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Abstract

Many problems in computer vision may be considered as
low-rank approximation problems, in which a matrix of mea-
sured data must be approximated by a matrix of given low
rank. If the matrix has no missing entries, then this is easily
accomplished by a Singular Value Decomposition (SVD). If
some measurements are missing however, and the matrix has
holes, then the SVD method can not be applied. We present
here a practical iterative method for approximating a data
matrix, possibly with missing entries, with another matrix
of small rankr. For a complete data matrix the method re-
duces to the well-known ”Power Method” which is provably
convergent to a unique global optimum. If the data is well
approximated by a matrix of rankr the Power Method has
rapid convergence. Our method for incomplete data is ap-
plied to several problems of 3D reconstruction, generalizing
the Tomasi-Kanade method for orthographic cameras and
the Sturm-Triggs method for projective cameras to missing
and uncertain data.

1 Introduction

In the affine or orthogonal reconstruction problem, a set of
points Xj are seen in several images, the measured coordi-
nates of the points being denoted by x ij . The reconstruction
task, given the image measurements xij , is to find the po-
sitions of the points Xj and the camera matrices Pi of the
cameras. It was shown by Tomasi and Kanade ([13]) that
this problem may be reduced to a low-rank approximation
problem as follows. A matrix M is formed, consisting of the
measured point coordinates in a centred coordinate system:
M = [xij ]. One then finds a rank-3 approximation M̄ to M,
minimizing the Frobenius norm ||M− M̄||. Here M̄ = AB� for
two matrices A and B both having three columns. The camera
matrices Pi and the points Xj may then be read directly from
A and B respectively. The rank-3 approximation M̄, and the
two matrices A and B are conveniently computed by carrying
out a Singular Value Decomposition (SVD) of matrix M, and
zeroing out all but the three largest singular values. The great
success of this algorithm is due to its simplicity and reliabil-

ity The main computational tool is the SVD, which (given a
good implementation) is virtually fool-proof. Furthermore,
it minimizes the correct geometric cost function.

Subsequently, low-rank approximation and factorization
of measurement matrices has been applied to many prob-
lems. We name just a few such applications. The original
algorithm was generalized to various other camera models
([9, 12]). Furthermore Irani and Anandan ([6]) have gen-
eralized it to the case of non-isotropic measurement covari-
ance. Shashua ([10]) observed that the set of trifocal tensors
from an image sequence lie in a low-rank subspace. Irani
has made a similar observation concerning image-to-image
homographies ([15]). Applications to Principal Component
Analysis (PCA) are given in [11, 3]. In all these algorithms,
low-rank reduction is used to mitigate noise effects and pro-
vide robust approaches to the respective estimation prob-
lems. The method used in this paper can be applied with
advantage to all these problems.

The most persistent difficulty with the method of low-
rank approximation is that it requires that all the points be
visible in all views, or in a more abstract context, the mea-
surement matrix M must have no missing entries. Various
ways ([7, 13]) have been suggested for getting around this
restriction. The best known is [13] in which a strategy for
filling in missing data are discussed and suggested. The
problem is that this data is effectively invented, and can
cause the results to be biased to accommodate this fictitious
data. [2] addresses this by dealing with the missing data us-
ing an EM algorithm. A recent paper [1] addresses the prob-
lem of incremental SVD with missing data by combining
imputation (the filling-in of missing entries based on what
has been seen so far) with a sparse reduction of the updated
matrices to diagonal form. While the results are promising
the method suffers from the same theoretical difficulty and
the final result will depend on the order in which the data is
encountered. In this paper we do not attempt to fill in miss-
ing data, but live with it (or rather, without it).

Comparison with previous work. Our paper is most
closely related to work of Morita&Kanade [8] on factoriza-
tion, and De la Torre&Black ([3]) and Shum et al. ([11])
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on PCA. Morita and Kanade introduce orthogonal iteration
as a method of incremental affine reconstruction. We ob-
serve that a small but important modification to their method
yields a technique that may be applied with missing or un-
certain data. In seemingly unrelated work [3, 11] a method
of alternating between optimization over partial parameter
sets is proposed for Principal Component Analysis. This
method of alternation has been criticized as a general tech-
nique in [14] on the grounds of slow convergence. In this pa-
per, however, we show that the techniques of [8] and [3, 11]
are closely related, and that the guaranteed fast global con-
vergence properties shown in [8] carry over to a wider range
of problems, and provide theoretical and experimental justi-
fication of the process of alternation.

We use the developed technique to solve the problem of
affine reconstruction with uncertain data and missing data
(which is an extreme case of uncertainty). The algorithms
are rapidly convergent from a random initial point and are
robust to large amounts of noise. The paper of Irani and
Anandan ([6]) is the most noteworthy prior paper on recon-
struction with uncertainty. Their method does not give an
exact solution (our method does), since they reduce the mea-
surement matrix to rank 6 (instead of 3) and then use an in-
exact method for the final reduction to rank 3. In addition,
they require that the covariance of a given point be the same
in all images, which our method does not.

Overview of the PowerFactorization method. The stan-
dard method for finding a low-rank approximation to a ma-
trix M is to use the SVD, but this is not the only method.
The problem is mathematically equivalent to finding the
eigenvalues and associated eigenvectors of MM�. The Power
Method ([4]) is a useful method for finding the dominant
eigenvector of a matrix X, converging rapidly if the largest
eigenvalue sufficiently dominates the next largest. Starting
from a random vector u0 the method is to repeatedly apply
X to u and normalize the result:

uk+1 = Xuk/‖Xuk‖

The Power Method may be extended for finding the domi-
nant subspace of dimension r (i.e. the subspace spanned by
the first r eigenvectors). Applying it to a symmetric positive
semi-definite matrix MM�, we starting with a random matrix
U0 with r orthonormal columns and repeatedly multiply by
MM� and re-orthonormalize columns:

Uk = (MM�)Uk−1Nk (1)

where Nk is an upper triangular matrix that makes the
columns of Uk orthonormal. This normalizing matrix Nk

is found by the Gram-Schmidt process, equivalent to QR
decomposition of (MM�)Uk−1. The resulting algorithm is
known as orthogonal power iteration[4].

Using this iteration for the dominant subspace of X =
MM� turns out (see below) to be equivalent to the following
iteration for factoring M = AB� where, starting from a ran-
dom rank r factor A0, we define successive updates

Bk = (M�Ak−1)(Ak−1
�Ak−1)−1

Ak = (MBk)(Bk
�Bk)−1 (2)

Thus, the algorithm requires little more than matrix multi-
plication and inversion of small (r × r) matrices, and will
converge very rapidly if M is indeed close to a rank r matrix.
Convergence to a globalminimum of the cost ||M− AB�|| is
guaranteed.

Matrix multiplication is not possible with missing entries,
so it is not clear how this solves the missing data problem.
The key observation of this paper is that each step in the it-
eration is exactly equivalentto solving a least-squares prob-
lem using normal equations: starting with a random A one
solves alternately for B and A until convergence. The point
is that this set of equations can be solved even if M has miss-
ing entries. There is one equation for each entry of M, and
this equation may be omitted when the entry of M is miss-
ing. Thus, in the case of missing data, we replace the normal
equations used in the full data case by least-squares solution
of a set of linear equations. The cost function minimized by
this algorithm is

∑
i,j

(Mij − (AB�)ij)2

where the sum is only over index pairs i, j such that M ij is
defined.

In the case of 3D affine reconstruction, the method just
described consists of starting with a random set of initial
points, and linearly solving alternately for the camera ma-
trices and the 3D points until their product converges to the
measurement matrix. This approach seems so naive that it
is hard to see that it will be effective. However, as will
be shown, in the case of full data and no noise the algo-
rithm converges to the optimal solution in a single iteration.
With added noise it may be proven to converge rapidly to
the global optimum. For the case of missing data, it is pos-
sible for local minima to occur when the noise level or the
percentage of missing points is high. It is possible for the
algorithm to fall into a local minimum in such a case. Never-
theless for moderate amounts of missing points this problem
does not seem to occur.

The advantage of the technique described in this paper
is that it does not simply make local incremental improve-
ments. Instead the cost function is optimized (globally) with
respect to A and B alternately. Thus the algorithm is able to
make large jumps towards the global minimum at each step.
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2 Finding a rank r approximation

We consider again the affine reconstruction problem. In
the affine camera model, a point represented by a non-
homogeneous 3-vector X is mapped to an image point x
according to x = AX + t, where A is a 2 × 3 matrix, and
t is a 2-vector.

The affine reconstruction problem is to compute m affine
cameras and n 3D points given only the image points x ij . In
particular, we want to solve the equations xij = AiXj + ti.
For the present, we assume that the points are visible in all
views, so that xij is defined for all i = 1, . . . , m and j =
1, . . . , n.

In the well known paper ([13]) it was observed that by
expressing the image coordinates in each image with respect
to an origin defined to the the centroid of the image points
in each image, it may be assumed that each ti is zero. The
reconstruction problem is then to find matrices A i and points
Xj such that xij = AiXj . This can be written as a single
matrix equation




x11 · · · x1n

...
. . .

...
xm1 · · · xmn


 =




A1

...
Am


 [

X1 · · · Xn

]
.

This set of equations may be written as M = AB�, where
we note that M (the measurement matrix) is made up of the
image coordinates of all the image points, matrix A is formed
by stacking the individual camera matrices, and B consists of
the coordinates of the 3D points. The affine reconstruction
problem is thus exactly the problem of factoring the matrix
M into two factors of rank 3. For more details, the reader is
referred to the original paper [13] or to [5].

In the presence of noise, the exact factorization of M into
factors of rank 3 will not be possible. Instead, one finds
the closest rank 3 product M̄ = AB� (where A and B have
just three columns), so as to minimize the Frobenius norm
||M − AB�|| of the difference between M and M̂. Assuming
isotropic IID Gaussian image noise this will compute the
Maximum Likelihood Estimate. The minimization can be
carried out by computing a Singular Value Decomposition
of M and truncating all but its first three singular values to
zero.

2.1 The PowerFactorization Method

Let M be an m× n matrix and let r < m, n. We wish to find
the best rank r approximation to M, i.e. to compute matrix
factors A and B of size m×r and n×r respectively such that
‖M− AB�‖ is minimized. As remarked above the solution to
this problem is to compute the SVD of M and truncate all but
the r largest singular values to zero.

An alternative method is the following generalization of
the orthogonal power iteration method. Starting with an ini-
tial random m × r matrix A0, we iterate as follows.

Bk = M�Ak−1Nk

Ak = MBk(Bk
�Bk)−1 (3)

until the product AkBk
� converges. The matrix Nk is a non-

singular r× r matrix used for normalization, important only
for numerical stability of the problem. It is easily verified
that the sequence of products AkBk

� does not depend on the
normalization matrices Nk, since all occurences of Nk cancel
out when the product is formed.

In the case where Nk is chosen so that Bk has orthonormal
columns, then (B�B) is the identity matrix, so the iteration
becomes

Bk = M�Ak−1Nk

Ak = MBk
(4)

Combining the two steps gives Ak = (MM�)Ak−1Nk, which
is just the formula for orthogonal iteration given in (1) and
[8]. The convergence properties of orthogonal power itera-
tion are well known ([4, 8]). Those convergence results may
be extended to the convergence of (3), as follows 1.

2.1. Let sj be thej-th largest singular value ofM and sup-
pose thatsr > sr+1. If M̄ be the closest rank-r approxima-
tion toM, then there exists a constantC (depending onM and
A0) such that for allk

||M̄− AkBk
�|| ≤ C(sr+1/sr)2k

If the matrix M were actually of rank r then sr+1 would of
course be zero and the algorithm would converge in one iter-
ation. For matrices that are merely close to having rank r the
gap between sr and sr+1 will be large and so convergence
will be rapid.

Actually, the method given above provides a slight ex-
tension of the algorithms in [4] and [8], in that it computes
both A and B. In [8] orthogonal iteration is applied to the
symmetric matrix MM� to compute A. By contrast, we carry
out the iteration in two steps, computing A and B. The dif-
ference is crucial for various reasons. Forming the product
MM� explicitly is a bad idea from the point of view of con-
ditioning ([4]), secondly proceeding in two steps in this way
is more efficient in terms of operations for small rank r, and
most importantly, the two-step iteration may be generalized
to missing data by observing a link with least-squares prob-
lems in a way that the standard orthogonal iteration method
cannot. This will be explained in the next section.

1Lack of space precludes inclusion of a proof of this, but the reader may
see [8] or [4] for the general idea.
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2.2 PowerFactorization as Least-squares

A different form of the normalization matrix N in (3) can be
made in which the two steps are symmetric, namely

Bk = (M�Ak−1)(Ak−1
�Ak−1)−1

Ak = (MBk)(Bk
�Bk)−1 (5)

As observed above, this sequence will generate the same se-
quence of rank r products AkBk

� as the orthogonal power it-
eration method (3) and (4). There are two interesting things
to note about this iteration.

Firstly, each Bk and Ak is nothing other than the least-
squares solution to a set of equations of the form M = AB�.
At each step, we minimize the squared norm ||M − AB�||,
solving first for B and then for A. This least-squares prop-
erty is easily seen by comparing it with the least-squares
equation m = Ab. The “normal equation” solution to this
problem is b = (A�A)−1A�m, which when transposed is
b� = (m�A)(A�A)−1 which looks very like (5). Applying
this to each row m of M gives the desired equivalence. The
equations 5 are just matrix versions of the normal equations.

Secondly, since each update involves nothing other than
solving a linear least squares problem – minimize ‖AB�−M‖
over B given A or vice versa – it readily generalizes to the
case where some entries of M are missing, even though the
tool of matrix multiplication (used in (3)) can not be used in
this setting. This is the PowerFactorization algorithm:

Algorithm 2.2. 1. Given m×n matrix M, start with a ran-
dom matrix factor A0 of dimension m× r. Then, repeat
the next two steps until the product AkBk

� converges.

2. Given Ak−1, find the n × r matrix Bk that minimizes∑
ij |Mij − (Ak−1Bk

�)ij |2 where the sum is over those
index pairs i, j such that the entry Mij is available.

3. Given Bk, find the matrix Ak that minimizes
∑

ij |Mij −
(AkBk

�)ij |2 where the sum is over the same index pairs
as before.

Thus, we see that the algorithm adopts the seemingly naive
strategy of starting at a random starting point A0 and itera-
tively solving (by linear least squares) for Bk and Ak until
convergence. Despite the simple-minded nature of this algo-
rithm, we have shown in ( 2.1) that it converges very rapidly
to the global minimum solution (at least in the case of com-
plete data).

Computationally, the updates of B given A (the update of
A given B is similar) can be done by solving a least squares
problem for each row of B independently. This is because
each column of B� contributes only to the entries in the cor-
responding column of M. Missing entries in M correspond to
omitted equations.

Normalization. At any point in the iteration at one can
choose to condition the problem by replacing and B k with
BkN where N is some normalization matrix. This does not
affect the sequence of products AB� but may be helpful for
numerical stability. In our implementation we normalize Bk

at each iteration.
To summarize: the PowerFactorization method is a two-

step form of the orthogonal power iteration applied to M
which produce the same sequence of rank r factorizations
and therefore has the same rate of convergence. For com-
plete data matrices M it provably converges to the unique lo-
cal (hence global) minimum. If the data matrix is of rank r
then it converges in one iteration.

Timing experiments. Tests with showed that on a 500 ×
500 matrix PowerFactorization found a rank-4 approxima-
tion in 5% of the time of SVD. More details on timing are
found in [8].

2.3 Convergence

It was shown that in the case where all the entries of M are
known, this algorithm converges quickly to a global mini-
mum. We use this fact to argue that the omission of a num-
ber of equations, corresponding to missing entries in M will
not greatly effect the convergence, or indeed the ultimate so-
lution to the set of equations. The set of equations used to
solve for the Ai or Bi at each step is highly redundant. In par-
ticular with no missing data, there are either mn equations
in mr or nr unknowns. Omission of a small percentage of
these equations will not be expected to materially effect the
cost surface. Certainly, search for minima holding either A
or B fixed is still a quadratic problem for which we reach
a directional minimum in one step of linear-least squares.
Since the algorithm converges in the complete data case, it
may be expected to converge in the case of missing data, as
long as the amount of missing data is not too great. This ex-
pectation was borne out by experiments, which showed that
convergence from a random viewpoint will occur reliably
with large amounts of missing data (see Fig 1).

Naturally, deletion of a large fraction of the entries of M,
and hence a corresponding fraction of the equations used to
solve for successive Ai and Bi will cause the solution to di-
verge increasingly from the estimate for the complete data
case. With too few data points, the successive estimates may
fail to converge, or converge very slowly, but this happens
only with large amounts of missing data, and increasingly
infrequently as the size of the matrix M grows.

If the solution evidently fails to converge, as indicated by
too high a residual value, then starting again from a different
random initial A0 will often solve the problem.

Since (even in the missing data case) the residual error
||M−AiBi

�|| decreases at each iteration of the algorithm, the
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Figure 1: Breaking point experiments on synthetic data: for
three sizes of matrix and various proportions of missing en-
tries the empirical chance of successful convergence was
evaluated. As expected the risk of breakdown increases as
the number of missing entries increases but the tolerance to
incomplete data is still considerable. Moreover, as the size
of the problem increases, the chance of success increases. In
fact for a problem of size1000 × 2000 the algorithm con-
verged perfectly with up to 95% missing data (not shown on
the graph). The noise level was 5% but the noise level seems
to have little effect on the success rate.

products AiBi
� must converge to a limit (or at least ||M −

AiBi
�|| must converge). In the case of complete data, this

minimum must be a global minimum. In the case of missing
data, however, it is possible to converge to a local minimum.
An example of this is the matrix

M =


 1 2 3

2 5 −7
−2 3 ×




where × indicates a missing entry. We attempted to approx-
imate this matrix by its closest rank-1 matrix, M̄. It was de-
termined empirically that there are two local minima with
residuals ||M − M̄|| of 1.515 and 2.091 respectively. The al-
gorithm falls into one or either of these minima depending
on the starting point. It should be emphasized, however that
this is exceptional behaviour, and does not occur very often
in practice, unless the amount of missing data is too great.

Detecting successful convergence With noise, the algo-
rithm will not of course converge to the true value of the
noise-free points, but rather to the minimum of cost solu-
tion. If X̄ represents the noise-free data, X the noisy data
and X̂ the final estimate, then the condition for convergence
to a global minimum is that X̂−X is perpendicular to X̂−X̄

(see [5]). Note that this condition is not satisfied at a local
minimum. The (somewhat stringent) condition we used to
claim correct convergence is that the Pythagorean equality
was satisfied within 0.1%.

Banded data problems The results given in Fig 1 were
for data sets with randomly omitted points. In real image
sequences, the missing data often has a banded form, since
tracks are of finite length over consecutive frames. Exper-
iments with real data showed that the PowerFactorization
algorithm did not perform on such sequences as well as it
does for randomly missing data. To solve this problem we
adopted a bootstrapping procedure in which structure and
motion estimates are built up over an expanding window
of frames. This method was used with success on the real
examples shown later. Details of this strategy will be in a
longer version of this paper.

3 Why not bundle-adjustment

The idea of solving least-squares minimization problems by
alternately carrying out minimization steps with respect to
subsets of the variable parameters has been suggested many
times before for different optimization problems, such as al-
ternately solving for structure and motion. However, it has
often been thought of as a sort of poor-man’s bundle ad-
justment. The usual criticism has been that it will converge
slowly because it may zig-zag slowly down narrow valleys
instead of heading directly towards the minimum. This crit-
icism is unfounded in the present case, however, since we
have shown that progress towards a minimum is rapid when
we solve alternately for affine structure and motion. The
reason for this fast convergence is that in solving for either
A or B, while holding the other fixed one finds the absolute
minimum in each direction in a single step.

By contrast, at each step of bundle adjustment with re-
spect to the full set of parameters, one chooses an incremen-
tal parameter direction and does a one-dimensional search
for the minimum of the cost function in that direction. This
is true of methods such as conjugate-gradient, steepest de-
scent, or Powell’s method. Let A0 and B0 be some current
values of the factor matrices, and let (∆A, ∆B) represent an
incremental search direction. The next value of the param-
eters will be of the form (A0 + λ∆A, B0 + λ∆B). The cost
for a given value of λ is ||X− (A0 + λ∆A)(B0 + λ∆B)�||2.
It is easily seen that this is a fourth-degree polynomial in λ,
which in general will not have a unique minimum. Figure 2
shows the variation of cost along some random linear cross-
sections of parameter space, clearly showing double minima
of the cost function. Methods such as Levenberg-Marquardt
and Newton attempt to deduce the position of the minimum
from local gradient information, assuming a quadratic cost
function. As seen in Fig 2, the position of the minimum
bears little relation to the local gradient measured far from
the absolute minimum. In fact in such methods, convergence
will be slow as the path to the minimum attempts to weave
around local cross-sectional minima.

By contrast, if the incremental search direction is over
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Figure 2: Cross sectional cost-functions showing double
minima, which slow convergence of full bundle-adjustment
techniques. PowerFactorization avoids such local minima
by alternating structure and motion optimization.

one of the subspaces represented by A and B, then the same
calculation as before shows that the cost function is only
a quadratic function of λ, and hence least-squares methods
find the directional minimum in one step. Experiments with
bundle adjustment have shown that it usually converges, but
in 3 to 4 times as many iterations as PowerFactorization and
as much as 100 times more slowly in terms of time, on mod-
erate problems.

4 Affine Reconstruction

The PowerFactorization algorithm may be used to carry out
affine reconstruction with full data by subtracting out the
centroid of the image points in each image. This reduces
the problem to one of rank-3 factorization, as discussed pre-
viously. In the case of missing data, this approach has the
difficulty that it is not possible to compute the centroid of all
the points in a given image, since all the image points are
not known. The approach of simply using the centroid of
the visible points to start with, and later filling in the miss-
ing points by reprojecting the computed points has been sug-
gested ([13]). We prefer not to use this method, since hal-
lucinating the missing image measurements has the poten-
tial to create a bias towards an incorrect solution. Instead,
we take an approach in line with the PowerFactorization al-
gorithm. First of all, the method will be described for the
full-data case.

The affine projection mapping may be expressed in terms
of a 2 × 4 projection matrix A acting on a 4-vector X =
(X, Y, Z, 1)� representing the points. The image point (in
non-homogeneous coordinates) is simply the product x =
AX. Note that for this to work, the last entry of the vector X

must equal 1.
In this setting, the problem of affine reconstruction be-

comes one of factoring the measurement matrix M = [x ij ],
where the xij are the image points in non-homogeneous co-

ordinates. The required factorization is M = AB�, where
each of A and B has 4 columns, subject to the additional con-
straint that the final column of B consists of all 1s.

As usual, the problem is solved by alternately finding the
least-squares solution for A and B given the other. We start
with B0, random except that the final column consists of all
1s. The estimate of A is no different from usual, consisting
of the least-squares solution of the equations M = A iBi

� for
Ai.

To solve for Bi is a little different. We write Ai−1 =
[Ãi−1|ti−1], and Bi = [B̃i|1] where 1 represents a vec-
tor of 1s. The the equation M = Ai−1Bi

� becomes M =
Ãi−1B̃i + ti−11�, or Ãi−1B̃i = M− ti−11�, which we solve
for B̃i.

The complete algorithm is as follows:

Algorithm 4.3. 1. Given Mm×n, initialize the m×r matrix
A0 = [Ã0|t0] with random entries.

2. Iteratively carry out the following steps until conver-
gence of the product AiBi

�.

3. Given Ai−1 = [Ãi−1|ti−1], solve (one row at a time) for
B̃i as the least-squares solution to the set of equations
Ãi−1B̃i = M− ti−11�.

4. Given Bi, solve (one row at a time) for Ai as the least
squares solution to the set of equations M = AiBi

�.

We make some remarks here.

1. With missing data, those equations corresponding to
missing entries in M are omitted. Naturally, it is pos-
sible to start with a random B0 instead of A0.

2. Normalization of each Ak or Bk is possible (and used in
our implementation). Only the first three columns of A
can be orthogonalized however, since the last column
of B must remain equal to 1.

We tried the affine reconstruction method on a set of im-
ages taken from a plane. First and last images from the se-
quence are shown in Fig 3

5 Factorization with Uncertainty

We now suppose that each point measurement x ij in an im-
age comes with a specified uncertainty, represented by an
inverse covariance matrix C−1

ij . In terms of this inverse co-
variance matrix, one may define a Mahalanobis distance

||x − y||2Cij
= (x − y)�C−1

ij (x − y) .

Note: In this section, subscripts on Ai and Xj indicate
camera and point number, and not iteration number as else-
where.
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Figure 3: Images used in the affine reconstruction experi-
ment. The sequence consisted of 20 images, with 1415 tracks
(3D points) and 18893 image points. This represents a miss-
ing data rate of33%. The image sequence is not strictly
affine, but is close enough to obtain good results. The Power-
Factorization algorithm converged after 43 iterations, using
the banded technique, to a residual of 0.365 pixels.

For affine reconstruction, the estimation task becomes
that of finding 2× 4 affine projection matrices A i and points
Xj = (Xj , Yj , Zj , 1)� that minimize the total Mahalanobis
distance ∑

i,j

||xij − AiXj ||2Cij
.

This task may be carried out by a minor modification of the
PowerFactorization algorithm as follows.

As with affine PowerFactorization, the two tasks of solv-
ing for the matrices A and B� are slightly different. However,
as before, in the case where the covariance matrices are all
equal to the identity the algorithm is identical with simple
low-rank factorization.

Solving for the matrices Ai. Suppose that all the points
Xj = (Xj , Yj, Zj , 1)� are known. Since matrix C−1

ij is
symmetric and positive semi-definite, we may factorize it as
C−1

ij = Kij
�Kij , though this factorization does not need to be

computed explicitly, as we shall see below. The contribution
of point xij to the total cost is given by

(xij − AiXj)�C−1
ij (xij − AiXj)

= (xij − AiXj)�Kij
�Kij(xij − AiXj)

= ||Kij(xij − AiXj)||2E
The final norm is simply the Euclidean norm of the vec-

tor. This cost is to be minimized over choices of A i. We may
write

AiXj =
[

Xj
� 0�

0� Xj
�

] (
a1

i

a2
i

)

where aj
i
� represents the j-th row of Ai. The matrix on the

right-hand side of this expression we represent by X̄j ; it is a
2×8 matrix. In addition the vector (a1

i
�,a2

i
�)� on the right-

hand side will be denoted by āi. It contains the 8 entries of
Ai to be computed. With this notation, the cost term to be
minimized is

||Kijxij − Kij X̄j āi||2E

This is the cost minimized by a linear least-squares prob-
lem (Kij X̄j)āi = Kijxij . For a given value of i, each mea-
surement xij contributes such a equation, and the task is to
minimize the squared sum of them, namely

∑
j

||Kijxij − Kij X̄j āi||2E .

The required Ai is found by minimizing this expression over
all āi. The solution is found in the usual manner by solving
the normal equations

āi = (
∑

j

X̄j
�Kij

�Kij X̄j)−1
∑

j

X̄j
�Kij

�Kijxij

= (
∑

j

X̄j
�C−1

ij X̄j)−1
∑

j

X̄j
�C−1

ij xij . (6)

Solving for Xj . Solving for the Xj is more simple; as
before we need only make sure that the final coordinate of
each Xj is 1. The contribution of xij to the total cost is

||Kij(xij − AiXj)||2E = ||Kij(xij − ti) − Kij ÃiX̃j ||2E
where Ãi is the 2 × 3 matrix consisting of the first three
columns of Ai, and X̃j is the first three entries of Xj . This is
the cost minimized in a least-squares problem

(Kij Ãi)X̃j = Kij(xij − ti) .

Fixing j, and summing over all i, we need to find the
required X̃j that minimizes the sum of the squared residuals.
The normal equation solution is obtained as

X̃j = (
∑

i

Ãi
�Kij

�Kij Ãi)−1
∑

i

Ãi
�Kij

�Kij(xij − ti)

= (
∑

i

Ãi
�C−1

ij Ãi)−1
∑

i

Ãi
�C−1

ij (xij − ti) . (7)

By alternating steps (6) and (7) as in Algorithm 4.3 conver-
gence is reached in a small number of iterations (usually less
than 5) from a random starting point.

5.1 Evaluation

Tests were carried out on synthetic data with varying num-
bers of points and views. Each image point was perturbed by
non-isotropic Gaussian noise according to a randomly cho-
sen covariance matrix. The square-roots of the eigenvalues
of the covariance matrix (major and minor axes of the un-
certaintly ellipse) were chosen to be σ, and rσ, where r was
chosen randomly per point, varying between 1 and max(r),
either 20 or 100 in the experiments. The orientation of the
uncertainty region was randomly chosen. Each experiment
was run 100 times to give a percentage failure rate. The re-
sults are given in table 1.
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# points # views σ max(r) % failure
10 10 0.01 20 47
20 20 0.01 20 6
10 100 0.1 100 8
10 100 0.01 100 0
10 100 0.01 20 0
50 50 0.01 20 0
100 100 0.01 20 0

Table 1: Failure rates for PowerFactorization with uncer-
tainty. The algorithm has 100% success (converging to the
guaranteed global minimum) except on extreme cases. Fail-
ure occurs with too few (10) points (first row), occasionally
with 20 points (row 2), or with extreme noise and a very
elongated uncertainty region (third row). Note that the noise
level is quoted in fraction of image half-width. Thus for row
three, the averageuncertainly region (one standard devia-
tion) is of the order of 50 by 2500 pixels for an image size of
1000× 1000 – totally unrealistic for real data.

Figure 4: Three images used in the projective reconstruction
experiment. The sequence consisted of 61 images, with 1801
tracks (3D points) and 20605 image points. This represents
a missing data rate of81.3% – that is only18.7% of the
measurement matrix was populated with data. The strategy
for banded data was used to reconstruct this sequence. After
a final bundle adjustment the RMS reprojection error was
0.368 pixels.

Projective factorization. The PowerFactorization
method may be extended to projective reconstruction as
well, by a straight-forward extension of the Sturm-Triggs
factorization method. Details are omitted, but some results
are shown in Fig 4.

6 Conclusion

The PowerFactorization algorithm is fast, reliable and rela-
tively impervious to noise. Unlike most iterative algorithms
it is stand-alone, not requiring an initialization, since it con-
verges from a random starting point. It may be applied to a
variety of 3D reconstruction problems.

In the case of affine reconstruction of complete data it
is provably rapidly convergent to the global optimal solu-
tion. Since the cost surface should not change substantially
by omission of some data points, it is expected to converge
reliably with missing data, and this is borne out by exper-

iment. Performance degrades gracefully from the certainty
of convergence on complete data. It provides a particularly
effective method for affine factorization with uncertainty for
the case of arbitrary and independent uncertainty regions, for
which no algorithm was previously known.
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