
Global Optimization through Rotation Space Search

Richard I. Hartley Fredrik Kahl
Australian National University Centre for Mathematical Sciences

and National ICT Australia∗ Lund University, Sweden.

Abstract

This paper introduces a new algorithmic technique for solving certain problems in geometric
computer vision. The main novelty of the method is a branch-and-bound search over rotation
space, which is used in this paper to determine camera orientation. By searching over all possible
rotations, problems can be reduced to known fixed-rotation problems for which optimal solutions
have been previously given. In particular, a method is developed for the estimation of the essential
matrix, giving the first guaranteed optimal algorithm for estimating the relative pose using a cost
function based on reprojection errors. Recently convex optimization techniques have been shown
to provide optimal solutions to many of the common problems in structure from motion. However,
they do not apply to problems involving rotations. The search method described in this paper
allows such problems to be solved optimally. Apart from the essential matrix, the algorithm is
applied to the camera pose problem, providing an optimal algorithm. The approach has been
implemented and tested on a number of both synthetically generated and real data sets with good
performance.

1 Introduction

In this paper, we will considerL∞ optimization problems related to one-view or two-view geometry;
in particular we will focus on two problems, the pose problem and the relative pose problem. Optimal
(minimum cost) solutions will be given to these problems under the geometrically meaningfulL∞
cost function. Although these problems have been well studied in the past, no previous solutions
have claimed optimality under any sort of meaningful geometric error model.

The pose problem is as follows. Given a set of3D points with known position, and corresponding
2D image points, determine the location and pose of the camera. A little more formally: given3D
pointsXi and corresponding image points,vi, determine the camera matrixP. A solution to this
problem is given by the DLT algorithm ([5], chapter 7).

The relative pose (or relative orientation) problem is to find the relative pose of two cameras,
given a set of image correspondences determined by unknown3D points. Often, the solution to
this problem involves finding the positions of the3D points as well. In other words, given image
correspondencesvi ↔ v′i, find two camera matricesP andP′, along with3D pointsXi, such that
vi = PXi andv′i = P′Xi. This is the problem commonly solved by computing the fundamental or
essential matrix; a commonly used algorithm is the 8-point algorithm ([11] or [5], chapter 11).

In the case where there is noise in the measurements, there is of course no exact solution to
these problems, and generally it is considered optimal to find a solution that minimizes image error,
namely the difference between the measured and modelled image points. The difference between the
measured and modelled image measurements may be represented by a vector with one coordinate
for each image measurement. TheL2 solution to the problem minimizes theL2 norm of this error
vector, namely the sum of squares of the image-measurement errors. TheL∞ solution, considered

∗NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian
Research Council.

1

in this paper, minimizes theL∞ norm of the error vector, that is, it minimizes the maximum error,
and is also called the minimax solution to the problem.

The main technical obstactle for solving these kinds of problems is that they are by nature non-
convex and may contain several local optima. This is true for other simpler multiview problems
like triangulation as well, but unlike triangulation - for which there are rarely any local minima in
practice (see [7]) - the pose problems we consider are known to be plagued by local minima and
ambiguous solutions for real image problems, see [13, 16, 14]. Our solution for dealing with the
non-convexity is accomplished by (i) efficiently searching the rotational manifold and (ii) exploiting
the quasiconvexity of the problems when rotations are assumed to be known. The framework is
based on branch-and-bound in the rotation space and hence one needs bounding functions to control
the error. In order to speed up the computations, we also show that the relative pose problem can be
solved using just Linear Programming (LP), and hence the computationally more expensive Second
Order Cone Programming (SOCP) is not required.

1.1 Related Work

To this point, there has been no known efficient optimal solution to these problems. Solutions have
been given in [12] for the pose problem, but the solution we give here is considerably faster and the
approach in [12] does not generalize to the relative pose problem. To our knowledge, no optimal
solution has been reported for the relative pose problem using a cost function based on reprojection
errors. OptimalL∞ solutions are given in this paper for both problems and the algorithms are
efficient and fast. A preliminary version of the work has appeared in the conference paper [2].

The class of problems that can be solved globally with theL∞-norm includes problems like
n-view triangulation, uncalibrated camera pose, homography estimation and structure from motion
with a reference plane and more, see [6, 10, 8]. The current paper further extends this class to
include problems involving unkwown rotations. In recent years there have been many attempts to
compute globally optimal solutions for various geometric reconstruction problems. Using theL∞-
norm framework has perhaps been the most successful one, but other approaches include [7] and
[9]. The former approach applies a branch and bound algorithm to computeL1- andL2-solutions
for triangulation and uncalibrated pose and the latter one uses convex approximations for a set of
geometric reconstruction problems, but with no guarantee of optimality. Neither of these two ap-
proaches has shown the ability to optimize over rotation space. A summary of research in this area
is given in [3].

Another class of related problems that have been addressed using branch-and-bound techniques
is geometric matching problems; see [1, 13] and the references there. The problems considered in
[1] are harder in the sense that feature correspondences are not known a priori. On the other hand
only problems with a small number of degrees of freedom seem to be tractable. Typically, a planar
Euclidean transformation which maps one set of points to another is computed.

1.2 Getting Down to the Details

We consider calibrated cameras, and may therefore assume that the calibration matrix is the identity.
As is commonly done with calibrated cameras, we find it convenient to consider image points as
lying on an image sphere, rather than an image plane. Thus, an image measurement is a unit vector
vi, representing the direction vector from the camera centre to the3D point. Thus, a camera is
represented by a rotation matrixR, the orientation of the camera, and a position vectorC representing
the position of the camera centre. The image point corresponding to a pointX is given by

v =
R(X−C)
‖R(X−C)‖

.

We will often be considering situations where a measured image pointv is compared with a
modelled point̂v(θ), whereθ is a set of parameters that define the pointv̂. We typically require that

2

the angle6 (v, v̂(θ)) should be less than some error boundε. Assuming thatv>v̂(θ) > 0, this may
be written as

‖v × v̂(θ)‖
v>v̂(θ)

≤ tan(ε) ,

or equivalently

‖v × v̂(θ)‖ − ε′v>v̂(θ) ≤ 0 (1)

whereε′ = tan(ε) ≥ 0. Note that this inequality implies the condition thatv>v̂(θ) > 0. Now,
it was observed in [6, 10, 8] that as long asv̂(θ) is expressed linearly in terms of the parameters
θ, the condition (1) has the form of a second-order cone constraint. For a fixedε′, this is a convex
constraint since the constraint function is the sum of a linear (hence convex) function−ε′v>v̂(θ),
and the norm of a linear function.

Combining several such second-order constraints from different measurement vectorsvi leads
to a so calledSecond-Order Cone Program(SOCP). For a givenε′, one may ask to find anyθ
satisfying all the constraints. Since there is no objective function we have what is known as an
SOCP feasibility problemwhich is easily solvable using commonly available software packages, for
example, SeDuMi [15]. One can perform a binary search for the optimalε′ to solve the minimax
optimization problem

min
θ

max
i

6 (vi, v̂i(θ)) . (2)

by solving a series of SOCP feasibility problems, provided that eachv̂i(θ) is a linear expression in
the parametersθ. For more details, see [8].

The pose problem. Given a set of3D pointsXi and corresponding image pointsvi, we seek the
rotationR and camera centreC that realize the minimax cost function

min
R,C

max
i

6 (vi, R(Xi −C)) . (3)

where6 (·, ·) represents the angle between two vectors.1

This problem is of the form (2), but unfortunately, the vectorR(Xi−C) is not expressed linearly
in terms of a set of parameters for the unknownsR andC, so we have no direct solution to this
problem using SOCP. It is interesting and relevant to note, however, that if the rotationR is known,
then this problem is solvable. In fact, it is identical to theL∞ triangulation problem. Observe that

6 (vi, R(Xi −C)) = 6 (R>vi,Xi −C) .

With known direction vectorsR>vi and pointsXi we seek the pointC that minimizes the angular
error. This is the “triangulation” problem, which was shown to be optimally solvable inL∞ norm in
[4]; SOCP was used to find the optimal solution in [6, 10, 8].

Thus, in principle, the pose problem may be solved by a search over all possible rotationsR to
find the rotation that gives the best solution. The challenge is to do this without having to test an
infinite number of rotations.

The relative pose problem. The relative pose problem is to determine the relative position of two
cameras given image point correspondences. We assume a set of image correspondencesvi1 ↔ vi2,
wherevi1 andvi2 are points in the first and second image respectively. We are required to find

1Thus, we formulate this problem as minimizing the angular error in measurements, instead of “pixel error” on an image
plane. This is not an essential point; the problems could equally well be formulated in terms of image-plane error, but we find
this formulation more natural for calibrated cameras.

3

corresponding3D pointsXi, rotation matricesRj and camera centresCj for j = 1, 2 that realize
the minimum of the following cost function.

min
Rj ,Cj ,Xi

max
i,j

6 (vij , Rj(Xi −Cj)) . (4)

To simplify this problem, we may assume that the first camera has rotationR1 equal to the identity,
and camera centreC1 at the origin, leaving only the relative pose(R2,C2) as well as the pointsXi

to be determined.
Once again, this problem is of the form given by (2), but it may not be formulated linearly in the

parameters of the unknown quantities. However if the rotation is known, then the problem reduces
to that of structure-and-motion with known rotations. This has also been shown to be solvable in
L∞ norm in [4]. As before, SOCP provides an efficient solution ([6, 8]).

As this discussion shows, both the problems considered reduce to optimization over a space of
Euclidean motions (rotation and translation). In both cases, the problem has a known solution if the
rotation is known, so solving the general problem comes down to a search over all rotations. This
search will be carried out using a branch-and-bound strategy ([7]).

Existence of a solution. The description of the minimization problems (3) and (4) above is written
under the assumption that a minimum exists and is in fact attained. For the sake of mathematical
rigour, we settle this issue here. A function attains its minimum if it is defined on a compact set
and is continuous. However, the parametersXi are defined to lie inR3, which is not compact (in
the standard topology). To avoid this difficulty we simply compactifyR3 by allowing points at
infinity. In other words, we perform optimization over the oriented projective spaceP3+, defined
as equivalence classes of non-zero homogeneous vectors{X = (X, Y, Z, T) 6= 0 | T ≥ 0} where
two such vectors are considered equivalent if they differ by a positive constant multiplier. Points
for which T = 0 are points at infinity, but unlike the usual projective spaceP3, points at infinity
in opposite directions are not identified. This being the case, one may unambiguously extend the
function 6 (vi,Xi −Cj) to points at infinityXi.

It is easily seen that each equivalence class has a unique representative such that‖X‖2 = X2 +
Y2 + Z2 + T2 = 1 andT ≥ 0. That is,P3+ is homeomorphic to the closed half-sphereS3+ in R4,
and hence is compact.

A further small difficulty, that6 (vi,Xi − Cj) has an essential discontinuity whenXi = Cj is
avoided by defining6 (vi,0) = 0. Since we are always interesting in minimizing anL∞ norm such
asmaxij 6 (vij ,Xi −Cj), this function will be continuous unless allXi andCj are equal, which is
easily avoided. In the relative orientation problem, for instance, we enforce a unit distance between
the two cameras.

In this way, we may ensure that the objective function is continuous and defined on a compact
domain, and hence achieves its minimum. From a practical implementation point of view, we find it
unnecessary to use homogeneous coordinates in this way, since our method of solution is to approach
the optimal solution through a sequence of feasibility problems. For this reason, we do not consider
this issue throughout the rest of the paper.

2 Branch and Bound

We will discuss branch-and-bound optimization as a form of search over a parameter space. In our
discussion, it will be assumed that the parameter space is some subset of a Euclidean spaceRn,
wheren should not be too large. In the case of rotations, we may parametrize rotations using the
angle-axis parametrization, to be described later, in which rotations are represented by3-vectors. All
3D rotations may be represented by vectors in the closed ball of radiusπ in R3.

In our version of branch and bound, we divide up the parameter space into cubic blocks, each
block representing a set of similar rotations. LetD be a block in the parameter space. One now

4

considers the optimization problem over the restricted set of parametersD. This will be referred to
as therestricted optimization problem. Thus, for instance in the pose problem, one tries to find the
minimum

min
R∈D,C

max
i

6 (vi, R(Xi −C))

where instead of trying to solve the problem over all rotations, one restricts to rotations in the block
D.

The critical requirement in branch-and-bound is that although it may not be possible to solve the
restricted problem exactly, it is at least possible to find a lower bound for the optimal solution to the
restricted problem. The tighter this lower bound is, the better, and in any case it is necessary that as
the size of the blockD gets smaller, the lower bound becomes a closer and closer approximation to
the optimal solution, and in the limit the lower bound converges to the value of the optimal minimum
of the restricted problem.

The branch and bound algorithm now goes as follows.

1. Start with an initial approximate solution to the optimization problem, found by any method
at all, and having costεmin for the cost function being minimized.

2. Now, divide up the parameter space into blocksDj . For each such block determine whether
there is a solution to the restricted optimization problem onDj having cost less thanεmin. This
question may be formulated as a feasibility problem. If the answer is no (no solution with cost
less thanεmin exists onDj), then blockDj can be excluded from further consideration.

3. Otherwise we take two steps:

(a) evaluate the cost function for some value of the parameter inside the regionDj , and if
this is less thanεmin, replace the value ofεmin by this new current minimum.

(b) SubdivideDj into two or more smaller regions.

This algorithm terminates when the remaining blocks constrain the solution within the desired ac-
curacy. Normally, this search is carried out breadth-first – all blocks of a given size are considered
before blocks at a finer resolution level are considered. However, under some circumstances (for
instance in minimal cases where a solution with zero cost is known to exist), it may be preferable
to carry out the search depth-first, since this method has a smaller memory requirement. We have
implemented both search strategies; both work well.

This gives a general overview of the algorithm. In the particular problems we are interested
in, the search is over all rotations, so the parameter space is 3-dimensional. Note that we do not
subdivide the translation space.

In the next few sections of this paper, we will consider the details of our parametrization of
rotations, and then the method for computing a lower bound for the restricted optimization problem.

3 The Geometry of the Space of Rotations

The group of all rotations is often referred to asSO(3), although strictly speaking this only refers to
its representation as3× 3 orthogonal matrices. We will useSO(3) to denote the group of rotations
considered abstractly, but with a specific concrete representation in mind, namely in terms of the
rotations’ matrix representation.

Distance between two rotations. The group of rotations has a metric structure, defined by the
angle metric, defined as follows. Note that any rotation can be expressed as a rotation through a
positive angle less thanπ about some axis. LetR andR′ be two rotations inSO(3). We wish to
measure the distance between these two rotations. The distanced 6 (R, R′) is the angleθ lying in the

5

range0 ≤ θ ≤ π of the rotationR′R−1. Note that it does not matter whether we define this distance
in terms ofR′R−1, or R−1R′, or R′−1R, or RR′−1. The angle is the same.

We will be using the following inequality, which seems simple enough that we omit the proof.

Lemma 3.1. For any vectorV,

6 (RV, R′V) ≤ d 6 (R, R′) .

We shall have cause also to consider two different representations of the set of rotations, quater-
nions and the angle-axis formulation of rotations, and we will be interested in the relationship be-
tween the angle metric, and natural metrics defined for these alternative representations.

Unit quaternions. A quaternion is a4-vectorq = (q0, q1, q2, q3) of real numbers with a defined
non-commutative multiplication operation ([17] “Quaternion”). It may be verified that‖q1q2‖ =
‖q1‖ ‖q2‖ where‖ · ‖ represents Euclidean norm in the4-dimensional vector space. Thus, the unit
quaternions form a group under multiplication. We denote the group of unit quaternions byH (in
honour of Hamilton).

Connection with 3D rotations. A unit quaternion may be written asq = (cos(α/2), sin(α/2)r̂)
wherer̂ is a unit vector and0 ≤ α ≤ 2π. We identify this quaternionq with the rotationR(α, r̂),
namely the rotation through angleα about the axiŝr. It turns out that this mapping is a homomor-
phism from the unit quaternions onto the group of3D rotations. One observes that a quaternion and
its negative map to the same rotation. Thus, mapping from unit quaternions to rotations is a2-to-1
mapping, inducing an isomorphism between the group of rotations and the unit quaternions modulo
negation. Any rotation may be represented by a unit quaternion of this form with0 ≤ α ≤ π.

Considered geometrically, the unit quaternions form a3-dimensional sphere in4-space. The up-
per hemisphere (those quaternions withq0 ≥ 0) is in one-to-one correspondence with the rotations,
except at the boundary, where the correspondence is2-to-1. We denote byH̃ the set of equivalence
classes of unit quaternions, modulo the equivalence of a quaternion and its negative.

Distance in quaternion space. One may define a simple metric on the set of unit quaternionsH
as follows. Letp andq be unit quaternions, which may therefore be represented by points on the unit
3-sphere. We define the distancedg(p,q) to be the geodesic distance on the sphere between pointsp
andq. In simpler terms, this is the distance betweenp andq along a great circle on the sphere. This
great-circle distance is easily computed by computing the inner product ofp andq as vectors. To
avoid confusion with quaternion multiplication we write this inner product as〈p,q〉 =

∑3
i=0 piqi.

Since this inner product gives the cosine of the angle betweenp andq, the distance metric is defined
as

dg(p,q) = arccos〈p,q〉 ,

wherearccos takes values between0 andπ. Since this distance function is defined in terms of geo-
metric distance between points on the sphere, it is clearly a metric. The metric takes values between
0 andπ. It is a basic property that this distance metric is invariant under quaternion multiplication,
namelydg(pr,qr) = dg(p,q).

This metric induces a metric̃d on the groupH̃ of equivalence classes modulo negation. In
particular given two equivalence classesp̃ = {p,−p} andq̃ = {q,−q}, we define

d̃g(p̃, q̃) = min (dg(p,q), dg(p,−q))
= min (dg(p,q), π − dg(p,q)) .

6

Isometry betweenH̃ and SO(3). Note that the metric̃dg takes values between0 and π/2,
whereas the metricd 6 on rotations takes values between0 andπ. It should comes as no surprise
that these metrics are closely related. In fact, the mapping fromH̃ to the group of rotations is a
scaled isometry with respect to the two metrics. In particular consider quaternionsp andq, and their
corresponding rotationsRp andRq respectively. The two metrics are related as follows:

d 6 (Rp, Rq) = 2 d̃g(p̃, q̃) .

In passing we observe that this relationship allows us to determine the “volume” of the group of all
rotations. The group̃H may be represented as the upper hemisphere of the unit sphereS3, which
has volumeπ2 ([17], “Sphere”). Since the rotations are twice as big (in linear dimension), the set of
all 3D rotations has volume8π2 cubic radians.

3.1 The Angle-Axis Representation

We now discuss how best to represent rotations for our branch and bound application. A nice dis-
cussion of rotation representations is given in [17] (search for “rotation representation”). However,
the required details of our chosen representation will be given below.

We have seen that a rotation may be represented by a quaternionq = (cos(α/2), sin(α/2)r̂)
whereα is the angle of the rotation and̂r is a unit vector representing the axis of the rotation. (We
shall in general usêr to represent a unit vector.)

An alternative is to represent the rotation by the vectorr = αr̂. This is a vector with magnitude
α, the angle of the rotation, and with direction the axis of the rotation. This is a result of applying
a so-called “azimuthal-equidistant” projection (in France, sometimes called the Postel projection,
after Guillaume Postel, d 1581) to the unit quaternion sphere, according to the mapping:

(cos(α/2), sin(α/2)r̂) 7→ αr̂. (5)

This mapping may be thought of as taking the upper quaternion hemisphere and flattening it,
much as one might take a tennis ball cut in half and flatten it by pushing down to a plane. This
causes tangential stretching at the periphery.

Because of the tangential stretching, we may intuitively observe that

2d̃(q̃1, q̃2) ≤ ‖r1 − r2‖

where‖·‖ represents Euclidean norm inR3, andri = αir̂i is the vector corresponding to quaternion
qi = (cos(αi/2), sin(αi/2)r̂i).

This relationship may be proved rigorously by computing an infinitessimal metric on the quater-
nion sphere. Thus, letJ be the Jacobian of the mappingf : r 7→ q = (cos(α/2), sin(α/2)r̂), where
r = αr̂. Then an infinitessimal metric on the quaternion unit sphere is given byds2 = dr>(J>J)dr.
The symmetric positive-definite matrixJ>J may be computed explicitly. Its eigenvalues are all at
most equal to1/2. This means that a line segment fromr1 to r2 maps underf to a path fromq1 to
q2 of length no greater than half the length‖r1 − r2‖ on the quaternion sphere. Since the geodesic
distancedg(q1,q2) will be less than the length of this path, we have

d̃g(p̃, q̃) ≤ dg(p,q) ≤ ‖r1 − r2‖/2

as required.
Finally, relating the Euclidean metric to the angle metric, we have the following relationship.

Lemma 3.2. If qi = (cos(αi/2), sin(αi/2)r̂i) for i = 1, 2 andRi are the corresponding rotations,
andri = αir̂i, then

d 6 (R1, R2) ≤ ‖r1 − r2‖ .

7

The important point in this lemma is that the angle distance is less than the Euclidean distance in the
angle-axis representation.

An alternative way of thinking of the angle-axis representation of rotations is that a vectorr =
αr̂, wherer̂ is a unit vector, represents the rotation

R = exp([r]×) = I + [r]× + [r]2×/2 + . . .

= I + sinα[r̂]× + (1− cos α)[r̂]2× , (6)

which is the Rodrigues formula (see [5]). Here[r]× denotes the3× 3 skew-symmetric matrix such
that r × v = [r]×v for all 3-vectorsv. Through the association of the rotationR with the vector
r, we see that the set of rotations is represented by the ball of radiusπ in R3. The correspondence
is one-to-one on the interior of the ball, whereas for vectorsr with ‖r‖ = π, the correspondence is
2-to-1, since bothr and−r represent the same rotation. A rotation through angleπ about an axis is
the same as the rotation through angleπ about the opposite axis.

Dividing up rotation space. The angle-axis representation gives a convenient way of dividing
up rotation space into blocks. Rotations are represented by points in a ballB3

π of radiusπ in R3.
We may enclose this ball in a cubeC3

π = [−π, π]3 in R3, and each point in this cube represents a
rotation. The representation is redundant, since points outside the ball represent the same rotation as
some point inside the ball, but this does not matter for our purposes.

Now, the cubeC3
π may easily be broken up into cubic blocksDi of a given size. These blocks

form the initial subdivision of the rotation space used in the branch-and-bound algorithm. When
necessary, a cubeDi may be subdivided into8 cubes of half the size. A simple test may be used
to determine if a cubeDi contains any points lying inside the ballB3

π. If it does not, then it is
discarded and not used in the search. Given a cubeDi, we represent bȳR the rotation corresponding
to the centre of the cube, and byrD the “radius” of the cube in terms of the angle metric. Thus
rD = max(d 6 (R̄, R)), whereR runs over all rotations represented by points in the cubeD. From
lemma 3.2 we have the inequality

rD ≤
√

3σ (7)

whereσ is the half-side length of the cubeD.

4 Feasibility Problems

The most important requirement in the branch-and-bound method is to be able to determine whether
the function being minimized may attain a value less than the current minimumεmin on a restricted
domainD in the parameter space. We will show how this is done in the case of our problems of
interest.

First, we will detail how to obtain a bound for the relative pose problem in section 4.1 and then
continue with the pose problem in section 4.2. In the two subsequent sections, we will show how
one can improve computational efficiency in two different ways. In section 5, a more elaborate and
efficient linear programming solution is derived for the relative pose problem. In section 6, a tighter
bounding function than the one obtained in section 4.2 is derived for the pose problem.

4.1 The Relative Orientation Problem

We consider a feasibility problem motivated by the relative pose problem defined for a restricted
rotation domain,D with radiusrD. We assume throughout that a set of correspondencesvi ↔
v′i; i = 1, . . . , N are given. By the radius of the region, is meantmax d 6 (R, R̄), whereR̄ is the
rotation at the centre ofD. We choose a coordinate system aligned with the first camera. Then

8

(R,C) denote the relative pose of the second camera with respect to the first. The relevant feasibility
problem for the relative pose problem is then:

Given D, εmin

do there exist C,Xi, R ∈ D
such that 6 (vi,Xi) ≤ εmin

and 6 (v′i, R(Xi −C)) ≤ εmin

for i = 1, . . . , N ?

(8)

Generally, we will be interested in this problem in the case where we have a tentative solution to the
relative pose problem withL∞ errorεmin. A negative answer to this question means that the optimal
solution can not be achieved withR ∈ D.

Unfortunately, it is not possible to answer problem (8) directly. Instead, we consider a slightly
weaker, but solvable problem in which we fix the rotation and place a slightly weaker bound. Let
D be a cube in rotation space with half-side lengthσ and centre representing the rotationR̂. Then,
consider the problem

Given R̄, σ, εmin

do there exist C,Xi

such that 6 (vi,Xi) ≤ εmin

and 6 (v′i, R̄(Xi −C)) ≤ εmin +
√

3 σ ?

(9)

Observe that the two constraints in problem (9) can written as second-order cone constraints of the
type given in (1). Therefore, the problem is formulated as a SOCP feasibility problem, and the
question may then be answered using an SOCP solver.

The two problems (8) and (9) are related as follows.

Lemma 4.3. If problem (8) has an affirmative answer then so does problem (9). On the other hand,
if the answer to problem (8) is negative on a domainD, thenD may be split into subdomainsDi of
sufficiently small radius such that problem (9) has a negative answer on everyDi.

Proof. First we prove that if problem (8) has an affirmative answer then so does problem (9). Suppose
thatC, {Xi} andRopt constitute a feasible solution for problem (8). Then we show thatC and{Xi}
constitutes a solution to problem (9).

The first constraint6 (vi,Xi) ≤ εmin is fulfilled, since it is the same as for problem (8). As for
the second constraint, by the triangle inequality, we have

6 (v′i, R̄(Xi −C)) ≤ 6 (v′i, Ropt(Xi −C))
+6 (R̄(Xi −C), Ropt(Xi −C))

≤ εmin + d 6 (R̄, Ropt)
≤ εmin + rD

≤ εmin +
√

3σ

as required. Note where lemma 3.1 was used.
Now for the second part of the lemma. Suppose that problem (8) is infeasible, and that the

minimum of all values ofε for which it is solvable isε+, instead ofεmin. Thusε+ > εmin and the
constraints6 (vi,Xi) ≤ ε and 6 (v′i, R(Xi − C)) ≤ ε can not be satisfied for any choice ofXi, C

andR ∈ D and any value ofε < ε+. Chooseσ such thatεmin +
√

3σ < ε+. Then problem (9) is
infeasible on any subcubeDi of D with side half-lengthσ. The domainD may be divided into a
finite number of such cubes so that problem (9) is infeasible on any one of them. This completes the
proof of the lemma.

This lemma gives a strategy for showing that problem (8) is not feasible on domainD =
[−σ, σ]3. Letting R̄ be the rotation represented by the centre ofD, we ask whether problem (9)

9

Figure 1:The epipole lies in the wedge of a sphere bounded by the pair of crossed great circles, and
containing the vectorv.

is feasible. If the answer is no (problem is not feasible), then neither is problem (8). If on the other
hand problem (9) is feasible, we subdivide domainD into smaller cubic domains and continue by
testing these subdomains.

4.2 The Pose Problem

The pose problem may be solved by the general branch-and-bound technique outlined in section 2
through solving the feasibility problem

Given Xi, D, εmin

do there exist C, R ∈ D
such that 6 (Rvi,Xi −C) ≤ εmin ?

(10)

Again, it is not possible to solve this problem directly. Instead, we consider the problem

Given Xi, R̄, σ, εmin

does there exist C

such that 6 (R̄vi,Xi −C) ≤ εmin +
√

3 σ ?
(11)

This is essentially the triangulation problem, and it may be solved using SOCP. As in the relative
pose case, problem (10) may be relaxed to (11), which is then used to solve the pose problem by the
branch-and-bound technique.

5 A Linear Programming Solution for Relative Pose

For the relative pose problem, the SOCP-based method turns out to be far too slow to be practical.
A method that gives orders of magnitude speed-up based on Linear Programming is presented now.

Consider a set of correspondencesvi ↔ v′i in two views, and suppose that the rotation is known.
We address the question of whether a solution to the relative pose problem exists, fitting the data
within a given toleranceεmin as in (8). Such a possible solution would involve an epipolar direction
t giving the relative displacement of the second camera with respect to the first. We consider just a
single correspondencev ↔ v′ from the set of correspondences. The three vectorsv, v′ andt must
be coplanar (the familiar coplanarity condition). With a given uncertaintyεmin in the measurements
v andv′, we see that the vectort must lie in a wedge-shaped region, as shown in Fig 1. Thus,
the vectort lies between two planes, which may be specified in terms of the corresponding pair
v ↔ v′. In this wayt is constrained by two linear constraints (one for each bounding plane).

10

Figure 2:The epipolar vector lies on the planeZ = 1 in a coordinate frame determined by the pair
of matched pointsv andv′. In this frame, theY-axis coincides withw.

From a set ofn correspondences,2n linear constraints arise in this way. The existence of a solution
within the desired toleranceεmin therefore becomes an LP feasibility problem in only3 variables
(the coordinates oft). We can reduce this to two variables; since the length oft is indeterminate,
and irrelevant, we can intersect the vectort with a plane, as in Fig 2 reducing the problem to two
variables. Thus, we have replaced an SOCP feasibility problem in3n+2 variables and2n constraints
by an LP feasibility problem in only2 variables and2n constraints. The most important advantage is
not simply the greater speed of LP versus SOCP, but rather that in the SOCP problem, the coordinates
of the 3D pointsXi appear as parameters, whereas we have eliminated them in the LP formulation.
This makes for a much smaller feasibility problem that can be solved orders of magnitude faster.

With 100 or even1000 points involved in the reconstruction, the speed-up can be enormous,
particularly as the problem must be solved repeatedly for differing values ofε in a binary search.
Under the reasonable assumption that constrained programming is cubic in the size of the problem
(although the commonly used Simplex algorithm can of course theoretically be exponential), and the
unreasonableassumption that a SOCP problem takes the same amount of time as an LP program-
ming problem of the same size, the difference in time represented by this new method on a problem
involving 100 points, compared with the SOCP method is approximately a650 times speedup.

5.1 More Details on Linear Programming

Let t be a unit direction vector from the camera centreC of the first camera to the centreC′ of the
second camera. This is the epipolar direction, which we wish to determine. Given a pair of image
pointsvi ↔ v′i corresponding to a3D pointX, we have the equation

X = C + λvi = C′ + µv′i .

for positive scalarsλ andµ. This equation reduces toλvi − µv′i = C′ −C = νt, whereλ, µ, ν are
all positive. Settingν = 1, we get the simple but key observation that

t = λvi − µv′i for positive constantsλ andµ . (12)

Now, vi andv′i are vectors based at different basepoints. However,v′i is simply a direction
vector. We may move all ofvi, v′i andt to be based at the origin. They all then lie on the unit
sphere, and in fact, being coplanar, all lie on a great circle. As before, expandingvi andv′i to
cones, we see that the epipolet must lie on the section of the sphere bounded by the pair of crossed
great circles. In fact, because of (12), the epipole must lie inside the wedge containingvi. This is

11

illustrated in Fig 1. If the twoε-circles aboutvi andv′i overlap, then there is no constraint (since
anyt would be feasible), and we ignore this corresponding pair.

Since we are dealing with a single correspondence at present, we drop the subscripti and write
v ↔ v′. Now, since each great circle lies in a plane, it follows thatt lies between the pair of planes
of the two great circles, as shown in Fig 2. We relax the condition thatt is a unit vector, and instead
constrain it to lie on the planeZ = 1 in a coordinate system chosen as follows.

1. TheY axis passes through the pointw where the two great circles meet, betweenv andv′.

2. TheX-axis is in the direction of the cross productw × v.

3. TheZ-axis isx× y wherex andy are the directions of theX andY axes.

This choice of coordinate frame is carried out for the first matched pointv0 ↔ v′0 only (provided
it does yield a constraint, i.e. theε-circles do not overlap). The other correspondences must be related
to this coordinate frame. The easiest way is to rotate all the point correspondencesvi ↔ v′i for i > 0
to this coordinate frame, then compute the bounding planes in this coordinate frame, as in the next
section.

Remark. Note that not all epipolest lying between the two great circles, that is the marked wedge
in Fig 1, are valid solutions. In fact the portion of the wedge lying between thew-axis and the
ε-cone aroundv corresponds to points that do not satisfy the constraint (12) for positive constants.
This will result in a solution with reconstructed3D points with negative depths (behind the cameras),
which is geometrically invalid. The same is true for the symmetrically placed region lying between
the negativew axis and theε-cone about the vector−v′. To remove such spurious solutions, fur-
ther constraints could be added to the feasibility test. However, we have found experimentally and
theoretically that this is not necessary in practice.

Indeed, by ignoring this small detail, the constraints on the vectort are made slightly less tight
than they may be. This can conceivably result in a false positive answer to the feasibility test. This
is not critical, since it can not result in the rejection of a postulated rotation value. Instead, in the
branch-and-bound algorithm it will simply result in the current rotation cube being subdivided and
deferred to the next level of resolution.

5.2 Computing the Great-Circles on the Unit Sphere

We want to compute the normals to the planes of the great-circles in Fig 1 tangent to the uncertainty
cones for the measurementsvi andv′i.

5.2.1 General Algebraic Solution

It is possible to solve this easily in the case where the cones are elliptic, as follows. Observe that
the planes of the great-circles in Fig 1 are tangent to the two cones. We find the bi-tangent planes as
follows. The two cones may be expressed as equationsX>QX = 0 andX>Q′X = 0. whereQ and
Q′ are3 × 3 non-singular symmetric matrices. (For instance the caseQ = diag(1,−1, 1) represents
a circular cone centred on theY-axis.) The vectorX represents a3D point. Passing to the dual,
we obtain the equations for the dual cones, represented by matricesQ−1 andQ′−1. A plane through
the origin with normaln is tangent to the original cones if and only ifn>Q−1n = n>Q′−1n = 0.
Solving these two simultaneous quadratic equations results in4 solutions corresponding to the four
bi-tangent planes. We choose the solutions with appropriate sign to satisfyn · v > 0 andn · v′ < 0.
Geometrically, it is evident that there are just two such planes. Thus, we get two solutionsn1 and
n2 representing the planes in Fig 2. The linear constraints on the vectort are simplyn1 · t ≥ 0 and
n2 · t ≥ 0.

SettingZ = 1 in these inequalities results in just two linear inequalities inX andY representing
constraints on the planeZ = 1 in the coordinate system defined by the first point correspondence.

12

In this way, determining the existence or not of an epipole satisfying all constraints becomes an LP
feasibility problem in only two variables.

5.2.2 A Closed-Form Expression

The method described above involves solution of a4-th degree polynomial in order to find the bi-
tangent planes. Instead, we show that it is possible to obtain a simple closed-form expression for the
inequalities, as shown now. We consider the case where the cones are circular (we are interested in
minimizing angle error on the sphere), but of possibly different diameters, given by anglesε andε′,
centred onv andv′ respectively. This is because problem (9) specifies different bounds forvi and
v′i.

The proof of the following results is given in an appendix. Refer to Fig 12 to aid in understanding
this diagram.

1. First,v · v′ is the cosine of the angle betweenv andv′. If this is less thanε + ε′ then no
constraint results from this correspondence, and we skip it. Letα be the angle betweenv and
v′.

2. The angleβ between the plane containingv andv′ and the crossed bi-tangent plane is given
by

sin2 β =
sin2(ε) + 2 sin(ε) sin(ε′) cos(α) + sin2(ε′)

sin2(α)
. (13)

3. The pointw where the two great circles cross is

w =
sin(ε)v′ + sin(ε′)v

sin(β) sin(α)
. (14)

4. The local coordinate system is defined by vectorsy = w, x = (v × v′)/‖v × v′‖ and
z = x× y.

5. The two normals aresin(β)z± cos(β)x.

5.3 Testing for Feasibility

The first point correspondence gives rise to a strip on the planeZ = 1 between the linesX =
± tan(β). Thus, subsequent constraints bound a region in this strip. The question is whether there
is a point in the strip that satisfies all the constraints. It would be possible to set this up as one
LP programming problem consisting of2n constraints in2 variables, and then to solve it using an
appropriate LP package. Heren is the number of point correspondences. Ifn is large, this can still
take too long, particularly since we need to solve this problem a large number of times. We are
looking for maximum speed.

In a search procedure there will be many instances in which the problem is infeasible, and it
saves time to detect this early. It may be that with just a small number of constraints the problem
already becomes infeasible. In the branch-and-bound algorithm, infeasible constraint problems are
much more common than the feasible ones, so it is important to detect infeasible problems early.

After settingZ = 1 in the constraintsni ·t ≥ 0, we obtain constraints of the formaiX+biY+ci ≥
0, wheret = (X, Y, 1). This can be rewritten (depending on the sign ofbi) as eitherY ≥ ci + aiX or
Y ≤ ci + aiX for new values of the constantsai andci. Our algorithm is as follows. (Please refer to
Fig 3).

1. Let X− andX+ be the two edges of the strip shown in Fig 3.

13

Figure 3:Constraints on the position of the epipolet result in constraints on a strip in the planeZ =
1. This strip is bounded by the linesX = ± tan(β0) resulting from the first point correspondence.
Considering the constraints one at a time, we compute loose bounds on the region, as discussed in
the text.

2. FromY ≥ ai + ciX, we obtain a constraintY ≥ ai + min(ciX−, ciX+), which must hold for
any point satisfyingY ≥ ai + ciX. (Yes, this should bemin and notmax, and of course the
converse of this statement is not true.)

3. Similarly fromY ≤ ai + ciX we derive a constraintY ≤ ai + max(ciX−, ciX+).

4. Considering the constraints in order of arrival, we may compute loose running lower and upper
boundsY low andYhigh for Y. If at any pointY low > Yhigh, it means that the constraints are
infeasible, and we exit, reporting this fact.

This allows infeasible problems to be detected quickly. It also allows inactive constraints to be
detected and eliminated, resulting in a smaller LP problem, should we need to run a complete LP
algorithm. Specifically, any constraint that lies completely “below” the current value ofY low or
aboveYhigh does not need to be considered.

6 A First Order Bound for Pose

The bounds in section 4 were called zero-th order bounds because they used a zero-th order approx-
imation to the rotations in a regionD of rotation space, namely the centre of the rotation domainD.
Although these bounds allowed us to formulate a branch-and-bound algorithm to solve the pose and
relative pose problems, the bounds are somewhat pessimistic. The speed of the branch-and-bound
algorithm depends on the number of cellsD that need to be tested. A cell is eliminated from fur-
ther consideration if the lower bound residual calculated for that cell exceeds the current minimum
residual. If not, we need to subdivide the cell and repeat the calculation for the subdivided cells. It is
critical to avoid subdividing unnecessarily, so the better the lower bound is, the fewer subdivisions
will be necessary.

With the zero-th order rotation estimate, the uncertainty gap on our estimate of the residual is
equal to the radius of the rotation cell. It will be seen that using a first order approximation to
rotation, it is possible to decrease the gap to the order of the squared-radius of the rotation cell. For
small cells, the gap will be very small. If this sounds hard to follow at present, wait until we describe
the details.

14

6.1 First Order Approximation to Rotations

A rotation matrixR corresponding to a3-vectorr in the angle-axis representation can be represented
in the exponential form as

R = exp([r]×) = I + [r]× + [r]2×/2 +

Let R̄ be a rotation. A first order approximation toR about̄R is defined as follows. LetδR = R̄>R and

δR = exp([δr]×) = I + [δr]× + [δr]2×/2 + . . . ,

whereδr is the corresponding angle-axis representation ofδR. By truncating this series after the
second term we get

R = R̄δR ≈ R̄ + R̄[δr]× .

This last expression is the first order approximation toR aboutR̄, which will be denoted bŷR.
We need to evaluate how good an approximation this is to the rotationR. The required relation-

ship is as follows.

Lemma 6.4. LetR be a rotation and̂R be its first order approximation aboutR0, whered 6 (R, R0) <
rD < 0.76. Then for any vectorV,

6 (RV, R̂V) ≤ r2
D/2.

This compares with the zero-th order approximationR̄ toR, for which 6 (RV, R̄V) ≤ rD. WhenrD is
small, the first order approximation toR gives a significantly better result. The restrictionrD < 0.76
just implies that the size of the cubes in the branch-and-bound algorithm cannot be too large. This
is easily handled by starting with a sufficiently fine subdivision of rotation space. This lemma will
be proved in Appendix 2.

6.2 Revisiting the Pose Problem

We may formulate the feasibility problem for pose computation using the first order approximation
to R as follows.

Given Xi, εmin, R̄, D, with rD < 0.76
do there exist C, R̂
such that 6 (vi, R̂(Xi −C)) < εmin + r2

D/2 ?
(15)

With essentially the same derivation as before, we can show that if this problem is infeasible, then
so is problem (10). What remains to show is that we may find a solution to this problem. We may
write

6 (vi, R̂(Xi −C)) = 6 (R̄>vi, (I + [δr]×)(Xi −C))
= 6 (R̄>vi,Xi + δr×Xi − (I + [δr]×)C)).

However,C is an unconstrained variable in problem (15), and asC runs over all values inR3, so
does(I + [δr]×)C. So the feasibility problem can be answered by solving

Given Xi, R̄, εmin

do there exist C, δr ∈ [−σ, σ]3

such that 6 (R̄>vi,Xi + δr×Xi −C) < εmin + 3σ2/2 ?
(16)

The important point here is that the unknownsδr andC do not interact quadratically in this expres-
sion, and the problem is of the form (2), and so may be solved using SOCP.

15

Figure 4: For a typical problem, the number of remaining cubes (left) and the volume (right) are
plotted (on a log-10 scale) against the number of subdivision phases. At the final subdivision, the
cube half-side length is6.13×10−4 radians, and the rotation is known to lie in a region with volume
about10−6 cubic radians. In other words, the rotation is known within about10−2 radians. (The
rotation could of course be computed with arbitrary accuracy.)

Figure 5: For synthetic data withn = 20 points, the 3D shape of the remaining rotation region
is shown after running the algorithm to resolution of0.001 radians. Recall that the shape of the
set of all rotations in the angle-axis representation is a closed3-dimensional ball. The example in
the figure is for a sideways motion of the camera with a field of view of about60◦, and a motion
equal to0.5 times the distance to the closest point. The shape of the rotation region is quite flat
and elongated. This is explained by the known translation/rotation ambiguity, that translation and
rotation of a camera are at times difficult to distinguish, particularly for small fields of view.

7 Verification and Testing

7.1 Relative Pose Estimation

We tested the algorithm on many synthetic examples. Generally speaking, the speed of convergence
of the algorithm was closely tied to field of view of the camera. For cameras with360◦ field of view,
the convergence was very fast.

Initial rotation space is divided up into sufficiently small blocks. The exact number is not im-
portant; we use an11 × 11 × 11 subdivision. The subdivision search for the optimal rotation was
carried out using cubes in rotation space down to a predetermined resolution. This results in a finite
region of rotation space in which the rotation must lie. Using a breadth-first search, we consider
cubes of diminishing size. When all cubes of a given size have been considered (we call this a phase
of the algorithm), the remaining cubes are subdivided and considered in the next phase. In Fig 4 the
number of remaining cubes and the remaining volume after each phase is shown.

Next, the remaining 3D shape of the rotation space is shown in a few examples (see Fig 5).

16

Figure 6:Shape of the possible rotations for3 point correspondences. The space of possible rotations
forms a surface in3-dimensional rotation space.

Figure 7:Shape of the possible rotations for4 point correspondences. The space of possible rotations
forms a set of curves in3-dimensional rotation space.

Reconstruction from small numbers of points. It is well known that the essential matrix can
be computed from only5 points, in which case up to 10 solutions may occur. However, it is also
possible to attempt to compute the essential matrix from3 and4 point correspondences. In the case
of 5 points, there is a0-dimensional set of exact solutions. For4 and3 point correspondences, one
finds1 and2 dimensional sets of possible rotations, embedded in the3-dimensional rotation space.
This is shown for synthetic data in Fig 6 and Fig 7 for 3 and 4 points, respectively.

Timing information. The speed of convergence depends on many factors, most notably the field
of view and the degree of perspective in the images. These factors vitally effect the branch-and-
bound convergence rate, that is, the number of cubes that need to be tested. Generally speaking, the
computation time can be large for small numbers of points, because the number of required tests is
high, since solutions with rotations far from the correct one can still have relatively small error – the
data does not constrain the rotation so strongly. On the other hand, for large problems, the number
of tests required is much smaller but each individual feasibility test is more expensive. Fig 8 shows
some typical timing information for various numbers of points.

Ordinary perspective cameras have a smaller field of view, and the algorithm is slower since it
becomes harder to eliminate rotation cubes. Here are some example times for image pairs taken
from the Notredame data set provided by Noah Snavely.

correspondences 6572 794 29
time 6m 21s 16s 7s

17

Figure 8:Time in milliseconds plotted against number of points used to compute the relative pose, for
360◦ data from a Ladybug camera. Even very large problem sizes take less than 350 milliseconds.

Figure 9: Pose: The number of remaining cubes (on a log-10 scale) is plotted against the num-
ber of subdivision phases for camera pose computations on real data from the publicly available
Oxford corridor sequence. In total, there are 11 images and several hundreds of pre-determined
2D-3D point correspondence in the data set. The average result of all11 (independent) camera
pose estimation problems in the sequence is given for varying number of randomly chosen 2D-3D
correspondences. Left: the zero-th order algorithm; Right: the first order algorithm. The number
of cubes examined at each iteration is around100 times less for the first order algorithm. Also note
that the number of cubes considered at each phase is less in the first order algorithm.

7.2 Pose Estimation

The camera pose estimation has been implemented in Matlab using SOCP feasibility tests in the
branch and bound algorithm. Timings reported below should take this into consideration. We believe
that a fast LP implementation would result in a speed-up of a factor10 to 100, but it is not evident
how one should recast the SOCP feasibility problems using LP. At the initial subdivision of rotation
space, the cube half-side length was set toπ/8 radians.

In Fig 9 and Fig 10, camera pose computations are reported for both zero-th and first order
bounds for the feasibility problems in (9) and (11), respectively. Note that there is a large difference
between the two ways of bounding the error. The number of remaining cubes after each subdivision
phase is considerably larger by a factor of at least100 for the weaker zero-th bound than the first
order bound.

Each SOCP feasibility problem is slightly more complicated for a first order bound compared
to a zero-th order bound since the dimension of the problem is higher due to the first order terms.
Each individual feasibility test takes approximately20% longer time to execute, but the total time
gained with the first order method is considerable. On the average, for a4-point pose problem in the
corridor sequence, the execution time is around1 hour for the zero-th order, but only2 minutes for
the first order method. Corresponding numbers for a10-point pose problem are10 minutes (zero-th
order) and1.5 minutes (first order), respectively.

18

Figure 10:Pose: The remaining volume (on a log-10 scale) of rotation space is plotted against the
number of subdivision phases for camera pose computations on real data. The average of all11
cameras in the corridor sequence is given for various numbers of randomly chosen point correspon-
dences. Left: the zero-th order algorith; Right: the first order algorithm. After11 iterations, the
remaining volume is a factor of around100 less for the first order algorithm.

8 Conclusions and Future Work

The algorithm for the relative pose problem works extremely well for360◦ images, such as LadybugTM im-
ages, less quickly, but still reasonably for narrower field of view images. In some instances this
algorithm will be preferable to known algorithms in real instances where real time speed is not an
issue. Another important role for this algorithm is in giving a bench-mark optimal solution against
which other algorithms may be judged.

The method of searching over rotations proposed here has applications on other problems that
we are still exploring. It has the potential for wide applicability.

The method that we have proposed for solving the two-view motion problem (with known ro-
tation) is optimal, and runs orders of magnitude faster than the existing optimal algorithms based
on SOCP. It is impossible to use the old methods on very large problems, or ones that involve large
numbers of invocations of the algorithm.

We have given two important improvements of the original branch-and-bound algorithm pre-
sented in sections 2-4 in order to speed up the computations. First, for the relative pose problem, an
LP formulation of the feasibility problem was developed instead of the original SOCP formulation.
Then, for the pose problem, a first order bound was derived which is tighter than the original zero-th
order bound.

8.1 Ideas for Speedup

There is still room for improvements in terms of speed which would make the methods even more
competitive compared to traditional local algorithms. These ideas are left for future research.

An LP formulation of the pose problem would most definitely result in faster execution times.
Regarding the relative pose problem, we describe here other ideas of speeding up the calculations by
accelerating the solution of the feasibility problems.

1. It was suggested in section 5.1 that the first (essentially an arbitrary) correspondence should
be the one used to define the coordinate frame and determine a strip as in Fig 3 bounded by
X = ± tan(β0). A better idea would probably be to select the point pair for which the image
correspondences were furthest separated, since in this case the angleβ is smallest, resulting
in a narrow strip and a more accurate feasibility test.

2. Since the feasibility test gives a way of identifying a feasibility problem with negative solution,
it is not certain that we need to solve the LP problem at all. If the problem passes the feasibility

19

Figure 11:The formula for the sine of an angle in a right-angled spherical triangle formed by arcs
of great circles issin(B) = sin(b)/ sin(c) whereb andc are the lengths of the arcs on the surface
of the unit sphere.

test, then we assume that the feasibility test has an affirmative answer, and subdivide the region
D. This will mean that some regions are unnecessarily subdivided, but will not cause the
algorithm to fail.

3. If we are willing to specify that one specific correspondence is exact, then we may do without
the LP altogether. The fast feasibility test given in section 5.3 may be simplified, since instead
of having a strip in which the epipole must lie, it is a straight line. This reduces the LP problem
to a problem in one dimension, which may be solved trivially.

Appendix 1

We prove the formulas given in section 5.2.2. Parts 1 and 4 of the formulas given in section 5.2.2
are very simple. To prove the other results, we start with part 3, namely the formula for vectorw.

By symmetry,w is coplanar withv andv′. We writew = av+ bv′. Taking cross products with
vectorsv andv′ and expressing the length of the resulting vector in two ways leads to

sin(γ) = ‖w × v‖ = ‖bv × v′‖ = b sin(α)
sin(γ′) = ‖w × v′‖ = ‖av × v′‖ = a sin(α)

whereγ andγ′ are the angles separatingw from v andv′ respectively. From this we obtain

w =
sin(γ′)
sin(α)

v +
sin(γ)
sin(α)

v′. (17)

We do not yet know the anglesγ andγ′. At this point, we need an elementary result from spherical
trigonometry (see Fig 11).

Lemma 8.5. LetABC be a spherical triangle in whichC is a right-angle, and the edges be arcs of
lengtha, b andc respectively, on a unit sphere. ThensinB = sin(b)/ sin(c).

This compares with the formula for a Euclidean triangle in whichsinB = b/c. We do not intend to
prove this lemma.

Now, applying this to the triangles shown in Fig 12 we see that

sin(β) =
sin(ε)
sin(γ)

=
sin(ε′)
sin(γ′)

.

Substituting forsin(γ) andsin(γ′) in (17) gives the required formula (14) forw.

20

Figure 12:Computing the angle between the plane bi-tangent to two cones and the plane containing
the axes of the two cones. See the text for the computation.

Next we wish to prove the formula (13) forβ. This is simply a result of the fact thatw is a unit
vector. Computing the norm ofw given by (14) yields

‖w‖2 =
sin2(ε) + 2 sin(ε) sin(ε′) cos(α) + sin2(ε′)

sin2(α) sin2(β)

from which the result follows.
The final item in section 5.2.2, namelyn = sin(β)z ± cos(β)x is simply a statement that the

angle between the tangent plane and thez-axis isβ.

Appendix 2

We now prove lemma 3.2.

Proof. SinceR = R̄δR andR̂ = R̄ + R̄[δr]×, we see that

6 (RV, R̂V) = 6 (R̄δRV, R̄(I + [δr]×)V)
= 6 (δRV, (I + [δr]×)V).

We wish to bound this angle asV varies over all vectors. Since the magnitude ofV is irrelevant, we
may assume thatV is a unit vector, in which case, so isδRV.

For vectorsA andB for which‖A‖ = 1, and‖A−B‖ < 1, observe that6 (A,B) ≤ arcsin(‖A−
B‖), as may be seen by drawing a simple diagram. Apply this fact, we see that whenV is a unit
vector,

6 (RV, R̂V) ≤ arcsin (‖(δR− I− [δr]×)V‖) .

Now, let δr = δθr̂, with r̂ a unit vector be the vector representation of the rotationδR. From
Rodriques’s formula we haveδR = I + sin δθ[r̂]× + (1− cos δθ)[r̂]2× and so(δR− I− [δr]×)V is
equal to

(sin δθ − δθ)[r̂]×V + (1− cos δθ)[r̂]2×V

= (sin δθ − δθ)r̂×V + (1− cos δθ)r̂× (r̂×V) .

Note thatr̂ × V and r̂ × (r̂ × V) are orthogonal and of the same length. Clearly, the magnitude
of this vector is maximized (asV varies over all unit vectors) when̂r andV are orthogonal, so that
r̂×V is a unit vector. In this case,

6 (RV, R̂V) ≤ arcsin (‖(δR− I− [δr]×)V‖)

= arcsin
(√

(sin δθ − δθ)2 + (1− cos δθ)2
)

≤ δθ2/2

21

Figure 13:Plot of the functionarcsin(
√

(sinx− x)2 + (1− cos x)2)/x2, verifying the last step of
the proof of lemma 6.4.

for 0 < δθ < 0.76. This is easily verified graphically (see Fig 13). A rigorous proof follows. Since
botharcsin and square root are monotonic functions on the interval[0, 1], it is equivalent to prove

(sinx− x)2 + (1− cos x)2 ≤ sin2(x2/2) = (1− cos(x2))/2

for x in the interval. Expanding bothsinx− x and1− cos x in a Taylor series we obtain bounds

(sinx− x)2 + (1− cos x)2 < (x3/3!)2 + (x2/2− x4/4! + x6/6!)2

< x4/4− x6/72 + x8/320

whenx > 0. Similarly, from the Taylor series forcos(x2) we obtain

x4/4− x8/48 < (1− cos(x2))/2 .

The lemma is completed by showing thatx4/4− x6/72 + x8/320 ≤ x4/4− x8/48, which is seen
to be true when0 ≤ x <

√
40/69 = 0.76.

References

[1] T.M. Breuel. Implementation techniques for geometric branch-and-bound matching methods.
Computer Vision and Image Understanding, 90(3):258–294, 2003.

[2] R. Hartley and F. Kahl. Global optimization through searching rotation space and optimal
estimation of the essential matrix. InProc. International Conference on Computer Vision,
October 2007.

[3] R. Hartley and F. Kahl. Optimal algorithms in multiview geometry. InProc. Asian Conference
on Computer Vision, volume 1, pages 13 – 34, November 2007.

[4] R. Hartley and F. Schaffalitzky.L∞ minimization in geometric reconstruction problems. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, pages
I–504–509, June 2004.

[5] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision – 2nd Edition.
Cambridge University Press, 2004.

[6] F. Kahl. Multiple view geometry and theL∞-norm. In Proc. International Conference on
Computer Vision, pages 1002–1009, 2005.

22

[7] F. Kahl, S. Agarwal, M. K. Chandraker, D. J. Kriegman, and S. Belongie. Practical global
optimization for multiview geometry.Int. Journal Computer Vision, 79(3):271–284, 2008.

[8] F. Kahl and R. Hartley. Multiple view geometry under theL∞-norm. IEEE Trans. Pattern
Analysis and Machine Intelligence, 30(9):1603–1617, 2008.

[9] F. Kahl and D. Henrion. Globally optimal estimates for geometric reconstruction problems.
Int. Journal Computer Vision, 74(1):3–15, 2007.

[10] Q. Ke and T. Kanade. Quasiconvex optimization for robust geometric reconstruction.IEEE
Trans. Pattern Analysis and Machine Intelligence, 29(10):1834–1847, 2007.

[11] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections.
Nature, 293:133–135, September 1981.

[12] C. Olsson, F. Kahl, and M. Oskarsson. Optimal estimation of perspective camera pose. InInt.
Conf. Pattern Recognition, Hong Kong, China, 2006.

[13] C. Olsson, F. Kahl, and M. Oskarsson. Branch and bound methods for Euclidean registration
problems.IEEE Trans. Pattern Analysis and Machine Intelligence, 2008. In Press.

[14] S. Soatto and R. Brockett. Optimal structure from motion: Local ambiguities and global esti-
mates. InConf. Computer Vision and Pattern Recognition, Santa Barbara, USA, 1998.

[15] J.F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11-12:625–653, 1999.

[16] R. Szeliski and S. B. Kang. Shape ambiguities in structure from motion.IEEE Trans. Pattern
Analysis and Machine Intelligence, 19(5), May 1997.

[17] Wikipedia. www.wikipedia.org.

23

