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Part I: Single and Two View Geometry

The main points covered in this part are:

• A perspective (central) projection camera is represented by a 3× 4 matrix.

• The most general perspective transformation transformation between two planes
(a world plane and the image plane, or two image planes induced by a world
plane) is a plane projective transformation. This can be computed from the cor-
respondence of four (or more) points.

• The epipolar geometry between two views is represented by the fundamental
matrix. This can be computed from the correspondence of seven (or more)
points.

Imaging Geometry
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This can be written as a linear mapping between homogeneous coordinates (the
equation is only up to a scale factor):
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where a 3× 4 projection matrix represents a map from 3D to 2D.

Image Coordinate System

Internal camera parameters

kx xcam = x− x0

ky ycam = y − y0

where the units of kx, ky

are [pixels/length].
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where αx = fkx, αy = fky.



Camera Calibration Matrix

K is a 3 × 3 upper triangular matrix, called the camera calibration
matrix:
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• There are four parameters:

(i) The scaling in the image x and y directions, αx and αy.

(ii) The principal point (x0, y0), which is the point where the
optic axis intersects the image plane.

• The aspect ratio is αy/αx.

World Coordinate System

External camera parameters
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Euclidean transformation between world and camera coordinates

• R is a 3× 3 rotation matrix

• t is a 3× 1 translation vector

Concatenating the three matrices,
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which defines the 3 × 4 projection matrix from Euclidean 3-space to
an image as

x = PX P = K [R| t] = KR[I| R�t]

Note, the camera centre is at (X, Y, Z)� = −R�t.

In the following it is often only the 3 × 4 form of P that is important,
rather than its decomposition.

A Projective Camera

The camera model for perspective projection is a linear map between
homogeneous point coordinates
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Image Point Scene Point

x = P X

• The camera centre is the null-vector of P
e.g. if P = [I|0] then the centre is X = (0, 0, 0, 1)�.

• P has 11 degrees of freedom (essential parameters).

• P has rank 3.



What does calibration give?

• K provides the transformation between an image point and a ray
in Euclidean 3-space.

• Once K is known the camera is termed calibrated.

• A calibrated camera is a direction sensor, able to measure the
direction of rays — like a 2D protractor.
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Camera Calibration (Resectioning)

Problem Statement:

Given n correspondences xi ↔ Xi, where Xi is a scene point and xi

its image:

Compute

P = K [R| t] such that xi = PXi.

The algorithm for camera calibration has two parts:

(i) Compute the matrix P from a set of point correspondences.

(ii) Decompose P into K, R and t via the QR decomposition.

Algorithm step 1: Compute the matrix P

xi = PXi.

Each correspondence generates two equations

xi =
p11Xi + p12Yi + p13Zi + p14
p31Xi + p32Yi + p33Zi + p34

yi =
p21Xi + p22Yi + p23Zi + p24
p31Xi + p32Yi + p33Zi + p34

Multiplying out gives equations linear in the matrix elements of P

xi(p31Xi + p32Yi + p33Zi + p34) = p11Xi + p12Yi + p13Zi + p14
yi(p31Xi + p32Yi + p33Zi + p34) = p21Xi + p22Yi + p23Zi + p24

These equations can be rearranged as(
X Y Z 1 0 0 0 0 −xX −xY −xZ −x
0 0 0 0 X Y Z 1 −yX −yY −yZ −y

)
p = 0

with p = (p11, p12, p13, p14, p21, p22, p23, p24, p31, p32, p33, p34)
� a 12-vector.



Algorithm step 1 continued

Solving for P

(i) Concatenate the equations from (n ≥ 6) correspondences to
generate 2n simultaneous equations, which can be written: Ap = 0,
where A is a 2n× 12 matrix.

(ii) In general this will not have an exact solution, but a (linear)
solution which minimises |Ap|, subject to |p| = 1 is obtained from
the eigenvector with least eigenvalue of A�A. Or equivalently from
the vector corresponding to the smallest singular value of the SVD
of A.

(iii) This linear solution is then used as the starting point for a
non-linear minimisation of the difference between the measured
and projected point:

min
P

∑
i

((xi, yi)− P (Xi, Yi, Zi, 1))
2

Example - Calibration Object

Determine accurate corner positions by

(i) Extract and link edges using Canny edge operator.

(ii) Fit lines to edges using orthogonal regression.

(iii) Intersect lines to obtain corners to sub-pixel accuracy.

The final error between measured and projected points is typically
less than 0.02 pixels.

Algorithm step 2: Decompose P into K, R and t

The first 3 × 3 submatrix, M, of P is the product (M = KR) of an upper
triangular and rotation matrix.

(i) Factor M into KR using the QR matrix decomposition. This de-
termines K and R.

(ii) Then
t = K−1(p14, p24, p34)

�

Note, this produces a matrix with an extra skew parameter s
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with s = tan θ, and θ the angle between the image axes.



Weak Perspective

Track back, whilst zooming to keep image size fixed

perspective weak perspective

The imaging rays become parallel, and the result is:
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A generalization is the affine camera

The Affine Camera
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The matrix M2×3 has rank two.

Projection under an affine camera is a linear mapping on
non-homogeneous coordinates composed with a translation:
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• The point (t1, t2)� is the image of the world origin.

• The centre of the affine camera is at infinity.

• An affine camera has 8 degrees of freedom.

• It models weak-perspective and para-perspective.

Plane projective transformations
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which is a 3×3 matrix representing a general plane to plane projective
transformation.

Projective transformations continued
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or x′ = Hx, where H is a 3× 3 non-singular homogeneous matrix.

• This is the most general transformation between the world and
image plane under imaging by a perspective camera.

• It is often only the 3 × 3 form of the matrix that is important in
establishing properties of this transformation.

• A projective transformation is also called a “homography” and a
“collineation”.

• H has 8 degrees of freedom.



Four points define a projective transformation

Given n point correspondences (x, y) ↔ (x′, y′)

Compute H such that x′
i = Hxi

• Each point correspondence gives two constraints

x′ =
x′
1

x′
3

=
h11x + h12y + h13

h31x + h32y + h33
, y′ =

x′
2

x′
3

=
h21x + h22y + h23

h31x + h32y + h33

and multiplying out generates two linear equations for the elements
of H

x′ (h31x + h32y + h33) = h11x + h12y + h13

y′ (h31x + h32y + h33) = h21x + h22y + h23

• If n ≥ 4 (no three points collinear), then H is determined uniquely.

• The converse of this is that it is possible to transform any four
points in general position to any other four points in general position
by a projectivity.

Example 1: Removing Perspective Distortion

Given: the coordinates of four points on the scene plane

Find: a projective rectification of the plane

• This rectification does not require knowledge of any of the
camera’s parameters or the pose of the plane.

• It is not always necessary to know coordinates for four points.

The Cone of Rays

An image is the intersection of a plane with the cone of rays between
points in 3-space and the optical centre. Any two such “images” (with
the same camera centre) are related by a planar projective transfor-
mation.

x′ = Hx
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e.g. rotation about the camera centre

Example 2: Synthetic Rotations

The synthetic images are produced by projectively warping the orig-
inal image so that four corners of an imaged rectangle map to the
corners of a rectangle. Both warpings correspond to a synthetic rota-
tion of the camera about the (fixed) camera centre.



Two View Geometry
• Cameras P and P′ such that

x = PX x′ = P′X

• Baseline between the cameras is non-zero.

Given an image point in the first view, where is the corresponding
point in the second view?

What is the relative position of the cameras?

What is the 3D geometry of the scene?

Images of Planes

Projective transformation between images induced by a plane

x = H1πxπ x′ = H2πxπ

x′ = H2πxπ

= H2πH
−1
1π x = Hx /

/
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• H can be computed from the correspondence of four points on
the plane.

Correspondence Geometry

Given the image of a point in one view, what can we say about its
position in another?
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• A point in one image “generates” a line in the other image.

• This line is known as an epipolar line, and the geometry which
gives rise to it is known as epipolar geometry.

Epipolar Geometry
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• The epipolar line l′ is the image of the ray through x.

• The epipole e′ is the point of intersection of the line joining the
camera centres—the baseline—with the image plane.

• The epipole is also the image in one camera of the centre of the
other camera.

• All epipolar lines intersect in the epipole.



Epipolar pencil

baseline

e e /

As the position of the 3D point X varies, the epipolar planes “rotate”
about the baseline. This family of planes is known as an epipolar
pencil. All epipolar lines intersect at the epipole.

Epipolar geometry example

e  at

infinity

e  at/

infinity

Epipolar geometry depends only on the relative pose (position and
orientation) and internal parameters of the two cameras, i.e. the posi-
tion of the camera centres and image planes. It does not depend on
structure (3D points external to the camera).

Homogeneous Notation Interlude

• A line l is represented by the homogeneous 3-vector

l =


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l2
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
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for the line l1x+ l2y+ l3 = 0. Only the ratio of the homogeneous line
coordinates is significant.

• point on line: l.x = 0 or l�x = 0 or x�l = 0

• two points define a line: l = p × q
p

q

l

• two lines define a point: x = l × m

l

m

x

Matrix notation for vector product

The vector product v×x can be represented as a matrix multiplication

v × x = [v]×x

where

[v]× =


 0 −vz vy

vz 0 −vx

−vy vx 0




• [v]× is a 3× 3 skew-symmetric matrix of rank 2.

• v is the null-vector of [v]×, since v × v = [v]×v = 0.



Algebraic representation - the Fundamental Matrix

x′� F x = 0 l′ = F x

• F is a 3× 3 rank 2 homogeneous matrix

• F�e′ = 0

• It has 7 degrees of freedom

• Counting: 2× 11− 15 = 7.

• Compute from 7 image point correspondences

Fundamental matrix - sketch derivation
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Step 1: Point transfer via a plane x′ = Hπx

Step 2 : Construct the epipolar line l′ = e′ × x′ = [e′]×x
′

l′ = [e′]×Hπx = Fx

F = [e′]×Hπ

This shows that F is a 3× 3 rank 2 matrix.

Properties of F

• F is a rank 2 homogeneous matrix with 7 degrees of freedom.

• Point correspondence: If x and x′ are corresponding image points,
then x′�Fx = 0.

• Epipolar lines:

 l′ = Fx is the epipolar line corresponding to x.


 l = F�x′ is the epipolar line corresponding to x′.

• Epipoles:

 Fe = 0 F�e′ = 0

• Computation from camera matrices P, P′:

 F = [P′C]×P

′P+, where P+ is the pseudo-inverse of P, and
C is the centre of the first camera. Note, e′ = P′C.


 Canonical cameras, P = [I | 0], P′ = [M | m],
F = [e′]×M = M−�[e]×, where e′ = m and e = M−1m.

Plane induced homographies given F

Given the fundamental matrix F between two views, the homography
induced by a world plane is

H = [e′]×F + e′v�

where v is the inhomogeneous 3-vector which parametrizes the 3-
parameter family of planes.

e.g. compute plane from 3 point correspondences.

Given a homography Ĥ induced by a particular world plane, then a
homography induced by any plane may be computed as

H = Ĥ + e′v∗�



Projective Reconstruction from 2 views

Statement of the problem

Given

Corresponding points xi ↔ x′
i in two images.

Find

Cameras P and P′ and 3D points Xi such that

xi = PXi ; x′
i = PXi

Projective ambiguity of reconstruction

• Solution is not unique without camera calibration

• Solution is unique up to a projective mapping :

P �→ PH−1

P′ �→ P′H−1

Xi �→ HXi

Then verify

xi = (PH−1)(HXi) = PXi

x′
i = (P′H−1)(HXi) = P′Xi

• Same problem holds however many views we have

Projective Distortion demo

< Projective distortion demo >



Basic Theorem

Given sufficiently many points to compute unique fundamental matrix
:

• 8 points in general position

• 7 points not on a ruled quadric with camera centres

Then 3D points may be constructed from two views Up to a 3D pro-
jective transformation

• Except for points on the line between the camera centres.

Steps of projective reconstruction

Reconstruction takes place in the following steps :

• Compute the fundamental matrix F from point correspondences

• Factor the fundamental matrix as

F = [t]×M

• The two camera matrices are

P = [I | 0] and P′ = [M | t] .

• Compute the points Xi by triangulation

Details of Projective Reconstruction - Computation of F.

Methods of computation of F left until later

Several methods are available :

(i) Normalized 8-point algorithm

(ii) Algebraic minimization

(iii) Minimization of epipolar distance

(iv) Minimization of symmetric epipolar distance

(v) Maximum Likelihood (Gold-standard) method.

(vi) Others , . . .

Factorization of the fundamental matrix

SVD method

(i) Define

Z =


 0 1 0

−1 0 0

0 0 0




(ii) Compute the SVD

F = UDV� where D = diagr, s, 0

(iii) Factorization is

F = (UZU�)(UZDV�)

• Simultaneously corrects F to a singular matrix.



Factorization of the fundamental matrix

Direct formula

Let e′ be the epipole.

Solve e′�F = 0

Specific formula

P = [I | 0] ; P′ = [[e′]×F | e′] = [M | e′]

This solution is identical to the SVD solution.

Non-uniqueness of factorization

• Factorization of the fundamental matrix is not unique.

• General formula : for varying v and λ

P = [I | 0] ; P′ = [M + e′v� | λe′]

• Difference factorizations give configurations varying by a projec-
tive transformation.

• 4-parameter family of solutions with P = [I | 0].

Triangulation

Triangulation :

• Knowing P and P′

• Knowing x and x′

• Compute X′ such that

x = PX ; x′ = P′X

x /
x /

O O /

X

e e /

d
x x /

d/

Triangulation in presence of noise

• In the presence of noise, back-projected lines do not intersect.
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Rays do not intersect in space

x
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l = F /x /l = F x

image 1 image 2

Measured points do not lie on corresponding epipolar lines



Which 3D point to select ?

• Mid-point of common perpendicular to the rays ?
– Not a good choice in projective environment.

– Concepts of mid-point and perpendicular are meaningless un-
der projective distortion.

• Weighted point on common perpendicular, weighted by distance
from camera centres ?

– Distance is also undefined concept.

• Some algebraic distance ?
– Write down projection equations and solve ?

– Linear least squares solution.

– Minimizes nothing meaningful.

Problem statement

• Assume camera matrices are given without error, up to projective
distortion.

• Hence F is known.

• A pair of matched points in an image are given.

• Possible errors in the position of matched points.

• Find 3D point that minimizes suitable error metric.

• Method must be invariant under 3D projective transformation.

Linear triangulation methods

• Direct analogue of the linear method of camera resectioning.

• Given equations

x = PX

x′ = P′X

• pi� are the rows of P.

• Write as linear equations in X


xp3� − p1�

yp3� − p2�

x′p′3� − p′1�

yp′3� − p′2�


X = 0

• Solve for X.

• Generalizes to point match in several images.

• Minimizes no meaningful quantity – not optimal.

Minimizing geometric error

• Point X in space maps to projected points x̂ and x̂′ in the two
images.

• Measured points are x and x′.

• Find X that minimizes difference between projected and mea-
sured points.



Geometric error . . .
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Cost function

C(X) = d(x, x̂)2 + d(x′, x̂′)2

Different formulation of the problem

Minimization problem may be formulated differently:

• Minimize
d(x, l)2 + d(x′, l′)2

• l and l′ range over all choices of corresponding epipolar lines.

• x̂ is the closest point on the line l to x.

• Same for x̂′.

x
/x

/xl = F
x/l = F

x
d

d

x

e

/

/

e /

image 1 image 2
θ(t) θ/ (t)

Minimization method

Our strategy for minimizing cost function is as follows

(i) Parametrize the pencil of epipolar lines in the first image by a
parameter t. Epipolar line is l(t).

(ii) Using the fundamental matrix F, compute the corresponding
epipolar line l′(t) in the second image.

(iii) Express the distance function d(x, l(t))2+d(x′, l′(t))2 explicitly
as a function of t.

(iv) Find the value of t that minimizes this function.

Minimization method ...

• Find the minimum of a function of a single variable, t.

• Problem in elementary calculus.

• Derivative of cost reduces to a 6-th degree polynomial in t.

• Find roots of derivative explicitly and compute cost function.

• Provides global minimum cost (guaranteed best solution).

• Details : See Hartley-Sturm “Triangulation”.



Multiple local minima

• Cost function may have local minima.

• Shows that gradient-descent minimization may fail.
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Left : Example of a cost function with three minima.

Right : Cost function for a perfect point match with two minima.

Uncertainty of reconstruction

Uncertainty of reconstruction. The shape of the uncertainty region
depends on the angle between the rays.

This page left empty

This page left empty



Computation of the Fundamental Matrix

Basic equations

Given a correspondence
x ↔ x′

The basic incidence relation is

x′�Fx = 0

May be written

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 .

Single point equation - Fundamental matrix

Gives an equation :

(x′x, x′y, x′, y′x, y′y, y′, x, y, 1)




f11
f12
f13
f21
f22
f23
f31
f32
f33




= 0

where
f = (f11, f12, f13, f21, f22, f23, f31, f32, f33)

�

holds the entries of the Fundamental matrix

Total set of equations

Af =


 x′

1x1 x′
1y1 x′

1 y′1x1 y′1y1 y′1 x1 y1 1
... ... ... ... ... ... ... ...

x′
nxn x′

nyn x′
n y′nxn y′nyn y′n xn yn 1







f11
f12
f13
f21
f22
f23
f31
f32
f33




= 0



Solving the Equations

• Solution is determined up to scale only.

• Need 8 equations ⇒ 8 points

• 8 points ⇒ unique solution

• > 8 points ⇒ least-squares solution.

Least-squares solution

(i) Form equations Af = 0.

(ii) Take SVD : A = UDV�.

(iii) Solution is last column of V (corresp : smallest singular value)

(iv) Minimizes ||Af|| subject to ||f || = 1.

The singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

Left : Uncorrected F – epipolar lines are not coincident.

Right : Epipolar lines from corrected F.

Computing F from 7 points

• F has 9 entries but is defined only up to scale.

• Singularity condition det F = 0 gives a further constraint.

• F has 3 rows =⇒ det F = 0 is a cubic constraint.

• F has only 7 degrees of freedom.

• It is possible to solve for F from just 7 point correspondences.

7-point algorithm

Computation of F from 7 point correspondences

(i) Form the 7× 9 set of equations Af = 0.

(ii) System has a 2-dimensional solution set.

(iii) General solution (use SVD) has form

f = λf 0 + µf 1

(iv) In matrix terms
F = λF0 + µF1

(v) Condition det F = 0 gives cubic equation in λ and µ.

(vi) Either one or three real solutions for ratio λ : µ.



Correcting F using the Singular Value Decomposition

If F is computed linearly from 8 or more correspondences, singularity
condition does not hold.

SVD Method

(i) SVD : F = UDV�

(ii) U and V are orthogonal, D = diag(r, s, t).
(iii) r ≥ s ≥ t.

(iv) Set F′ = Udiag(r, s, 0) V�.

(v) Resulting F′ is singular.

(vi) Minimizes the Frobenius norm of F− F′

(vii) F′ is the ”closest” singular matrix to F.

Complete 8-point algorithm

8 point algorithm has two steps :

(i) Linear solution. Solve Af = 0 to find F.

(ii) Constraint enforcement. Replace F by F′.

Warning This algorithm is unstable and should never be used with
unnormalized data (see next slide).

The normalized 8-point algorithm

Raw 8-point algorithm performs badly in presence of noise.

Normalization of data

• 8-point algorithm is sensitive to origin of coordinates and scale.

• Data must be translated and scaled to “canonical” coordinate
frame.

• Normalizing transformation is applied to both images.

• Translate so centroid is at origin

• Scale so that RMS distance of points from origin is
√
2.

• “Average point” is (1, 1, 1)�.

Normalized 8-point algorithm

(i) Normalization: Transform the image coordinates :

x̂i = Txi

x̂′
i = T′x′

i

(ii) Solution: Compute F from the matches x̂i ↔ x̂′
i

x̂′
i
�F̂x̂i = 0

(iii) Singularity constraint : Find closest singular F̂
′
to F̂.

(iv) Denormalization: F = T′�F̂
′
T.



Comparison of Normalized and
Unnormalized Algorithms

Lifia House images

Statue images

Grenoble Museum



Oxford Basement

Calibration object

Testing methodology

(i) Point matches found in image pairs and outliers discarded.

(ii) Fundamental matrix was found from varying number (n) of
points.

(iii) F was tested against other matched points not used to com-
pute it.

(iv) Distance of a point from predicted epipolar line was the met-
ric.

(v) 100 trials for each value of n.

(vi) Average error is plotted against n.

Comparison of normalized and unnormalized 8-point algorithms.
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Comparison of normalized and unnormalized 8-point algorithms.
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Comparison of normalized and unnormalized 8-point algorithms.
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Illustration of Effect of Normalization

Similar problem : Computation of a 2D projective transformation given
point matches in two images.

(i) Homography is computed from 5 noisy point matches.

(ii) Homography is applied to a further (6th) point

(iii) Noise level approximately equal to with of lines in the crosses
(next page)

(iv) Repeated 100 times.

(v) Spread of the transformed 6th point is shown in relation to
the 5 data points.

(vi) 95% ellipses are plotted.

Normalization and 2D homography computation

Unnormalized data

Normalized data



Normalization and 2D homography computation

Unnormalized data

Normalized data

Condition number

• Bad condition number the reason for poor performance.

• Condition number = κ1/κ8, ratio of singular values of A.
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with normalization
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• Bad conditioning acts as a noise amplifier.

• Normalization improves the condition number by a factor of 108.

• Reference : Hartley ”In defence of the 8-point algorithm”.

Algebraic Minimization Algorithm

The algebraic minimization algorithm

Enforcing the singularity constraint

• SVD method minimizes ||F′ − F||.
• simple and rapid.

• Not optimal

• Treats all entries of F equally.

• However, some entries of F are more tightly constrained by the
data.



The Algebraic Method

• Minimize ||Af ′|| subject to ||f ′|| = 1 AND det F′ = 0.

• det F′ = 0 is a cubic constraint.

• Requires an iterative solution.

• However, simple iterative method works.

Solution assuming known epipole

• We may write F = M[e]×, where e is epipole.

• F of this form is singular.

• Assume e is known, find M.

• Write F = M[e]× as f = Em


f11
f12
f13
f21
f22
f23
f31
f32
f33




=




0 −e3 e2
e3 0 −e1
−e2 e1 0

0 −e3 e2
e3 0 −e1
−e2 e1 0

0 −e3 e2
e3 0 −e1
−e2 e1 0







m11

m12

m13

m21

m22

m23

m31

m32

m33




Solution assuming known epipole - continued

• Write Af = AEm.

• Minimize ||AEm|| subject to ||Em|| = 1.

• This is a linear least-squares estimation problem.

• Non-iterative algorithm involving SVD is possible

• Reference : Hartley, “Minimizing Algebraic Error”, Royal Society
Proceedings, 1998.

Iterative Algebraic Estimation

Find the fundamental matrix F that minimizes the algebraic error ||Af ||
subject to ||f || = 1 and det F = 0.

• Concept : Vary epipole e to minimize the algebraic error ||Af′|| =
||AEm||.
• Remark : Each choice of epipole e defines a minimimum error
vector AEm as above.

• Use Levenberg-Marquardt method to minimize this error.

• Simple 3× 9 minimization problem.
– 3 inputs – the coordinates of the epipole

– 9 outputs – the algebraic error vector Af′ = AEm.

• Each step requires estimation of m using SVD method.

• Tricks can be used to avoid SVD (see Hartley-Royal-Society).



Minimization of Geometric Error

Minimization of Geometric Error

• Algebraic error vector Af has no clear geometric meaning.

• Should be minimizing geometric quantities.

• Errors derive from incorrect measurements of match points.

d/

d

x x /

/ l  = F x/l = F  x

• We should be measuring distances from epipolar lines.

The Gold Standard (ML) Method

• Assumes a Gaussian distributed noise.

• Measured correspondences xi ↔ x′
i.

• Estimated correspondences x̂i and x̂′
i∑

i

d(xi, x̂i)
2 + d(x′

i, x̂
′
i)
2

subject to x̂′
i
�Fx̂i = 0 exactly for some F.

• Simultaneous estimation of F and x̂i and x̂′
i.

d/

d

x x /

/ l  = F x/l = F  x

The Gold Standard (ML) Method

Minimizing the Gold-Standard error function.

• Initial 3D reconstruction :

P = [I | 0]
P′ = [M | t]

Xi = (Xi, Yi, 1, Ti)
�

• Compute x̂i = PXi = (Xi, Yi, 1)
� and x̂′

i = P′Xi.

• Iterate over P′ and Xi = (Xi, Yi, 1, Ti)
� to minimize cost function :∑

i

d(xi, x̂i)
2 + d(x′

i, x̂
′
i)
2

• Total of 3n + 12 parameters.
– 12 parameters for the camera matrix P′

– 3 parameters for each point Xi.

– Once P′ = [M | t] is found, compute F = [t]×M.



Sparse Levenberg-Marquardt

Reference : Hartley- Azores

(i) Coordinates of Xi do not affect x̂j or x̂′
j (for i �= j).

(ii) Sparse LM takes advantage of sparseness

(iii) Linear time in n (number of points).

(iv) Reference : Hartley- Azores

Parametrization of rank-2 matrices

• Estimation of F may be done by parameter minimization.

• Parametrize F such that det F = 0.

• Various parametrizations have been used.

Overparametrization.

• Write F = [t]×M.

• 3 parameters for t and 9 for M.

Epipolar parametrization.

F =


a b αa + βb

c d αc + βd

e f αe + βf




To achieve a minimum set of parameters, set one of the elements, for
instance f to 1.

Parametrization of rank-2 matrices

Both epipoles as parameters. The resulting form of F is

F =


 a b αa + βb

c d αc + βd
α′a + β′c α′b + β′d α′αa + α′βb + β′αc + β′βd




Epipolar distance

d/

d

x x /

/ l  = F x/l = F  x

• Point correspondence x′ ↔ x :

• Point x �→ epipolar line Fx.

• Epipolar distance is distance of point x′ to epipolar line Fx.

• Write Fx = (λ, µ, ν)� and x′ = (x′, y′, 1)�.

• Distance is
d(x′, Fx) = x′�Fx(λ2 + µ2)−1/2



Epipolar distance - continued

• Epipolar distance may be written as

d(x′, Fx) =
x′�Fx

((Fx)21 + (Fx)22)
1/2

• Total cost function :∑
i

d(x′
i, Fxi)

2 =
∑

i

(x′
i
�Fxi)

2

(Fxi)21 + (Fxi)22

• Total cost : sum over all x′
i ↔ xi.

• Minimize this cost function over parametrization of F.

Symmetric epipolar distance

• Epipolar distance function is not symmetric.

• Prefer sum of distances in both images.

• Symmetric cost function is

d(x′, Fx)2 + d(x, F�x′)2

• Sum over all points :

Cost =
∑

i

(x′
i
�Fxi)

2

(
1

(Fxi)21 + (Fxi)22
+

1

(F�x′
i)
2
1 + (F�x′

i)
2
2

)

Problem

• Points near the epipole have a disproportionate influence.

• Small deviation in point makes big difference to epipolar line.

Luong / Zhang’s other error function

∑
i

(x′
i
�Fxi)

2

(Fxi)21 + (Fxi)22 + (F�x′
i)
2
1 + (F�Fx′

i)
2
2

Represents a first-order approximation to geometric error.
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More Algorithm Comparison

Experimental Evaluation of the Algorithms

Three of the algorithms compared

(i) The normalized 8-point algorithm

(ii) Minimization of algebraic error whilst imposing the singularity
constraint

(iii) The Gold Standard geometric algorithm

Experimental procedure

(i) Find matched points in image pair.

(ii) Select n matched points at random

(iii) Compute the fundamental matrix

(iv) Compute epipolar distance for all other points.

(v) Repeat 100 times for each n and collect statistics.

The error is defined as

1

N

N∑
i

(d(x′
i, Fxi) + d(xi, F

�x′
i))

i.e Average symmetric epipolar distance.
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Results - continued
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Results - continued
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Covariance computation

Covariance of P′

To compute the covariance matrix of the entries of P′ :

(i) Define Q = (xi,x
′
i)
� – vector of meaurments in both images.

(ii) Compute the derivative matrices

Ai = [∂Q̂i/∂P
′] and Bi = [∂Q̂i/∂Xi]

(iii) Compute in steps

U =
∑

i

Ai
�Σ−1

Qi
Ai

Vi = Bi
�Σ−1

Qi
Bi

Wi = Ai
�Σ−1

Qi
Bi

ΣP′ = (U−
∑

i

WiV
−1
i Wi

�)+ (pseudo-inverse)



Covariance of F

To compute the covariance of F :

(i) Given P′ = [M | m], then F = [m]×M.

(ii) Compute J = ∂F/∂P′.
(iii)

ΣF = JΣP′J
�

Covariance of epipolar line corresponding to x

(i) Epipolar line is l = Fx.

(ii) Given x and ΣF compute J = ∂l/∂F
(iii)

Σl = JΣFJ
�

The envelope of epipolar lines

• May compute envelope of epipolar lines.

C = l̄ l̄� − k2Σl

• C is a hyperbola that contains the epipolar line with a given prob-
ability α.

• k2 chosen such that F−1
2 (k2) = α,

• F2(k
2) represents the cumulative χ2

2 distribution,

• with probability α the lines lie within this region.

< epipolar line demonstration here >

Special cases of F-computation

Using special motions can simplify the computation of the fundamen-
tal matrix.

Pure translation

• Can assume P = [I|0] and P′ = [I|t].
• F = [t]×.

• F is skew-symmetric – has 2 dof.

• Being skew-symmetric, automatically has rank 2.

image

e

For a pure translation the epipole can be estimated from the image
motion of two points.



Cameras with the same principal plane

• Principal plane of the camera is the third row of P.

• Cameras have the same third row.

• Affine cameras - last row is (0, 0, 0, 1)�.

Simple correspondences exist :

(x′, y′, 0)F(x, y, 0)� = 0

for any (x′, y′, 0)� and (x, y, 0)�.

F has the following form :

F =


 a

b
c d e




Degeneracies

Correspondences are degenerate if they satisfy more than one F.

xi
�F1xi

� = 0 and x′
iF2xi = 0 (1 ≤ i ≤ n) .

Points on a ruled quadric

(i) If all the points and the two camera centres lie on a ruled
quadric, then there are three possible fundamental matrices.

(ii) points lie in a plane. The correspondences xi ↔ x′
i lead to a

3-parameter family of possible fundamental matrices F (note, one
of the parameters accounts for scaling the matrix so there is only a
two-parameter family of homogeneous matrices).

(iii) Two cameras at the same point :
• The fundamental matrix does not exist.

• There is no such thing as an epipolar plane, and epipolar lines
are not defined.

• Correspondences x′
i ↔ xi give at least a 2-parameter family of

F.
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Automatic Estimation of
Epipolar Geometry

Problem Statement

Given Image pair

Find The fundamental matrix F and correspondences xi ↔ x′
i.

• Compute image points

• Compute correspondences

• Compute epipolar geometry

Robust line estimation

Fit a line to 2D data containing outliers

b

d
a

c

There are two problems:

(i) a line fit to the data minl

∑
i d

2
⊥i; and,

(ii) a classification of the data into inliers (valid points) and out-
liers.

RANdom SAmple Consensus (RANSAC)

[Fischler and Bolles, 1981]

Objective Robust fit of a model to a data set S which contains outliers.

Algorithm

(i) Randomly select a sample of s data points from S and instantiate the model
from this subset.

(ii) Determine the set of data points Si which are within a distance threshold
t of the model. The set Si is the consensus set of the sample and defines the
inliers of S.

(iii) If the size of Si (the number of inliers) is greater than some threshold T ,
re-estimate the model using all the points in Si and terminate.

(iv) If the size of Si is less than T , select a new subset and repeat the above.

(v) After N trials the largest consensus set Si is selected, and the model is
re-estimated using all the points in the subset Si.



Robust ML estimation

C D
B

A

C D
B

A

An improved fit by

• A better minimal set

• Robust MLE: instead of minl

∑
i d

2
⊥i

min
l

∑
i

γ (d⊥i) with γ(e) =

{
e2 e2 < t2 inlier
t2 e2 ≥ t2 outlier

Feature extraction: “Corner detection”

Interest points [Harris]

• 100s of points per image

Correlation matching

• Match each corner to most similar looking corner in the other
image

• Many wrong matches (10-50%), but enough to compute
the fundamental matrix.

Correspondences consistent with epipolar geometry

• Use RANSAC robust estimation algorithm

• Obtain correspondences xi ↔ x′
i and F

• Guided matching by epipolar line

• Typically: final number of matches is about 200-250,
with distance error of ∼0.2 pixels.



Automatic Estimation of F and correspondences

Algorithm based on RANSAC [Torr]

(i) Interest points: Compute interest points in each image.

(ii) Putative correspondences: use cross-correlation and prox-
imity.

(iii) RANSAC robust estimation:
Repeat

(a) Select random sample of 7 correspondences

(b) Compute F

(c) Measure support (number of inliers)
Choose the F with the largest number of inliers.

(iv) MLE: re-estimate F from inlier correspondences.

(v) Guided matching: generate additional matches.

How many samples?

For probability p of no outliers:

N = log(1− p)/ log(1− (1− ε)s)

• N , number of samples

• s, size of sample set

• ε, proportion of outliers

e.g. for p = 0.95

Sample size Proportion of outliers ε

s 5% 10% 20% 25% 30% 40% 50%
2 2 2 3 4 5 7 11
3 2 3 5 6 8 13 23
4 2 3 6 8 11 22 47
5 3 4 8 12 17 38 95
6 3 4 10 16 24 63 191
7 3 5 13 21 35 106 382
8 3 6 17 29 51 177 766

Adaptive RANSAC

• N = ∞, sample count= 0.

• While N > sample count Repeat
– Choose a sample and count the number of inliers.

– Set ε = 1− (number of inliers)/(total number of points)

– Set N from ε with p = 0.99.

– Increment the sample count by one.

• Terminate.

e.g. for a sample size of 4

Number of 1 - ε Adaptive
inliers N

6 2% 20028244
10 3% 2595658
44 16% 6922
58 21% 2291
73 26% 911

151 56% 43
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Part 2 : Three-view and Multiple-view Geometry

Computing a Metric Reconstruction

Reconstruction from two views

Given only image points and their correspondence,
what can be determined?

Two View Reconstruction Ambiguity

Given: image point correspondences xi ↔ x′
i,

compute a reconstruction:

{P, P′, Xi} with xi = PXi x′i = P′Xi

Ambiguity

xi = PXi = P H(H)−1 Xi = P̃X̃i

x′i = P′Xi = P′ H(H)−1 Xi = P̃
′
X̃i

{P̃, P̃′, X̃i} is an equivalent Projective Reconstruction.

Metric Reconstruction

projective

metric

Correct: angles, length ratios.



Algebraic Representation of Metric Reconstruction

Compute H

{P1, P2, ..., Pm, Xi}
→
H

{P1M, P2M, ..., PmM, XM
i }

Projective Reconstruction Metric Reconstruction

• Remaining ambiguity is rotation (3), translation (3) and scale (1).

• Only 8 parameters required to rectify entire sequence (15−7 = 8).

How?

• Calibration points: position of 5 scene points.

• Scene geometry: e.g. parallel lines/planes, orthogonal lines/planes,
length ratios.

• Auto-calibration: e.g. camera aspect ratio constant for sequence.

Projective Reconstruction

Direct Metric Reconstruction

Use 5 or more 3D points with known Euclidean coordinates to deter-
mine H

Stratified Reconstruction

Given a projective reconstruction {Pj,Xi}, compute a metric recon-
struction via an intermediate affine reconstruction.

(i) affine reconstruction: Determine the vector p which defines
π∞. An affine reconstruction is obtained as {PjHP, H−1

P Xi} with

HP =

[
I 0

−p� 1

]

(ii) Metric reconstruction: is obtained as {PjAHA, H−1
A XAi

} with

HA =

[
K 0

0� 1

]



Stratified Reconstruction

• Start with a projective reconstruction.

• Find transformation to upgrade to affine reconstruction.
– Equivalent to finding the plane at infinity.

• Find transformation to upgrade to metric (Euclidean) reconstruc-
tion.

– Equivalent to finding the “absolute conic”

• Equivalent to camera calibration
– If camera calibration is known then metric reconstruction is

possible.

– Metric reconstruction implies knowledge of angles – camera
calibration.

Anatomy of a 3D projective transformation

• General 3D projective transformation represented by a 4× 4 ma-
trix.

H =

[
sRK t
v� 1

]
=

[
sR t

1

] [
K

1

] [
I

v� 1

]
= metric × affine × projective

Stratified reconstruction ...

(i) Apply the transformations one after the other :
• Projective transformation – reduce to affine ambiguity[

I

v� 1

]
• Affine transformation – reduce to metric ambiguity[

K

1

]
• Metric ambiguity of scene remains

Reduction to affine

Affine reduction using scene constraints - parallel lines



Reduction to affine

Other scene constraints are possible :

• Ratios of distances of points on line (e.g. equally spaced points).

• Ratios of distances on parallel lines.

Points lie in front of the viewing camera.

• Constrains the position of the plane at infinity.

• Linear-programming problem can be used to set bounds on the
plane at infinity.

• Gives so-called “quasi-affine” reconstruction.

• Reference : Hartley-Azores.

Reduction to affine . . .

Common calibration of cameras.

• With 3 or more views, one can find (in principle) the position of
the plane at infinity.

• Iteration over the entries of projective transform :
[
I

v� 1

]
.

• Not always reliable.

• Generally reduction to affine is difficult.

Metric Reconstruction

Metric Reconstruction . . .

Assume plane at infinity is known.

• Wish to make the step to metric reconstruction.

• Apply a transformation of the form
[
I

v� 1

]
• Linear solution exists in many cases.



The Absolute Conic

• Absolute conic is an imaginary conic lying on the plane at infinity.

• Defined by
Ω : X2 + Y2 + Z2 = 0 ; T = 0

• Contains only imaginary points.

• Determines the Euclidean geometry of the space.

• Represented by matrix Ω = diag(1, 1, 1, 0).
• Image of the absolute conic (IAC) under camera P = K[R | t] is
given by ω = (KK�)−1.

• Basic fact :

ω is unchanged under camera motion.

Using the infinite homography

(i) When a camera moves, the image of a plane undergoes a
projective transformation.

(ii) If we have affine reconstruction, we can compute the trans-
formation H of the plane at infinity between two images.

(iii) Absolute conic lies on the plane at infinity, but is unchanged
by this image transformation :

(iv) Transformation rule for dual conic ω∗ = ω−1.

ω∗ = Hjω
∗Hj

�

(v) Linear equations on the entries of ω∗.

(vi) Given three images, solve for the entries of ω∗.

(vii) Compute K by Choleski factorization of ω∗ = KK�.

Example of calibration

Images taken with a non-translating camera:

Mosaiced image showing projective transformations



Computation of K

Calibration matrix of camera is found as follows :

• Compute the homographies (2D projective transformations) be-
tween images.

• Form equations
ω∗ = Hijω

∗Hij
�

• Solve for the entries of ω∗

• Choleski factorization of ω∗ = KK� gives K.

Affine to metric upgrade

Principal is the same for non-stationary cameras once principal plane
is known.

• Hij is the “infinite homography” (i.e. via the plane at infinity) be-
tween images i and j.

• May be computed directly from affinely-correct camera matrices.

• Given camera matrices

Pi = [Mi|ti] ; Pi = [M′i|ti]

• Infinite homography is given by

H = M′iM
−1

• Algorithm proceeds as for fixed cameras.

Changing internal camera parameters

The previous calibration procedure (affine-to-metric) may be general-
ized to case of changing internal parameters.

See paper tomorrow given by Agapito.

This page left empty



The Trifocal Tensor

The Trifocal Tensor

(i) Defined for three views.

(ii) Plays a similar rôle to Fundmental matrix for two views.

(iii) Unlike fundamental matrix, trifocal tensor also relates lines
in three views.

(iv) Mixed combinations of lines and points are also related.

Geometry of three views

Point-line-line incidence.

C
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l
/

l / /

L

/ /

C

C
x

• Correspondence x ↔ l′ ↔ l′′

Geometry of three views . . .

• Let l(1) and l(2) be two lines that meet in x.

• General line l back-projects to a plane l�P.

• Four plane are l(1)�P, l(2)�P′, l′�P′ and l′′�P′′

• The four planes meet in a point.
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l
/

l / /

L

/ /

C

Cx



The trifocal relationship

Four planes meet in a point means determinant is zero.

det




l(1)�P

l(2)�P

l′�P′

l′′�P′′


 = 0

• This is a linear relationship in the line coordinates.

• Also (less obviously) linear in the entries of the point x = l(1)×l(2).

This is the trifocal tensor relationship.

Tensor Notation

Point coordinates.

• Consider basis set (e1, e2, e3).

• Point is represented by a vector x = (x1, x2, x3)�.

• New basis : êj =
∑

i H
i
j ei.

• With respect to new basis x represented by

x̂ = (x̂1, x̂2, x̂3) where x̂ = H−1x

• If basis is transformed according to H, then point coordinates
transform according to H−1.

• Terminology : xi transforms contravariantly.

• Use upper indices for contravariant quantities.

Tensor Notation . . .

Line coordinates

• Line is represented by a vector l = (l1, l2, l3)

• In new coordinate system êj, line has coordinate vector l̂,

l̂� = l�H

• Line coordinates transform according to H.

• Preserves incidence relationship. Point lies on line if :

l̂�x̂ = (l�H)(H−1x) = l�x = 0

• Terminology : lj transforms covariantly.

• Use lower indices for covariant quantities.

Summation notation

• Repeated index in upper and lower positions implies summation.

Example
Incidence relation is written lix

i = 0.

Transformation of covariant and contravariant indices

Contravariant transformation

x̂j = (H−1)jix
i

Covariant transformation

l̂j = Hi
jli



More transformation examples

Camera mapping has one covariant and one contravariant index : Pi
j .

Transformation rule P̂ = G−1PF is

P̂ j
i = (G−1)js P

s
r F r

i

Trifocal tensor Tjk
i has one covariant and two contravariant indices.

Transformation rule :

T̂ jk
i = Fr

i (G
−1)js (H

−1)kt T
st
r

The ε tensor

Tensor εrst :

• Defined for r, s, t = 1, . . . , 3

εrst = 0 unless r, s and t are distinct
= +1 if rst is an even permutation of 123
= −1 if rst is an odd permutation of 123

• Related to the cross-product :

c = a × b ⇐⇒ ci = εijka
jbk .

Basic Trifocal constraint

Basic relation is a point-line-line incidence.
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l
/

l / /
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• Point xi in image 1

• lines l′j and l′′k in images 2 and 3.

Basic Trifocal constraint . . .

C

/

l
/

l / /

L

/ /

C

Cx

• Let l(1)r and l
(2)
s be two lines that meet in point xi.

• The four lines l
(1)
r , l(2)s , l′j and l′′k back-project to planes in space.

• The four planes meet in a point.



Derivation of the basic three-view relationship

• Line li back-projects to plane liP
i where Pi is i-th row.

• Four planes are coincident if

(l(1)r Pr) ∧ (l(2)s Ps) ∧ (l′jP
′j) ∧ (l′′kP

′′k) = 0

where 4-way wedge ∧ means determinant.

• Thus
l(1)r l(2)s l′jl

′′
k Pr ∧ Ps ∧P′j ∧ P′′k = 0

• Multiply by constant εrsiεrsi gives

εrsil(1)r l(2)s l′jl
′′
k εrsiP

r ∧ Ps ∧P′j ∧P′′k = 0

• Intersection (cross-product) of l(1)r and l
(2)
s is the point xi :

l(1)r l(2)s εrsi = xi

Definition of the trifocal tensor

Basic relationship is

xi l′j l
′′
k εrsiP

r ∧ Ps ∧P′j ∧ P′′k = 0

Define
εrsiP

r ∧Ps ∧ P′j ∧P′′k = T jk
i

Point-line-line relation is

xi l′j l
′′
k T

jk
i = 0

T jk
i is covariant in one index (i), contravariant in the other two.

Line Transfer

Basic relation is
xi l′j l

′′
k T

jk
i = 0

Interpretation :

• Back projected ray from x meets intersection of back-projected
planes from l′ and l′′.

• Line in space projects to lines l′ and l′′ and to a line passing
through x.
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Line transfer

• Denote li = l′j l
′′
k T

jk
i

• See that xi li = 0 when xi lies on the projection of the intersection
of the planes.

• Thus li represents the transferred line corresponding to l′j and l′′k.

• We write
li ≈ l′j l

′′
k T

jk
i

• Cross-product of the two sides are equal :

lrε
irsl′j l

′′
k T

jk
i = 0s

• Derived from basic relation xil′jl
′′
kT

jk
i by replacing xi by lrε

irs.



Point transfer via a plane

C1

image 3image 1

image 2

l

C 2

C 3

π

/

/

x x //

X

• Line l′ back-projects to a plane π′.

• Ray from x meets π′ in a point X.

• This point projects to point x′′ in the third image.

• For fixed l′, mapping x �→ x′′ is a homography.

Point-transfer and the trifocal tensor

• If l′′ is any line through x′′, then trifocal condition holds.

l′′k (x
i l′j T

jk
i ) = 0

• xi l′j T
jk
i must represent the point x′′k.

x′′k ≈ xi l′j T
jk
i

• Alternatively (cross-product of the two sides)

xi l′j εkrsx
′′r T jk

i = 0s

• Derived from basic relation xil′jl
′′
kT

jk
i by replacing l′′k by x′′rεkrs.

Contraction of trifocal tensor with a line

• Write Hk
i = l′j T

jk
i

• Then x′′k = Hk
i x

i.

• Hk
i represents the homography from image 1 to image 3 via the

plane of the line l′j.
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image 3image 1

image 2

l

C 2

C 3

π

/

/

x x //

X

Three-point correspondence

Given a triple correspondence x ↔ x′ ↔ x′′

• Choose any lines l′ and l′′ passing through x′ and x′′

• Trifocal condition holds

xi l′j l
′
k T

jk
i = 0

C C

C

1

2

3

image 1 image 3

π /

lx

x

//

//

/

x

image 2

X

L

l

/



Geometry of the three-point correspondence

C C

C

1

2

3

image 1 image 3

π /

lx

x

//

//

/

x

image 2

X

L

l

/

• 4 choices of lines ⇒ 4 equations.

• May also be written as

xix′rεrsix
′′tεtujT

jk
i = 0

• Gives 9 equations, only 4 linearly independent.

Summary of transfer formulas

(i) Point transfer from first to third view via a plane in the second.

x
′′k = xi l

′

j T
jk
i

(ii) Point transfer from first to second view via a plane in the third.

x
′j = xi l

′′

k T
jk
i

(iii) Line transfer from third to first view via a plane in the second;
or, from second to first view via a plane in the third.

li = l
′

j l
′′

k T
jk
i

Summary of incidence relations

(i) Point in first view, lines in second and third

l
′

j l
′′

k T
jk
i xi = 0

(ii) Point in first view, point in second and line in third

xix
′jl

′′

k εjprT
pk
i = 0r

(iii) Point in first view, line in second and point in third

xi l
′

j x
′′k εkqsT jq

i = 0s

(iv) Point in three views

xix
′jx

′′k εjprεkqsT pq
i = 0rs

Degeneracies of line transfer

ee /

L

l l /

π π /

epipolar
plane

C1 C 2

• Degeneracy of line transfer for corresponding epipolar lines.

• When the line lies in an epipolar plane, its position can not be
inferred from two views.

• Hence it can not be transferred to a third view.



Degeneracy of point transfer

x

x

C C

X
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B 23B12
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21

Transferring points from images 1 and 2 to image 3 :

Only points that can not be transferred are those points on the base-
line between centres of cameras 1 and 2.

For transfer with fundamental matrix, points in the trifocal plane can
not be transferred.

Contraction on a point

In x′′
k ≈ xil′jT

jk
i write xiT jk

i = Gjk

• Represents a mapping from line l′′k to the point x′j :

x′′k ≈ Gjkl′j = (xiT jk
i )l′j

• As l′j varies x′′k traces out the projection of the ray through xi.

• Epipolar line in third image.

• Epipole is the intersection of these lines for varying xi.

/

/

/ /

C

C

Cx

l

x//

Finding epipolar lines

To find the epipolar line corresponding to a point xi :

• Transfer to third image via plane back-projected from l′j

x′′
k = xiT jk

i l′j

• Epipolar line satisfies l′′kx
′′k = 0 for each such x′′k.

• For all l′j
xi l′j l

′′
k T

jk
i = 0

• Epipolar line corresponding to xi found by solving

l′′k (x
iT jk

i ) = 0j

Result : Epipole is the common perpendicular to the null-space of all
xiT jk

i .
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Extraction of camera matrices from
trifocal tensor

Formula for Trifocal tensor

• Trifocal tensor is independent of projective transformation.

• May assume that first camera is [I | 0]
• Other cameras are [A|a4] and [B|b4]

• Formula
T jk
i = aj

ib
k
4 − aj

4b
k
i

• Note : a4 and b4 represent the epipoles :
– Centre of the first camera is (0, 0, 0, 1).

– Epipole is image of camera centre.

a4 = [A|a4]



0

0

0

1




Where does this formula come from ?

Formula for trifocal tensor

T jk
i = εrsiP

r ∧ Ps ∧P′j ∧ P′′k

= 2det


∼ Pi

P′j

P′′k




Notation : ∼ Pi means omit row i.

Example, when i = 1

T jk
1 = det




1

1

aj
1 aj

2 aj
3 aj

4

bk1 bk2 bk3 bk4




= aj
1b

k
4 − aj

4b
k
1

Extraction of the camera matrices.

Basic formula
T jk
i = aj

ib
k
4 − aj

4b
k
i

• Entries of Tjk
i are quadratic in the entries of camera matrices.

• But if epipoles aj
4 and bk4 are known, entries are linear.

Strategy :

• Estimate the epipoles.

• Solve linearly for the remaining entries of A and B.

• 27 equations in 18 unknowns.

Exact formulae are possible, but not required for practical computa-
tion.



Matrix formulas involving trifocal tensor

Given the trifocal tensor written in matrix notation as [T1, T2, T3].

(i) Retrieve the epipoles e21, e31
Let ui and vi be the left and right null vectors respectively of Ti,
i.e. Ti

�ui = 0, Tivi = 0. Then the epipoles are obtained as the
null-vectors to the following 3× 3 matrices

[u1,u2,u3]e21 = 0 [v1,v2,v3]e31 = 0

(ii) Retrieve the fundamental matrices F12, F13

F12 = [e21]×[T1, T2, T3]e31 F13 = [e31]×[T1
�, T2

�, T3
�]e21

(iii) Retrieve the camera matrices P′, P′′ (with P = [I | 0])
Normalize the epipoles to unit norm. Then

P′ = [(I− e21e21
�)[T1, T2, T3]e31 | e21] P′′ = [−[T1

�, T2
�, T3

�]e21 | e31]
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Computation of the trifocal tensor

Linear equations for the trifocal tensor

Given a 3-point correspondence

x ↔ x′ ↔ x′′

The trifocal tensor relationship is

xi x′j x′′kεjquεkrvT
qr
i = 0uv

• Relationship is linear in the entries of T .

• each correspondence gives 9 equations, 4 linearly independent.

• T has 27 entries – defined up to scale.

• 7 point correspondences give 28 equations.

• Linear or least-squares solution for the entries of T .

Summary of relations

Other point or line correspondences also yield constraints on T .

Correspondence Relation number of equations
three points xi x′j x′′kεjquεkrvT

qr
i = 0uv 4

two points, one line xi x′j l′′r εjquT
qr
i = 0u 2

one point, two lines xi l′q l
′′
rT

qr
i = 0 1

three lines lp l
′
q l

′′
r ε

piwT qr
i = 0w 2

Trilinear Relations

Solving the equations

Given 26 equations we can solve for the 27 entries of T .

• Need 7 point correspondences

• or 13 line correspondences

• or some mixture.

Total set of equations has the form

Et = 0

• With 26 equations find an exact solution.

• With more equations, least-squares solution.



Solving the equations ...

• Solution :
– Take the SVD : E = UDV�.

– Solution is the last column of V corresponding to smallest sin-
gular value).

– Minimizes ||Et|| subject to ||t|| = 1.

• Normalization of data is essential.

Constraints

• T has 27 entries, defined only up to scale.

• Geometry only has 18 degrees of freedom.
– 3 camera matrices account for 3× 11 = 33 dof.

– Invariant under 3D projective transformation (15 dof).

– Total of 18 dof.

• T must satisfy several constraints to be a geometrically valid tri-
focal tensor.

• To get good results, one must take account of these constraints
(cf Fundamental matrix case).

What are the constraints

Some of the constraints are easy to find.

(i) Each Tjk
· must have rank 2.

(ii) Their null spaces must lie in a plane.

(iii) This gives 4 constraints in all.

(iv) 4 other constraints are not so easily formulated.

Constraints through parametrization.

• Define T in terms of a set of parameters.

• Only valid Ts may be generated from parameters.

Recall formula for T :

T jk
i = aj

ib
k
4 − aj

4b
k
i

• Only valid trifocal tensors are generated by this formula.

• Parameters are the entries aji and bki .

• Over-parametrized : 24 parameters in all.



Algebraic Estimation of T

Similar to the algebraic method of estimation of F.

Minimize the algebraic error ||Et|| subject to

(i) ||t|| = 1

(ii) t is the vector of entries of T .

(iii) T is of the form Tjk
i = aj

ib
k
4 − aj

4b
k
i .

Difficulty is this constraint is a quadratic constraint in terms of the
parameters.

Minimization knowing the epipoles

Camera matrices [I | 0], [A|a4] and [B|b4].

T jk
i = aj

ib
k
4 − aj

4b
k
i

As with fundamental matrix, a4 and b4 are the epipoles of the first
image.

If a4 and b4 are known, then T is linear in terms of the other parame-
ters. We may write

t = Gp

• p is the matrix of 18 remaining entries of camera matrices A and
B.

• t is the 27-vector of entries of T .

• G is a 27× 18 matrix.

Minimization knowing the epipoles ...

Minimization problem

Minimize ||Et|| subject to ||t|| = 1 .

becomes
Minimize ||EGp|| subject to ||Gp|| = 1 .

• Exactly the same problem as with the fundamental matrix.

• Linear solution using the SVD.

• Reference : Hartley – Royal Society paper.

Algebraic estimation of T

Complete algebraic estimation algorithm is

(i) Find a solution for T using the normalized linear (7-point)
method

(ii) Estimated T will not satisfy constraints.

(iii) Compute the two epipoles a4 and b4.
(a) Find the left (respectively right) null spaces of each Tjk

· .

(b) Epipole is the common perpendicular to the null spaces.

(iv) Reestimate T by algebraic method assuming values for the
epipoles.



Iterative Algebraic Method

Find the trifocal tensor T that minimizes ||Et|| subject to ||t|| = 1 and
T jk
i = aj

ib
k
4 − aj

4b
k
i .

• Concept : Vary epipoles a4 and b4 to minimize the algebraic
error ||Et′|| = ||EGp||.
• Remark : Each choice of epipoles a4 and b4 defines a minimi-
mum error vector EGp as above.

• Use Levenberg-Marquardt method to minimize this error.

• Simple 6× 27 minimization problem.
– 6 inputs – the entries of the two epipoles

– 27 outputs – the algebraic error vector Et′ = EGp.

• Each step requires estimation of p using algebraic method.
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Automatic Estimation of
a Projective Reconstruction for a

Sequence

Outline

first frame of video

(i) Projective reconstruction: 2-views, 3-views, N-views

(ii) Obtaining correspondences over N-views

Reconstruction from three views

Given: image point correspondences x1i ↔ x2
i ↔ x3

i ,
compute a projective reconstruction:

{P1, P2, P3, Xi} with x
j
i = Pj Xi

What is new?

verify correspondences
O

x

x

x

1

2

3

O

O1

2

3

X

• 3-view tensor: the trifocal tensor

• Compute from 6 image point correspondences.

• Automatic algorithm similar to F. [Torr & Zisserman]

Automatic Estimation of the trifocal tensor and correspondences

(i) Pairwise matches: Compute point matches between view pairs
using robust F estimation.

(ii) Putative correspondences: over three views from two view
matches.

(iii) RANSAC robust estimation:
Repeat

(a) Select random sample of 6 correspondences

(b) Compute T (1 or 3 solutions)

(c) Measure support (number of inliers)
Choose the T with the largest number of inliers.

(iv) MLE: re-estimate T from inlier correspondences.

(v) Guided matching: generate additional matches.



Projective Reconstruction for a Sequence

(i) Compute all 2-view reconstructions for consecutive frames.

(ii) Compute all 3-view reconstructions for consecutive frames.

(iii) Extend to sequence by hierarchical merging:

2 3
43

2
1

(iv) Bundle-adjustment: minimize reprojection error

min
Pj Xi

∑
i∈points

∑
j∈frames

d
(
x
j
i , PjXi

)2
(v) Automatic algorithm [Fitzgibbon & Zisserman ]

Cameras and Scene Geometry for an Image Sequence

Given video

first frame of video

• Point correspondence (tracking).

• Projective Reconstruction.

Interest points computed for each frame

first frame of video

• About 500 points per frame

Point tracking: Correlation matching

first frame of video

• 10-50% wrong matches



Point tracking: Epipolar-geometry guided matching

first frame of video

• Compute F so that matches consistent with epipolar geometry.

• Many fewer false matches, but still a loose constraint.

Point tracking: Trifocal tensor guided matching

first frame of video

• Compute trifocal tensor so that matches consistent with 3-views.

• Tighter constraint, so even fewer false matches.

• Three views is the last significant improvement.

Reconstruction from Point Tracks

Compute 3D points and cameras from point tracks

a frame of the video

• Hierarchical merging of sub-sequences.

• Bundle adjustment.

Application I: Graphical Models

Compute VRML piecewise planar model



Example II: Extended Sequence

140 frames of a 340 frame sequence

a frame of the video

Metric Reconstruction

140 frames of a 340 frame sequence

a frame of the video

Application II: Augmented Reality

Using computed cameras and scene geometry,
insert virtual objects into the sequence.

a frame of the video

330 frames

3D Insertion

a frame of the video
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