ′ .
Now, let Y ′ = Udiag(r, s, t)V � be the Singular Value Decompositon of Y ′.
Then Y ′∗ = ±Udiag(st, rt, rs)V �. On the other hand by assumption, Y ′∗ =
diag(1, 1,−1)Udiag(r, s, t)V �. It follows that

±Udiag(st, rt, rs)V � = diag(1, 1,−1)Udiag(r, s, t)V �

and hence
±Udiag(st, rt, rs) = diag(1, 1,−1)Udiag(r, s, t) . (18)

From this we get that

diag(1, 1,−1)U�diag(1, 1,−1)Udiag(st, rt, rs) = ±diag(r, s,−t) . (19)

The matrix diag(1, 1,−1)U�diag(1, 1,−1)U is easily verified to be a rotation
matrix. Now it is exclude by assumption that Y ′ has rank 1. If Y ′ has rank 2,
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then we may assume that t = 0. In this case, the ranks of the two matrices on
each side of 19 do not match. Therefore, Y ′ has rank 3, and none of r, s or t is
zero. Therefore, from (19) it follows that the matrix

±diag(r, s,−t)diag((st)−1, (rt)−1, (rs)−1) = ±diag(r/(st), s/(rt),−t/(rs))

is a rotation matrix. Since r, s and t are all positive, the only possibility is that
r = s = t = 1 and

±diag(r/(st), s/(rt),−t/(rs)) = diag(−1,−1, 1) .

However, this means that Y ′ = UV , and hence Y ′∗ = ±Y ′ which contradicts
Y ′∗ = diag(1, 1,−1)Y . This completes the proof. ��

According to Proposition (11), the essential matrix is of the form

Q = K ′∗RK�S(KT )

Our task, given Q is to determine K, K ′, R and T .

Proposition (14) showed that an essential matrix factors into a product of a
non-singular matrix and a skew-symmetric matrix and Proposition (??) showed
that this factorization is not unique. Now, we need to look at this factorization
again using the singular value decomposition.

Proposition 26. Suppose Q = UDW� is the Singular Value Decomposition
of an essential matrix, where U and W are real unitary matrices and D =
diag(r, s, 0) is diagonal. Then Q factors into a product of a non-singular matrix
and a skew-symmetric matrix as follows :

Q =


U


 r 0 α

0 s β
0 0 γ


E�W�


 . (WZW�) (20)

where E and Z are the matrices given in (7).

Furthermore, up to arbitrary scale factors, any factorization must be of this form
for suitable choice of α, β and γ.

Proof. By inspection, the factorization is correct and the two parts of the fac-
torization are non-singular and skew-symmetric as required (as long as γ �= 0).
According to Proposition ??, the skew-symmetric part of the factorization is
uniquely determined up to scale factor. It remains only to show that the first
half of 20 gives the general solution for the non-singular part of the factorization.
Writing R = UFE�W� where F is an arbitrary 3× 3 matrix and multiplying
out gives Q = UFdiag(1, 1, 0)V � from which it follows that

Fdiag(1, 1, 0) = U�QV = diag(r, s, 0)
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and so F must be of the form

F =


 r 0 α

0 s β
0 0 γ




as required. ��

Since both E and W are orthogonal matrices, we write V = WE, and V is
orthogonal also. Further, writing

Xα,β,γ =


 r 0 α

0 s β
0 0 γ




we obtain the factorization

Q = (UXα,β,γV
�).S

where S is skew-symmetric. Comparing this factorization with (??) gives the
relationship

K ′−1RK ≈ (UXα,β,γV
�)

for some suitable choice of α, β and γ.

In this equation, only the two orthogonal matrices U and V and the singular
values r and s are known, and the goal is to determine K, K ′ and R. Taking
the inverse transpose of both sides of this equation gives another equation

K ′RK−1 ≈ (UX∗α,β,γV
�)

since matrices R, U and V are equal (at least up to a factor of ±1) to their
inverse transposes, and K, K ′ are diagonal. The matrix X∗α,β,γ is given by

X∗ = X∗α,β,γ =


 sγ 0 0

0 rγ 0
−sα −rβ rs




From ?? and ?? we derive

R ≈ K ′UXα,β,γV
�K−1 = K ′−1UX∗α,β,γV

�K

whence
K ′2UXα,β,γV

� = UX∗α,β,γV
�K2

Let the entries of UXV � be (fij) and those of UX∗V � be (gij). Both fij and
gij are linear expressions in the unknowns α, β and γ. Muliplying out equation
?? gives 

 f11 f12 f13

f21 f22 f23

k′2f31 k′2f32 k′2f33


 = x


 g11 g12 k2g13

g21 g22 k2g23

g31 g32 k2g33
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where x is an unknown scale factor. The top left hand block of this equation
set comprises a set of equations of the form

(
f11 f12

f21 f22

)
= x

(
g11 g12

g21 g22

)

If the scale factor, x were known, then this system could be solved as a set of
linear equations in the the variables α, β and γ. Unfortunately, x is not known,
and it is necessary to find the value of x before solving for α, β and γ.

Since the entries of the matrices on both sides of ?? are linear expressions in
α, β and γ, it is possible to rewrite (??) in the form

F (α, β, γ, 1)� = xG(α, β, γ, 1)�

where F and G are 4× 4 matrices, each row of F or G corresponding to one of
the four entries in the matrices of (??). Such a set of equations has a solution
only if det(F − xG) = 0.

This leads to a polynomial of degree 4 in x : p(x) = det(F − xG) = 0. This
equation may be solved to give a value of x. It turns out that the form of this
equation is particularly simple, however and its solution may be found by taking
a single square root. We now investigate the form of the polynomial p(x).

Let Xα,β,γ be written in the form

α.∆13 + β.∆23 + γ.∆33 + (r.∆11 + s.∆22),

where ∆ij is the matrix having a 1 in position i, j and zeros elsewhere. Then
UXα,β,γV

� is equal to

αU∆13V
� + βU∆23V

� + γU∆33V
� + rU∆11V

� + sU∆12V
�.

It may be verified that the p, q-th entry of the matrix U∆ijV
� is equal to UpiVql.

Now suppose the rows of F are ordered corresponding to the entries f11, f12, f21

and f22 of UXV �. Then



f11

f12

f21

f22


 =




U11V13 U12V13 U13V13 r.U11V11+s.U12V12

U11V23 U12V23 U13V23 r.U11V21+s.U12V22

U21V13 U22V13 U23V13 r.U21V11+s.U22V12

U21V23 U22V23 U23V23 r.U21V21+s.U22V22






α
β
γ
1



(21)

and F is the matrix in this expression. Similarly, the matrix G is given by

G =



−s.U13V11 −r.U13V12 r.U12V12+s.U11V11 rs.U13V13

−s.U13V21 −r.U13V22 r.U12V22+s.U11V21 rs.U13V23

−s.U23V11 −r.U23V12 r.U22V12+s.U21V11 rs.U23V13

−s.U23V21 −r.U23V22 r.U22V22+s.U21V21 rs.U23V23


 (22)
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Now, it may be verified easily with a symbolic manipulation program such as
Mathematica [13] that det(F ) = det(G) = 0. This is done simply by writing out
the matrices as given in (??) and (??) and computing their determinants. It
does not rely on the fact that the matrices U and V are orthogonal. Since these
are the constant and degree 4 terms of the polynomial p(x) = det(F − xG) it
follows that p(x) is of the form p(x) = a1x+a2x

2+a3x
3. Symbolic manipulation

may also be used to verify the following identity : det(F +G)+det(F −G) = 0,
from which it follows that p(1) + p(−1) = 0 and hence a2 = 0. Therefore,
polynomial p(x) has the form p(x) = a1x + a3x

3.

The polynomial determinant p(x) = det(F − xG) may be evaluated in vari-
ous ways. It may be computed directly as a polynomial deteriminant in one
variable x. This method involving polynomial arithmetic is the one that we
have implemented. A somewhat simpler method is just to compute a1 + a3 =
p(1) = det(F −G) and 2a1 + 8a3 = p(2) = det(F − 2G), from which a1 and a3

are readily computed. This method has the advantage that it reqires only the
computation of determinants involving real numbers.

Next, we solve the polynomial equation to find x. The solution x = 0 may be
ignored, since according to (??) and (??) it would imply that UXα,β,γV

� = 0
and hence Xα,β,γ = 0, which is not true. We meet a difficulty in finding the
other roots of the equation. It is possible that the ratio a1/a3 is positive, in
which case the two roots of p(x) are imaginary. Since all matrices in equation
?? are intended to be real matrices, this means that there is no solution to
equation ?? in this case, and this means that the matrix Q does not belong to a
pair of cameras of the type supposed in ??. More will be said about this point
later. For the present we assume that p(x) has two roots of equal magnitude
and opposite sign. Let these solutions be x0 and x1 where x1 = −x0.

For each xi we may now solve (??) to find the values of α, β and γ. The solutions
will be different. Then from (??), the values of k2 and k′2 may be read off. In
particular, according to (??),

k′2 = xg31/f31 = xg32/f32

k2 = f13/xg13 = f23/xg23

and as a further identity
k′2f33 = xk2g33.

We get such a set of solutions for x = x0 and another set for x = x1. We seem
to have several solution, namely at least two estimates of k and k′ for each of
the two values xi. It will be shown next, however that the two values of k given
by (??) must be equal, as must the two values of k′. Furthermore the identity
(??) is always satisfied. Further it will be shown that the two solutions arising
from the two different choices of x are in fact the same.
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First, we turn to analyse the situation in which a matrix A has the property
expressed in (??), namely that A and xA∗ agree in their four top left entries.
First of all, replacing A by A′ = xA, it follows that A′ and A′∗ agree in their
four top entries. Let us assume that this has been done, and designate A to be
this new normalized matrix, dropping the notation A′.

Lemma27. If A is a matrix satisfying the condition that A and A∗ agree in
their top left hand four elements, then either

i) A∗13 = A∗23 = A31 = A32 = 0

ii) A∗13 = A∗23 = A∗33 = 0 and there exists a constant, k such that A∗13 = kA13

and A∗23 = kA23

or

iii) there exist matrices K and K ′ of the form K = diag(1, 1, k) and K ′ =
diag(1, 1, k′), such that KA = A∗K ′.

Note that parts (i) of the lemma may be considered a special case of part (iii) if
which k and k′ are both infinite. Similarly, part (ii) may be considered a special
case in which k is finite and k′ is infinite.

The effect of this lemma is to ensure that there is essentially only one solution
for k2 and k′2 to be derived from (??).

Next, it will be shown that the solutions for k2 and k′2 derived from the different
solutions x0 and x1 of the equation p(x) = 0 are the same.

7.2 Uniqueness of Solution

We reduce the problem to its essentials. Given an essential matrix Q, we define
a valid factorization of Q to be a quadruple (G, T,K,L) where G,K,L are 3×3
matrices with K = diag(1, 1, k) and L = diag(1, 1, l) and T is a vector, and such
a that the two following conditions hold

1. Q factors as Q ≈ GS(T )

2. K2G = G∗L2.

This is precisely the problem that we have been solving and have shown that
there are at most two solutions. The present goal is to prove that there is at
most one valid factorization for Q. We start with a particular case.

Lemma28. If Q is a rank 2 matrix with two equal non-zero singular values,
then there is only one valid factorization. This is the factorization in which K
and L are both the identity matrix, and G is an orthogonal matrix.
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Proof. As we have seen, the general form for the matrix G in the factorization
of Q as GS(T ) is

G ≈ U


 1 0 α

0 1 β
0 0 γ


V �.

Now, by inspection, we can find two valid factorizations, namely those for which
α = 0, β = 0, γ = 1 and α = 0, β = 0, γ = −1. With these choices, we see that
G ≈ G∗ and so both L and K are the identity matrix. ��

Now we may prove the general case

Theorem 29. If Q is an essential matrix, then there is at most one valid fac-
torization for Q.

Proof. Suppose that we have one factorization given by (G0, T0,K0, L0). Define
a new matrix Q′ by Q′ = K0QL0. First, we establish the relationship between
the valid solutions for Q and those for Q′.

Suppose that (G′, T ′,K ′, L′) is a valid factorization for Q′. Then, Q′ = G′S(T ′)
and K ′2G′ = G′∗L′2. In this case,

Q = K∗0Q
′L∗0

= K∗0G
′S(T ′)L∗0

= K∗0G
′L0S(L0T

′).

Now, writing G = K∗0G
′L0, it follows that

K ′2G = K ′2K∗0G
′L0

= K∗0K
′2G′L0

= K∗0G
′∗L′2L0

= K∗0G
′∗L0L

′2

However, from G = K∗0G
′L0 it follows that G′ = K0GL∗0 and hence, G′∗ =

K∗0G
∗L0. Continuing the computation of K ′2G :

K ′2G = K∗20 G∗L2
0L
′2

That is,
(K0K

′)2G = G∗(L0L
′)2

and so the quadruple (K∗0G
′L0, L0T

′,K0K
′, L0L

′) is a valid factorization for Q.

Next, we show that the non-zero singular values of Q′ are equal. In particular,
it will be shown that Q′ = G′S(T ′) where G′ ≈ G′∗ from which it follows using
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Proposition (??) that Q′ has equal singular values. By definition,

Q′ = K0QL0

= K0GS(T )L0

= K0GL∗0S(L∗0T )

Now, writing G′ = K0GL∗0

G′∗ = K∗0G
∗L0

= K∗0K
2
0GL∗0

= K0GL∗0
= G′

According to Proposition (??), Q′ has two equal non-zero singular values, and
so by Lemma (??), the only valid factorizations of Q′ are ones in which L′ =
K ′ = I, the identity matrix. Therefore, the only valid factorizations of Q is
given by the quadruple G0, T0,K0, L0 as required. ��

7.3 Failure to find a solution

In the previous section it was shown that the unique solution to our problem
is given by any of the equations in the set (??). However, we may once again
fail to find a solution if one of the ratios k′2 = xg31/f31 or k1 = f13/xg13 is
negative, in which case we can not find a real square root. It is necessary to
determine how this may come about.

It is possible that p(x) has no real root, which indicates that no real solution
is possible given the assumed camera model. This may mean that the position
of the principal points have been wrongly guessed. For a different value of each
principal point (that is, a translation of image space coordinates) a solution may
be possible, but the solution will be dependent on the particular translations
chosen.

7.4 Completing the algorithm

At this point, it is possible to continue and compute the values of the rotation
matrix directly. However, it turns out to be more convenient, now that the
values of the magnification are known, to revert to the case of a calibrated
camera. More particularly, we observe that according to (??), Q may be written
as Q = K ′−1Q′K−1 where Q′ = RS, and R is a rotation matrix. The original
method of Section 3.3 may now be used to solve for the camera matrices derived
from Q′. In this way, we find camera models P = (I | 0) and P ′ = (R | −RT )
for the two cameras corresponding to Q′. Taking account of the magnification
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matrices K and K ′, the final estimates of the camera matrices are (K | 0) and
(K ′R | −K ′RT ).

In practice it has been observed that greater numerical accuracy is obtained by
repeating the computation of k and k′ after replacing Q by Q′. The values of
k and k′ computed from Q′ are very close to 1 and may be used to revise the
computed magnifications very slightly. However, such a revision is necessary
only because of numerical round-off error in the algorithm and is not strictly
necessary.

7.5 Algorithm Outline

Although the mathematical derivation of this algorithm is at times complex,
the implementation is not particularly difficult. The steps of the algorithm are
reiterated here.

1. Compute a matrix Q such that (u′i, v
′
i, 1)

�Q(ui, vi, 1) = 0 for each of
several matched pairs (at least 8 in number) by a linear least-squares
method.

2. Compute the Singular Value Decomposition Q ≈ UDW� with det(U) =
det(V ) = +1 and set r and s to equal the two largest singular values. Set
V = WE.

3. Form the matrices F and G given by (21) and (22) and compute the
determinant p(x) = det(F − xG) = a1x + a3x

3.

4. If −a1/a3 < 0 no solution is possible, so stop. Otherwise, let x =√
−a1/a3, one of the roots of p(x).

5. Solve the equation (F − xG)(α, β, γ, 1)� = 0 to find α, β and γ and use
these values to form the matrices Xα,β,γ and X∗α,β,γ given by (??) and
(??).

6. Form the products UXα,β,γV
� and UX∗α,β,γV

� and observe that the four
top left elements of these matrices are the same.

7. Compute k and k′ from the equations (??) where (fij) and (gij) are the
entries of the matrices UXα,β,γV

� and UX∗α,β,γV
� respectively. If k and

k′ are imaginary, then no solution is possible, so stop.

8. Compute the matrix Q′ = K ′QK where K and K ′ are the matrices
diag(1, 1, k) and diag(1, 1, k′) respectively.

9. Compute the Singular Value Decomposition of Q′ = U ′D′V ′�.
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10. Set P = (K | 0) and set P ′ to be one of the matrices

(K ′U ′EV ′� | K ′U ′(0, 0, 1)�)
(K ′U ′E�V ′� | K ′U ′(0, 0, 1)�)
(K ′U ′EV ′� | −K ′U ′(0, 0, 1)�)
(K ′U ′E�V ′� | −K ′U ′(0, 0, 1)�)

according to the requirement that the matched points must lie in front of
both cameras.

8 Practical Results

This algorithm has been encoded in C and tested on a variety of examples. In the
first test, a set of 25 matched points was computed synthetically, corresponding
to an oblique placement of two cameras with equal magnification values of 1003.
The principal point offset was assumed known. The solution to the relative
camera placement problem was computed. The two cameras were computed to
have magnifications of 1003.52 and 1003.71, very close to the original. Camera
placements and point positions were computed and were found to match the
input pixel position data within limits of accuracy. Similarly, the positions in
3-space of the object points matched the known positions to within one part in
104.

The algorithm was also tested out on a set of matched points derived from a
stereo- matching program, STEREOSYS ([?]). A set of 124 matched points
were found by an unconstrained hierarchical search. The two images used were
1024×1024 aerial overhead images of the Malibu region with about 40% overlap.
The algorithm described here was applied to the set of 124 matched points and
relative camera placements and object-point positions were computed. The
computed model was then evaluated against the original data. Consequently,
the computed camera models were applied to the computed 3-D object points to
give new pixel locations which were then compared with the original reference
pixel data. The RMS pixel error was found to be 0.11 pixels. In other words,
the derived model matches the actual data with a standard deviation of 0.11
pixels. This shows the accuracy not only of the derived camera model, but also
the accuracy of the point-matching algorithms.

9 Compatible Matrices.

Definition : Let M be a non-singular 3 × 3 real matrix and Q be an essential
matrix, we say that M is compatible with Q if M�Q is skew-symmetric.

The motivation for this definition is as follows. We wish to define a projective
transformation from the image C onto C′ in such a way that any point u is
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mapped onto a point u′ which lies on the epipolar line Qu corresponding to u.
If the projective transform is denoted by the non-singular 3×3 matrix, M, then
we require that Mu lie on the line Qu, and hence that for all u, u�M�Qu = 0.
If M�Q is thought of as representing a quadratic form, then this last equation
implies that the quadratic form is zero, and hence that M�Q is skew-symmetric.

The following proposition lists some of the consequences of this definition.

Proposition 30. Let Q be an essential matrix and p and p’ the two epipoles. If
M is a matrix compatible with Q, then

1. M�Q ≈ S(p)

2. Mp = p′.

3. M−1 is compatible with Q�.

4. One realization of the essential matrix Q is given by the camera pair {(I mid0), (M |
−Mp)}).

Proof.
1. If S(T ) = M�Q, then S(T )p = M�Qp = 0. It follows that p ≈ S(T ) and so
p ≈ T .

2. Since M�Q ≈ S(p), it follows that p�M�Q ≈ p�S(p) = 0. Therefore,
Q�(Mp) = 0 and it follows from (??) that Mp ≈ p′.

3. If M is compatible with Q, then M�Q = S(T ), and hence, Q ≈ M∗S(T ).
Now, applying Proposition (9) gives Q ≈ S(MT )M , and therefore QM−1 =
S(MT ). It follows that QM−1 is skew-symmetric, and so is its transpose,
M−1TQ�. This states that M−1 is compatible with Q� as required.

4. Follows from part 1 and Proposition (??). ��

9.1 Points lying in planes.

Theorem 31. Suppose that we have two cameras, P and P’ and a set of points
{xi} lying in a plane not passing through either of the camera centres. Let {ui}
and {u′i} be the images of the points as imaged by the two cameras, then there
is a 2-dimensional projective transform taking each ui to u′i.

Proof. Though this is a fairly well known fact, a quick proof will be given. By
an appropriate choice of projective coordinates, it may be assumed that the
points {xi} lie in the plane at infinity, and hence that all points xi are of the
form (xi, yi, zi, 0). The camera matrices may be written in the form (K | L)
and (K ′ | L′), and since the camera centres do not lie on the plane at infinity,
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the matrices K and K ′ are non-singular. The point ui = K(xi, yi, zi)� and
u′i = K ′(xi, yi, zi)�. It follows that u′i = KK ′−1ui and this completes the
proof. ��

We may prove a converse to this theorem :

Theorem 32. Suppose that two cameras P0 and P ′0 are given, and let Q be the
corresponding essential matrix. Let M be a non-singular 3×3 matrix compatible
with Q. Then there exists a plane π0 such that if x is any point lying in π and
u and u′ are the images of the point x in the two images, then u′ = Mu.

Proof. Given compatible Q and M , an alternative realization of Q is given by
the camera pair {P1, P

′
1} = {(I | 0), (M | −Mp)}, where p is the epipole.

Let the plane π1 be the plane at infinity, and suppose x = (x, y, z, 0)�. Then
u = P1x = (x, y, z)� and u′ = P ′1x = M(x, y, z)�, and so u′ = Mu. Now,
consider the camera pair {P0, P

′
0}. According to Theorem ??, there exists a

non-singular 4 × 4 matrix, H such that P0 = P1H and P ′0 = P ′1H . Then
define π0 to be the plane H−1π1 and consider a point H−1x in this plane Then,
P0H

−1x = P1HH−1x = P1x = u, and similarly, P ′0H−1x = u′ = Mu. In other
words, the plane π0 satisfies the requirements of the theorem. ��

According to Theorems ?? and ??, the choice of a particular perspective trans-
formation, M , compatible with Q is equivalent to choosing a plane in space.
For points x on this plane, the mapping u↔ u′ relating the coordinates in the
two images is given by the projective transformation, M . For points above and
below the plane, an image point u will correspond to a point u′ that lies along
the epipolar line through Mu.

9.2 Computation of M .

For point sets that lie close to a plane and are viewed from two cameras, the
projective image-to-image transform denoted by a non-singular matrix M com-
patible with the essential matrix Q may be a close approximation to the actual
image-to-image mapping given by point matching. For instance, in the standard
stereo-matching problem where the task is to find a pixel u′ in a second image
to match the pixel u in the first image, a good approximation to u′ may be
given by Mu. The best match, u′ may be found by an epipolar search centred
at the point Mu.

Given a set of image-to-image correspondences ui and u′i and an essential matrix
Q computed from these correspondences, our goal is to find a projective trans-
formation given by a matrix M , compatible with Q, such that

∑
||u′i −Mu||2

is minimized.

34



This may be considered as a constrained minimization problem. First, we con-
sider the constraints. The condition that M�Q should be skew-symmetric leads
to a set of 6 equations in the 9 entries of M .

m11q11 + m21q21 + m31q31 = 0
m12q12 + m22q22 + m32q32 = 0
m13q13 + m23q23 + m33q33 = 0
m11q12 + m21q22 + m31q32 = −(m12q11 + m22q21 + m32q31)
m11q13 + m21q23 + m31q33 = −(m13q11 + m23q21 + m33q31)
m12q13 + m22q23 + m32q33 = −(m13q12 + m23q22 + m33q32) (23)

The entries qij of the matrix Q are known, so this gives a set of 6 known
constraints on the entries of M . However, because of the fact that Q is singular
of rank 2, there is one redundant restraint as will be shown next. The matrix
of coefficients in the above array may be written in the form




Q1 0 0
0 Q2 0
0 0 Q3

Q2 −Q1 0
−Q3 0 Q1

0 Q3 −Q2




where Qi represents the three entries q1iq2iq3i making up the i-th column of the
matrix Q. First, we consider the case where Q1 = 0. Since Q has rank 2, it can
not be the case that Q2 is a multiple of Q3. In this case, the first row of the
matrix is zero, but the remaining five rows are linearly independent. The same
argument holds if Q2 = 0 or Q3 = 0.

Next, consider the case where Q2 = αQ1. Since Q has rank 2, it can not be that
Q3 = βQ1 or Q3 = βQ2. In this case, the fourth row of matrix (??) is dependent
on the first two rows, but the other five rows are linearly independent.

Finally, consider the case where no column of Q is a simple multiple of another
row, but αQ1 + βQ2 + γQ3 = 0. Then, it may be verified that multiplying
the rows of the matrix by factors α,−β2/α,−γ2/α, β,−γ,−βγ/α and adding
results in 0. In other words, the rows are linearly dependent. On the other
hand, it can be shown by a straight-forward argument that any five of the rows
are linearly independent.

Thus, in general, we have a set of 6 restraints on the entries of M, only 5 of
which are linearly independent.

Next, consider the minimization of the goal function. We have a set of corre-
spondences, {ui} ↔ {u′i} and the task is to find the M that best approximates
the correspondence. We can cast this problem in the form of a set of linear
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equations in the entries of M as follows. Let Mi be the i-th row of M . Then
the basic equation u′ = Mu can be written as

m11ui + m12vi + m13 = w′iu
′
i

m21ui + m22vi + m23 = w′iv
′
i

m31ui + m32vi + m33 = w′i

We can substitute the third equation into the first two to get two equations
linear in the mij

m11ui + m12vi + m13 = m31uiu
′
i + m32viu

′
i + m33u

′
i

m21ui + m22vi + m23 = m31uiv
′
i + m32viv

′
i + m33v

′
i

The method used here is essentially that described by Sutherland [?]. It does not
minimize exactly the squared error

∑
||Mui−u′i||2, but rather a sum weighted

by w′i. However, we accept this limitation in order to use a fast linear technique.
This has not caused any problems in practice.

Since the matrix, M is determined only up to a scale factor, we seek an appro-
priately normalized solution. In particular, we seek a solution to (??) for which∑

m2
ij = 1.

9.3 Solution of the constrained minimization problem.

Writing the constraint equations as Bx = 0 and the equations (??) as Ax = 0,
our task is to find the solution x that fulfills the constraints exactly and most
nearly satisfies the conditions Ax = 0. More specifically, our task is to minimize
||Ax|| subject to ||x|| = 1 and Bx = 0. One method of solving this is to proceed
as follows.

Extend B to a square matrix B′ by the addition of 3 rows of zeros. Let the Sin-
gular Value Decomposition of B′ be B′ = UDV �, where V is a 9×9 orthogonal
matrix and D is a diagonal matrix with 5 non-zero singular values, which may be
arranged to appear in the top left-hand corner. Writing x′ = V �x, and x = V x′,
we see that ||x|| = ||x′||. The problem now becomes, minimize ||AV x′|| subject
to UDx′ = 0 and ||x′|| = 1. The condition that UDx′ = 0 means Dx′ = 0, and
hence the first five entries of x′ are zero, since D is diagonal with its first five
entries non-zero. Therefore, let A′′ be the matrix formed from AV by dropping
the first five columns. We now solve the problem : minimize ||A′′x′′|| subject to
||x′′|| = 1. This is a straightforward unconstrained minimization problem and
may be solved by the method used in Section (??). Once x′′ is found, vector x′

is obtained from it by appending 5 zeros. Finally, x is found according to the
equation x = V x′.
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9.4 Joint Epipolar Projections.

Consider the situation in which we have two images J0 and J ′0 of the same
scene taken from different unknown viewpoints by cameras C and C′. Suppose
that the essential matrix, Q0 and a compatible projective transformation M0

have been computed based on a set of image-to-image correspondences between
the two images. In general, the epipolar lines in the two images will run in
quite different directions, and epipolar lines through different points will not be
parallel (since they meet at the epipole). The goal in this next section is to define
two perspective transformations, F and F ′, to be applied to the two images so
that if the image J0 is transformed according to the perspective transformation
F , and J ′0 is transformed according to the perpsective transformation F ′, then
the resulting images J1 and J ′1 correspond to each other in a particularly simple
manner. In particular, the epipolar lines in the new images will be horizontal
and parallel. Further, the resulting image-to-image transformation M1 will be
the identity mapping.

Let the epipole in the first image be p0. The epipolar lines all pass through
p0 and hence are not parallel. Our goal is to transform the image so that the
epipole is moved to the point (1, 0, 0)� in homogeneous coordinates. This point
is the point at infinity in the direction along the x axis. If this is the new epipole,
then the epipolar lines will all be parallel with the x axis. Therefore, let F be
a perspective transformation that sends the point p to (1, 0, 0)�. This is not by
itself sufficient information to determine F uniquely, and F will be more exactly
determined later.

Proposition 33. Suppose there exist two images J0 and J ′0 with corresponding
essential matrix Q and compatible perspective transform M . Let p and p′ be the
two epipoles. Let F be a homogeneous transformation such that Fp = (1, 0, 0)�

and let F ′ = FM−1. Then, F ′p′ = (1, 0, 0)�.

Proof. F ′p′ = F.M−1p′ = Fp = (0, 0, 1)�. ��

We now use the two projective transformations F and F ′ to resample the two
images J0 and J ′0 to give two new images J1 and J ′1. By this is meant that J1

is related to J0 by the property that any point x in 3-space that is imaged at
point u in image J0 will be imaged at point Fu in image J1 = F (J0).

Proposition 34. The essential matrix for the pair of resampled images J1 and
J ′1 obtained by resampling according to the maps F and F ′ defined in the previous
proposition is given by

Q1 =


 0 0 0

0 0 −1
0 1 0




The corresponding image-to-image translation M1 is the identity matrix.
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Proof. Let {ui} ↔ {u′i} be a set of image-to-image correspondences between
the images J0 and J ′0 sufficient in number to determine the matrix Q0 uniquely.
Thus, u′iQ0ui = 0. However, in the images J1 and J ′1, the points {Fui} corre-
spond with points {F ′u′i}. It follows that

u′i
�F ′�Q1Fui = 0

and hence Q0 ≈ F ′�Q1F or

Q1 = F ′∗Q0F
−1.

However, since F ′ = FM−1, we may write F ′∗ = F ∗M�, and substituting in
(??) gives

Q1 = F ∗M�Q0F
−1

= F ∗S(p)F−1by(??)
= F ∗F�S(Fp)by(??)
= S((1, 0, 0)�)

which is the required matrix.

To prove the second statement, let x be a point in space on the plane determined
by the image-to-image projective transform M in the sense that if u and u′ are
the images of point x in the images J0 and J ′0, then u′ = Mu (see Proposition
??). Then point x will be seen in the images J1 and J ′1 at points Fu and F ′u′.
However, F ′u′ = F ′Mu = Fu. So, Fu in image J1 is mapped to F ′u′ in image
J ′1 by the identity transformation. ��

9.5 Determination of the resampling transformation.

The transformation F was described by the condition that it takes the epipole p
to the point at infinity on the x axis. This leaves many degrees of freedom open
for F , and if an inappropriate F is chosen, severe projective distortion of the
image can take place. In order that the resampled image should look somewhat
like one of the original images, we may put closer restrictions on the choice of
F .

One condition that leads to quite good results is to insist that the transformation
F should act as far as possible as a rigid transformation in the neighbourhood
of a given selected point u0 of the first image. By this is meant that the neigh-
bourhood of u0 may undergo rotation and translation only, and hence will look
the same in the original and resampled image. An appropriate choice of point
u0 may be the centre of the image. For instance, this would be a good choice in
an context of aerial photography if the first image is known not to be excessively
oblique.
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A projective transformation may be determined by specifying the destination
of four points. Suppose that the epipole is already on the x axis at location
(1, 0, f)� and that be desire the projective transformation to approximate the
identity map in the local neighbourhood of the origin (0, 0, 1)�. The desired
map may be found by specifying the destinations of four points

(1, 0, f)� → (1, 0, 0)�

(0, 0, 1)� → (0, 0, 1)�

(δ, δ, 1)� → (δ, δ, 1)�

(δ,−δ, 1)� → (δ,−δ, 1)�

and then letting δ → 0. The correct map is found to be expressed by the matrix

 1 0 0

0 1 0
−f 0 1




It may be seen that if af << 1 then the point (a, b, 1)� is mapped (almost) to
itself by this transform.

Experimental results

The method of ...
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