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Abstract ity The main computational tool isthe SVD, which (given a
good implementation) is virtually fool-proof. Furthermore,
Many problems in computer vision may be considered as it minimizes the correct geometric cost function.

low-rank approximation problems, in which a matrix of mea- Subsequently, low-rank approximation and factorization
sured data must be approximated by a matrix of given low of measurement matrices has been applied to many prob-
rank. If the matrix has no missing entries, then this is easily |ems, We name just a few such applications. The original
accomplished by a Singular Value Decomposition (SVD). If algorithm was generalized to various other camera models
some measurements are missing however, and the matrix hag9g, 12]). Furthermore Irani and Anandan ([6]) have gen-
holes, then the SVD method can not be applied. We presentralized it to the case of non-isotropic measurement covari-
here a practical iterative method for approximating a data ance. Shashua ([10]) observed that the set of trifocal tensors
matrix, possibly with missing entries, with another matrix from an image sequence lie in a low-rank subspace. Irani
of small rankr. For a complete data matrix the method re-  has made a similar observation concerning image-to-image
duces to the well-known "Power Method” which is provably  homographies ([15]). Applications to Principal Component
convergent to a unique global optimum. If the data is well Analysis (PCA) are givenin[11, 3]. In all these algorithms,
approximated by a matrix of rank the Power Method has  Jow-rank reduction is used to mitigate noise effects and pro-
rapid convergence. Our method for incomplete data is ap- vide robust approaches to the respective estimation prob-
plied to several problems of 3D reconstruction, generalizing |ems. The method used in this paper can be applied with

the Tomasi-Kanade method for orthographic cameras and advantage to all these problems.

the Sturm-Triggs method for projective cameras to missing

and uncertain data.

1 Introduction

In the affine or orthogonal reconstruction problem, a set of
points X ; are seen in several images, the measured coordi-
nates of the points being denoted by x;;. The reconstruction
task, given the image measurements x,;, is to find the po-
sitions of the points X; and the camera matrices P; of the
cameras. It was shown by Tomasi and Kanade ([13]) that
this problem may be reduced to a low-rank approximation
problem as follows. A matrix M is formed, consisting of the
measured point coordinates in a centred coordinate system:
M = [x;;]. One then finds a rank-3 approximation M to M,
minimizing the Frobenius norm ||M — M||. HereM = AB T for
two matrices A and B both having three columns. The camera
matricesP; and the points X ; may then be read directly from
A and B respectively. The rank-3 approximation M, and the
two matrices A and B are conveniently computed by carrying
out a Singular Value Decomposition (SVD) of matrix M, and
zeroingout al but thethreelargest singular values. Thegreat
success of this algorithmis dueto its simplicity and reliabil-

The most persistent difficulty with the method of low-
rank approximation is that it requires that al the points be
visible in al views, or in a more abstract context, the mea-
surement matrix M must have no missing entries. Various
ways ([7, 13]) have been suggested for getting around this
restriction. The best known is [13] in which a strategy for
filling in missing data are discussed and suggested. The
problem is that this data is effectively invented, and can
cause the results to be biased to accommodate this fictitious
data. [2] addresses this by dealing with the missing data us-
ing an EM algorithm. A recent paper [1] addresses the prob-
lem of incremental SVD with missing data by combining
imputation (the filling-in of missing entries based on what
has been seen so far) with a sparse reduction of the updated
matrices to diagonal form. While the results are promising
the method suffers from the same theoretical difficulty and
the final result will depend on the order in which the dataiis
encountered. In this paper we do not attempt to fill in miss-
ing data, but live with it (or rather, without it).

Comparison with previous work. Our paper is most
closely related to work of Morita& Kanade [8] on factoriza-
tion, and De la Torre&Black ([3]) and Shum et a. ([11])



on PCA. Morita and Kanade introduce orthogonal iteration
as a method of incremental affine reconstruction. We ob-
serve that asmall but important modification to their method
yields a technique that may be applied with missing or un-
certain data. In seemingly unrelated work [3, 11] a method
of alternating between optimization over partia parameter
sets is proposed for Principal Component Analysis. This
method of alternation has been criticized as a general tech-
niquein [14] on the grounds of slow convergence. Inthispa
per, however, we show that the techniques of [8] and [3, 11]
are closely related, and that the guaranteed fast global con-
vergence properties shown in [8] carry over to awider range
of problems, and provide theoretical and experimental justi-
fication of the process of aternation.

We use the devel oped technique to solve the problem of
affine reconstruction with uncertain data and missing data
(which is an extreme case of uncertainty). The agorithms
are rapidly convergent from a random initial point and are
robust to large amounts of noise. The paper of Irani and
Anandan ([6]) is the most noteworthy prior paper on recon-
struction with uncertainty. Their method does not give an
exact solution (our method does), since they reduce the mea-
surement matrix to rank 6 (instead of 3) and then use anin-
exact method for the final reduction to rank 3. In addition,
they require that the covariance of a given point be the same
in al images, which our method does not.

Overview of the Power Factorization method. Thestan-
dard method for finding a low-rank approximation to a ma-
trix M is to use the SVD, hut this is not the only method.
The problem is mathematically equivalent to finding the
eigenvalues and associated eigenvectors of MM . The Power
Method ([4]) is a useful method for finding the dominant
eigenvector of a matrix X, converging rapidly if the largest
eigenvalue sufficiently dominates the next largest. Starting
from a random vector u, the method is to repeatedly apply
X to u and normalize the resullt:

Uy 1 = Xug /|| Xug|

The Power Method may be extended for finding the domi-
nant subspace of dimension r (i.e. the subspace spanned by
thefirst r eigenvectors). Applying it to a symmetric positive
semi-definite matrix MM ", we starting with a random matrix
Up with r orthonormal columns and repeatedly multiply by
MM and re-orthonormalize columns:

U = (MM")Uj_1 Ny, (1)

where Ny is an upper triangular matrix that makes the
columns of U orthonormal. This normalizing matrix Ny
is found by the Gram-Schmidt process, equivaent to QR
decomposition of (MM )U;_;. The resulting algorithm is
known as orthogonal power iteratior4].

Using this iteration for the dominant subspace of X =
MMT turns out (see below) to be equivalent to the following
iteration for factoringM = AB T where, starting from a ran-
dom rank r factor A, we define successive updates

B,y =
A =

(MTAp—1)(Ap—1 TAp—q) ™t @
(MBy)(By "By) !

Thus, the algorithm requires little more than matrix multi-
plication and inversion of small (r x r) matrices, and will
convergevery rapidly if M isindeed closeto arank » matrix.
Convergenceto aglobal minimum of the cost |[M — AB T || is
guaranteed.

Matrix multiplication is not possible with missing entries,
so it is not clear how this solves the missing data problem.
The key observation of this paper is that each step in the it-
eration is exactly equivalentb solving aleast-squares prob-
lem using normal equations: starting with a random A one
solves alternately for B and A until convergence. The point
isthat this set of equations can be solved even if M has miss-
ing entries. There is one equation for each entry of M, and
this equation may be omitted when the entry of M is miss-
ing. Thus, in the case of missing data, we replace the normal
equations used in the full data case by least-squares solution
of aset of linear equations. The cost function minimized by
thisalgorithmis

> (M — (ABT);)”

2]

where the sum is only over index pairs ¢, j such that M;; is
defined.

In the case of 3D affine reconstruction, the method just
described consists of starting with a random set of initia
points, and linearly solving alternately for the camera ma-
trices and the 3D points until their product convergesto the
measurement matrix. This approach seems so naive that it
is hard to see that it will be effective. However, as will
be shown, in the case of full data and no noise the algo-
rithm convergesto the optimal solution in asingle iteration.
With added noise it may be proven to converge rapidly to
the global optimum. For the case of missing data, it is pos-
sible for local minimato occur when the noise level or the
percentage of missing points is high. It is possible for the
algorithmtofall intoalocal minimumin such acase. Never-
theless for moderate amounts of missing pointsthis problem
does not seem to occur.

The advantage of the technique described in this paper
is that it does not simply make local incremental improve-
ments. Instead the cost functionis optimized (globally) with
respect to A and B aternately. Thus the algorithm is able to
make large jumps towards the global minimum at each step.



2 Findingarank r approximation

We consider again the affine reconstruction problem. In
the affine camera model, a point represented by a non-
homogeneous 3-vector X is mapped to an image point x
accordingto x = AX + t, where A isa 2 x 3 matrix, and
t isa2-vector.

The affine reconstruction problem is to compute m affine
camerasand n 3D pointsgiven only theimage pointsx ;. In
particular, we want to solve the equations x;; = A;X; + t;.
For the present, we assume that the points are visible in al
views, so0 that x;; isdefinedforal ¢ = 1,...,mand j =
1,...,n.

In the well known paper ([13]) it was observed that by
expressing the image coordinatesin each image with respect
to an origin defined to the the centroid of the image points
in each image, it may be assumed that each t; is zero. The
reconstruction problemis then to find matrices A ; and points
X such that x;; = A;X;. This can be written as a single
matrix equation

Xin -| [ Al -|

- EJ:{EJ[Xl e X ]
Xmn A,

\‘ Xm1

This set of equations may be written asM = AB T, where
we note that M (the measurement matfixs made up of the
image coordinates of all theimage points, matrix A isformed
by stacking theindividual cameramatrices, and B consists of
the coordinates of the 3D points. The affine reconstruction
problem is thus exactly the problem of factoring the matrix
M into two factors of rank 3. For more details, the reader is
referred to the origina paper [13] or to [5].

In the presence of noise, the exact factorization of M into
factors of rank 3 will not be possible. Instead, one finds
the closest rank 3 product M = AB' (where A and B have
just three columns), so as to minimize the Frobenius norm
|M — ABT|| of the difference between M and M. Assuming
isotropic 11D Gaussian image noise this will compute the
Maximum Likelihood Estimate. The minimization can be
carried out by computing a Singular Value Decomposition
of M and truncating all but its first three singular values to
zero.

2.1 The PowerFactorization M ethod

LetMbeanm x n matrix and let r < m, n. Wewish to find
the best rank r approximation to M, i.e. to compute matrix
factors A and B of sizem x r and n x r respectively such that
|IM— ABT || is minimized. As remarked above the solution to
this problem isto compute the SVD of M and truncate all but
the r largest singular values to zero.

An alternative method is the following generalization of
the orthogonal power iteration method. Starting with anini-
tial random m x r matrix Ag, we iterate as follows.

Bk MTAk_lNk 3)
Ay = MBy(Bx'By)!

until the product A,By T converges. The matrix Ny, is a non-
singular r x r matrix used for normalization, important only
for numerical stahility of the problem. It is easily verified
that the sequence of products A ;B | does not depend on the
normalization matrices N, since al occurences of N, cancel
out when the product is formed.

Inthe case where N}, is chosen so that B;, has orthonormal
columns, then (B " B) is the identity matrix, so the iteration
becomes

By = MTAp 1Ny
A = MBg )
Combining the two steps gives A, = (MM ' )Ax_ 1Ny, which
isjust the formulafor orthogonal iteration given in (1) and
[8]. The convergence properties of orthogonal power itera-
tion are well known ([4, 8]). Those convergenceresults may
be extended to the convergence of (3), as follows™.

2.1. Lets; be thej-th largest singular value afft and sup-
pose thats,, > s,.1. If M be the closest rank-approxima-
tion toM, then there exists a constafit(depending ot and
Ay) such that for allk

1M — ABy, T|| < C(sr41/57)%"

If the matrix M were actualy of rank r then s,.; would of
course be zero and the algorithm would convergein oneiter-
ation. For matricesthat are merely closeto having rank r the
gap between s, and s,-,1 will be large and so convergence
will be rapid.

Actually, the method given above provides a dight ex-
tension of the algorithmsin [4] and [8], in that it computes
both A and B. In [8] orthogonal iteration is applied to the
symmetric matrix MM T to compute A. By contrast, we carry
out the iteration in two steps, computing A and B. The dif-
ference is crucia for various reasons. Forming the product
MM explicitly is a bad idea from the point of view of con-
ditioning ([4]), secondly proceeding in two stepsin thisway
ismore efficient in terms of operationsfor small rank r, and
most importantly, the two-step iteration may be generalized
to missing data by observing alink with least-squares prob-
lemsin away that the standard orthogonal iteration method
cannot. Thiswill be explained in the next section.

1L ack of space precludes inclusion of aproof of this, but the reader may
see [8] or [4] for the general idea.



2.2 PowerFactorization as L east-squares

A different form of the normalization matrix N in (3) can be
made in which the two steps are symmetric, namely

By =
A, =

T T -1
Wb

As observed above, this sequence will generate the same se-
quenceof rank r products A ;B;, | asthe orthogonal power it-
eration method (3) and (4). There are two interesting things
to note about this iteration.

Firstly, each B, and A is nothing other than the least-
squares solution to a set of equations of theformM = AB .
At each step, we minimize the squared norm |[M — AB T||,
solving first for B and then for A. This least-squares prop-
erty is easily seen by comparing it with the least-squares
equation m = Ab. The “normal equation” solution to this
problemisb = (ATA)~'ATm, which when transposed is
b" = (mTA)(ATA)~! which looks very like (5). Applying
this to each row m of M gives the desired equivalence. The
equations 5 are just matrix versions of the normal equations.

Secondly, since each update involves nothing other than
solving alinear least squares problem—minimize||AB T — V||
over B given A or vice versa— it readily generalizes to the
case where some entries of M are missing, even though the
tool of matrix multiplication (used in (3)) can not be used in
this setting. Thisis the PowerFactorization algorithm:

Algorithm2.2. 1. Givenm x n matrix M, start with aran-
dom matrix factor Ao of dimensionm x r. Then, repeat
the next two steps until the product A,B;, T converges.

2. Given A,_1, find the n x r matrix By, that minimizes
> Mg — (Ax—1B " )ij|* where the sum is over those
index pairss, j such that the entry M;; is available.

3. Given By, find the matrix A;, that minimizes Zij IM;; —
(AxBy ");;|> wherethe sumis over the sameindex pairs
as before.

Thus, we see that the algorithm adopts the seemingly naive
strategy of starting at a random starting point Ay and itera-
tively solving (by linear least squares) for B, and A until
convergence. Despite the simple-minded nature of this algo-
rithm, we have shownin ( 2.1) that it convergesvery rapidly
to the global minimum solution (at least in the case of com-
plete data).

Computationally, the updates of B given A (the update of
A given B is similar) can be done by solving a least squares
problem for each row of B independently. This is because
each column of BT contributes only to the entries in the cor-
responding column of M. Missing entriesin M correspond to
omitted equations.

Normalization. At any point in the iteration at one can
choose to condition the problem by replacing and B, with
BN where N is some normalization matrix. This does not
affect the sequence of products AB " but may be helpful for
numerical stability. In our implementation we normalize B,
at each iteration.

To summarize: the PowerFactorization method is a two-
step form of the orthogonal power iteration applied to M
which produce the same sequence of rank r factorizations
and therefore has the same rate of convergence. For com-
plete data matrices M it provably convergesto the unique lo-
cal (hence global) minimum. If the data matrix is of rank »
then it convergesin one iteration.

Timing experiments.  Tests with showed that on a 500 x
500 matrix PowerFactorization found a rank-4 approxima-
tion in 5% of the time of SVD. More details on timing are
foundin[8].

2.3 Convergence

It was shown that in the case where al the entries of M are
known, this algorithm converges quickly to a global mini-
mum. We use this fact to argue that the omission of a num-
ber of equations, corresponding to missing entries in M will
not greatly effect the convergence, or indeed the ultimate so-
Iution to the set of equations. The set of equations used to
solvefor the A; or B; at each step is highly redundant. In par-
ticular with no missing data, there are either mn equations
in mr or nr unknowns. Omission of a small percentage of
these equations will not be expected to materialy effect the
cost surface. Certainly, search for minima holding either A
or B fixed is still a quadratic problem for which we reach
a directional minimum in one step of linear-least squares.
Since the algorithm converges in the complete data case, it
may be expected to convergein the case of missing data, as
long as the amount of missing data is not too great. This ex-
pectation was borne out by experiments, which showed that
convergence from a random viewpoint will occur reliably
with large amounts of missing data (see Fig 1).

Naturally, deletion of alarge fraction of the entries of M,
and hence a corresponding fraction of the equations used to
solve for successive A; and B; will cause the solution to di-
verge increasingly from the estimate for the complete data
case. With too few data points, the successive estimates may
fail to converge, or converge very slowly, but this happens
only with large amounts of missing data, and increasingly
infrequently as the size of the matrix M grows.

If the solution evidently fails to converge, asindicated by
too high aresidual value, then starting again from a different
random initial A will often solve the problem.

Since (even in the missing data case) the residua error
|[M—A;B; || decreases at each iteration of the algorithm, the



! Banded data problems The results given in Fig 1 were
for data sets with randomly omitted points. In real image
sequences, the missing data often has a banded form, since
tracks are of finite length over consecutive frames. Exper-
iments with real data showed that the PowerFactorization

— 50x50
60F | —— 100x 100
—&— 200x 200
?
8

a0 algorithm did not perform on such sequences as well as it
does for randomly missing data. To solve this problem we
200 adopted a bootstrapping procedure in which structure and

motion estimates are built up over an expanding window
of frames. This method was used with success on the red
examples shown later. Details of this strategy will bein a
longer version of this paper.

0 20 40 60 80 100
% missing

Figure 1: Breaking point experiments on synthetic data: for
three sizes of matrix and various proportions of missing en-
tries the empirical chance of successful convergence was3
evaluated. As expected the risk of breakdown increases as

the number of missing entries increases but the tolerance toThe idea of solvi ng | east-squares minimization problems by
incomplete data is still considerable. Moreover, as the size alternately carrying out minimization steps with respect to
of the problem increases, the chance of success increases. 1§pgets of the variable parameters has been suggested many
fact for a problem of siz&000 x 2000 the algorithm con- i mes hefore for different optimization problems, such as a-
verged perfectly with up to 95% missing data (not shown on ternately solving for structure and motion. However, it has
the graph). The noise level was 5% but the noise level seemgyften peen thought of as a sort of poor-man’s bundle ad-

Why not bundle-adjustment

to have little effect on the success rate.

products A;B; " must converge to a limit (or at least |[M —
A;B; "|| must converge). In the case of complete data, this
minimum must be a global minimum. In the case of missing
data, however, it is possible to convergeto aloca minimum.
An example of thisis the matrix

1 2 3
M= 2 5 -7
-2 3 X

where x indicates a missing entry. We attempted to approx-
imate this matrix by its closest rank-1 matrix, M. It was de-
termined empirically that there are two local minima with
residuals |[M — M|| of 1.515 and 2.091 respectively. The al-
gorithm falls into one or either of these minima depending
on the starting point. It should be emphasized, however that
thisis exceptional behaviour, and does not occur very often
in practice, unless the amount of missing datais too great.

Detecting successful convergence With noise, the ago-
rithm will not of course converge to the true value of the
noise-free points, but rather to the minimum of cost solu-
tion. If X represents the noise-free data, X the noisy data
and X the final estimate, then the condition for convergence
to agloba minimumisthat X — X is perpendicularto X — X
(see [5]). Note that this condition is not satisfied at alocal
minimum. The (somewhat stringent) condition we used to
claim correct convergence is that the Pythagorean equality
was satisfied within 0.1%.

justment. The usual criticism has been that it will converge
slowly because it may zig-zag slowly down narrow valleys
instead of heading directly towards the minimum. This crit-
icism is unfounded in the present case, however, since we
have shown that progress towards a minimum is rapid when
we solve dternately for affine structure and motion. The
reason for this fast convergenceis that in solving for either
A or B, while holding the other fixed one finds the absolute
minimum in each direction in asingle step.

By contrast, at each step of bundle adjustment with re-
spect to the full set of parameters, one chooses an incremen-
tal parameter direction and does a one-dimensional search
for the minimum of the cost function in that direction. This
is true of methods such as conjugate-gradient, steepest de-
scent, or Powell’s method. Let Ag and By be some current
values of the factor matrices, and let (A 4, Ap) represent an
incrementa search direction. The next value of the param-
eters will be of theform (4 + AA 4,Bo + AAp). The cost
for agivenvalueof X is||X — (Ao + AA4)(Bo + AAB) |2,
It is easily seen that thisis afourth-degree polynomial in A,
which in general will not have a unique minimum. Figure 2
shows the variation of cost along some random linear cross-
sections of parameter space, clearly showing double minima
of the cost function. Methods such as L evenberg-Marquardt
and Newton attempt to deduce the position of the minimum
from loca gradient information, assuming a quadratic cost
function. As seen in Fig 2, the position of the minimum
bears little relation to the local gradient measured far from
the absolute minimum. In fact in such methods, convergence
will be slow as the path to the minimum attempts to weave
around local cross-sectional minima.

By contragt, if the incremental search direction is over



-3 -2 T 1 3 -z T T

Figgre 2 C_ross sectional cost-functions showing. double tor of 1s. The the equation M — A
minima, which slow convergence of full bundle-adjustment 3

ordinates. The required factorization isM = ABT, where
each of A and B has4 columns, subject to the additional con-
straint that the final column of B consists of all 1s.

Asusual, the problem is solved by alternately finding the
least-squares solution for A and B given the other. We start
with By, random except that the final column consists of all
1s. The estimate of A is no different from usual, consisting
of the least-squares solution of the equationsM = A;B; T for
A;.

To solve for B; is a little different. We write A, =
[A;_1]t;—1], and B; = [B;|1] where 1 represents a vec-
,_1B; | becomesM =
Zfléi + tifl].—r, or Aifléi =M-—- tifll—r, which we solve

techniques. PowerFactorization avoids such local minima ¢, 5
i

by alternating structure and motion optimization.

one of the subspaces represented by A and B, then the same
calculation as before shows that the cost function is only
a quadratic function of ), and hence least-squares methods
find the directional minimum in one step. Experimentswith
bundle adjustment have shown that it usually converges, but
in 3 to 4 times as many iterations as PowerFactorization and
as much as 100 times more slowly in terms of time, on mod-
erate problems.

4 Affine Reconstruction

The PowerFactorization algorithm may be used to carry out
affine reconstruction with full data by subtracting out the
centroid of the image points in each image. This reduces
the problem to one of rank-3 factorization, as discussed pre-
vioudly. In the case of missing data, this approach has the
difficulty that it is not possible to compute the centroid of al
the points in a given image, since al the image points are
not known. The approach of simply using the centroid of
the visible points to start with, and later filling in the miss-
ing points by reprojecting the computed points has been sug-
gested ([13]). We prefer not to use this method, since hal-
lucinating the missing image measurements has the poten-
tial to create a bias towards an incorrect solution. Instead,
we take an approach in line with the PowerFactorization al-
gorithm. First of all, the method will be described for the
full-data case.

The affine projection mapping may be expressed in terms
of a2 x 4 projection matrix A acting on a 4-vector X =
(X,Y,z,1)" representing the points. The image point (in
non-homogeneous coordinates) is simply the product x =
AX. Notethat for thisto work, the last entry of the vector X
must equal 1.

In this setting, the problem of affine reconstruction be-
comes one of factoring the measurement matrix M = [x,;],
where the x;; are the image points in non-homogeneous co-

The complete algorithm is as follows:

Algorithm4.3. 1. GivenM,, «n, initidizethem xr matrix
Ao = [Ag|to] with random entries.

2. Iteratively carry out the following steps until conver-
gence of the product A;B; T .

3. GivenA;_; = [A;_1]t;_1], solve (onerow at atime) for
B; as the least-squares solution to the set of equations
A; 1B =M—t; 417,

4. Given B;, solve (onerow at atime) for A; as the least
squares solution to the set of equationsM = A;B; .

We make some remarks here.

1. With missing data, those equations corresponding to
missing entries in M are omitted. Naturaly, it is pos-
sible to start with arandom By instead of Ag.

2. Normalization of each A or By ispossible (and used in
our implementation). Only the first three columns of A
can be orthogonalized however, since the last column
of B must remain equal to 1.

We tried the affine reconstruction method on a set of im-
ages taken from a plane. First and last images from the se-
quence are shown in Fig 3

5 Factorization with Uncertainty

We now suppose that each point measurement x;; inanim-
age comes with a specified uncertainty, represented by an
inverse covariance matrix C;jl. In terms of this inverse co-
variance matrix, one may define a Mahalanobis distance

Ik —yllg, = (x—y)Tc; (x—y) -

Note: In this section, subscripts on A; and X; indicate
camera and point number, and not iteration number as el se-
where.



This is the cost minimized by a linear least-squares prob-
lem (K;;X;)a; = K;;x,;. For agiven value of 4, each mea-
surement x;; contributes such a equation, and the task is to
minimize the squared sum of them, namely

> lIKixi; — KigXallg -
F

Figure 3: Images used in the affine reconstruction experi- Therequired A; isfound by minimizing this expression over
ment. The sequence consisted of 20 images, with 1415 tracksll a;. The solution is found in the usual manner by solving
(3D points) and 18893 image points. This represents a miss-the normal equations

ing data rate of33%. The image sequence is not strictly

affine, butis close enoughto obtain good results. The Power-  a; = Z X; "Kij KX Z X; T Kij " Kijxij
Factorization algorithm converged after 43 iterations, using
the banded technique, to a residual of 0.365 pixels. — Z XjTC;X Z x;Tc! i) (6)
i
For affine reconstruction, the estimation task becomes _ . _ _
that of finding 2 x 4 affine projection matrices A; and points ~ Solving for X;.  Solving for the X; is more simple; as

X; = (Xj,Y;,2;,1)" that minimize the total Mahalanobis

distance
E ||X'L'j — AiX
i.5

Thistask may be carried out by a minor modification of the
PowerFactorization algorithm as follows.

As with affine PowerFactorization, the two tasks of solv-
ingfor thematricesA andB " aredlightly different. However,
as before, in the case where the covariance matrices are all
equal to the identity the algorithm is identical with smple
low-rank factorization.

112
jllcs; -

Solving for the matricesA;.  Suppose that all the points
X; = (X;,Y;,2;,1)T are known. Since matrix C;' is
symmetric and positive semi-definite, we may factorizeit as
C;jl = KijTKij, though thisfactorization does not need to be
computed explicitly, as we shall see below. The contribution
of point x;; to the total cost is given by

(xij — KiX; ) Cij 1(Xw
(xij — AiX;) "Kij "Kij (x5
= [[Kij(xij — AX5)|[E

The final norm is simply the Euclidean norm of the vec-
tor. Thiscost isto be minimized over choicesof A ;. We may

write T T 1
[ 2] (3)

3

where a{ T represents the j-th row of A;. The matrix on the
right-hand side of this expression we represent by X;; itisa
2x8 matrix. Inadditionthevector (a} ",a?") " ontheright-
hand side will be denoted by a;. It contains the 8 entries of
A; to be computed. With this notation, the cost term to be
minimizedis

[IKijxi; — KijX;ail|g

before we need only make sure that the final coordinate of
each X ; is 1. The contribution of x;; to the total cost is

[[Kj (%05 — A:X5)[|E = [[Kij (35 — ti) — Kij A X[|E
where 4; is the 2 x 3 matrix consisting of the first three
columnsof 4;, and X; isthefirst threeentries of X ;. Thisis
the cost minimized in aleast-squares problem

(Kijhi)X; = Kij(xij — ti) -

Fixing 7, and summing over al i, we need to find the
required 5(]» that minimizesthe sum of the squared residuals.
The normal equation solution is obtained as

ZA Kij KA ZA TKij TKij(xij — t)
ZAiTCi—le ZA T C (ki —t) (D)
A

By aternating steps (6) and (7) asin Algorithm 4.3 conver-

genceisreached in asmall number of iterations (usually less
than 5) from arandom starting point.

X, =

5.1 Evaluation

Tests were carried out on synthetic data with varying num-
bers of pointsand views. Each image point was perturbed by
non-isotropic Gaussian noise according to a randomly cho-
sen covariance matrix. The square-roots of the eigenvalues
of the covariance matrix (major and minor axes of the un-
certaintly ellipse) were chosen to be o, and ro, where r was
chosen randomly per point, varying between 1 and max(r),
either 20 or 100 in the experiments. The orientation of the
uncertainty region was randomly chosen. Each experiment
was run 100 times to give a percentage failure rate. There-
sultsare givenin table 1.



#points #views o max(r) %failure iment. Performance degrades gracefully from the certainty

10 10 0.01 20 47 of convergence on complete data. It provides a particularly
20 20 0.01 20 6 effective method for affine factorization with uncertainty for
10 100 0.1 100 8 the case of arbitrary and independent uncertainty regions, for
10 100 0.01 100 0 which no algorithm was previously known.

10 100 0.01 20 0

50 50 0.01 20 0
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