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1 Computation of Essential Matrix

It is the present purpose to indicate how the essential matrix, Q, may be computed from
a six point matches, provided that it is known that four of the points lie in a plane.

Thus, consider a set of matched points u′i ↔ ui for i = 1, . . . , 6 and suppose that the
points x1, . . . ,x4 corresponding to the first four matched points lie in a plane in space.
Let this plane be denoted by π. Suppose also that no three of the points x1, . . . ,x4 are
collinear. Suppose further that the points x5 and x6 do not lie in that plane. Various
other assumptions will be necessary in order to rule out degenerate cases. These will be
noted as they occur.

The essential matrix, Q, satisfies the condition

u′iQui = 0 (1)

for all i. It will be shown that Q is uniquely determined by the set of six point matches.
Further, a method will be given for computing Q. The method is linear and non-iterative.
This result is remarkable, since previously known methods have required 8 points for a
linear solution ([2]) or 7 points for a solution involving finding the roots of a cubic
equation ([1]). In addition, the solution using 7 points leads to three possible solutions,
corresponding to the three roots of the cubic. Since Q has 7 degrees of freedom ([1]) it
is not possible to compute Q from less than 7 arbitrary points. Therefore it is somewhat
surprising that the condition that four of the points are co-planar should mean that a
solution from six points is possible and unique.

First it will be shown how the problem of determining the matrix Q may be reduced to
the case in which u′i = ui for i = 1, . . . , 4. From the assumption that points x1, . . . ,x4

lie in a plane and that no three of them are collinear, it may be deduced that no three
of the points u1, . . . ,u4 are collinear in the first image and that no three of u′1, . . . ,u

′
4

are collinear in the second image. Given this, it is possible in a straight-forward manner
to find a projective transformation, denoted P , such that u′i = Pui for i = 1, . . . , 4.

Denoting Pui by the new symbol u′′i , we see that ui = P−1u′′i and so from (1)

0 = u′iQui = u′iQP
−1u′′i . (2)

So, denoting Q1 = QP−1, the task now becomes that of determining Q1 such that

u′iQ1u′′i = 0 (3)

for all i. In addition, u′i = u′′i for i = 1, . . . , 4. Once Q1 has been determined, the original
matrix Q may be retrieved using the relationship

Q = Q1P . (4)



Therefore, we will assume for now that u′i = ui for i = 1, . . . , 4. This being so, it is
possible to characterize the points that lie in the plane π defined by x1, . . .x4. A point
y lies in the plane π if and only if it is mapped to the same point in both images.

Now consider any point y in space, and consider the plane defined by y and the two
camera centres. This plane will meet the plane π in a straight line �(y) ⊂ π. The line
�(y) must pass through the point p in which the line of the camera centres meets the
plane π. This means that for all points y the lines �(y) are concurrent, and meet at the
point p. Now we consider the images of the line �(y) and the point p as seen from the
two cameras. Since the line �(y) lies in the plane π it must be the same as seen from both
the cameras. Let the image of �(y) as seen in either image be L(y). If uy and u′y are
the image points at which y is seen from the two cameras, then both points uy and u′y
must lie on the line L(y). Since the point p lies in the plane π, it must map to the same
point in both images, so up = u′p and this point lies on the line L(y). Therefore, uy, u′y
and up are collinear. The point up can be identified as the epipole in the first image,
since points p and the two camera centres are collinear. Similarly, u′p is the epipole in
the second image.

This discussion may now be applied to the points x5 and x6. Since x5 and x6 do not lie
in the plane π it follows that u′5 �= u5 and u′6 �= u6. Then the point up may easily be
found as the point of intersection of the lines < u′5,u5 > and < u′6,u6 >.

As an aside, the point of intersection of the lines < u5,u6 > and < u′5,u
′
6 > is of interest

as being the image of the point where the line through < x5,x6 > meets the plane π.

The previous discussion indicates how the epipole may be found. This construction will
succeed unless the two lines < u′5,u5 > and < u′6,u6 > are the same. The two lines will
be distinct unless the two points x5 and x6 lie in a common plane with the two camera
centres.

Now, if Q is the essential matrix corresponding to the set of matched points, then since
up is the epipole in the first image, we have an equation

Qup = 0

and since u′p = up is the epipole in the second image, it follows also that

up�Q = 0

Furthermore, for i = 1, . . . , 4, we have ui = u′i, and so, ui�Qui = 0. For i = 5, 6, we
have u′i = ui + αiup. Therefore, 0 = u′i

�Qui = (ui + αiup)�Qui = ui�Qui. So for all
i = 1, . . . , 6,

ui�Qui = 0 .

This should give more than enough equations in general to solve for Q, however, the
existence and uniqueness of the solution need to be proven

Now, a new piece of notation will be introduced. For any vector t = (tx, ty, ty)� we
define a skew-symmetric matrix, [t]× according to

[t]× =




0 −tz ty
tz 0 −tx
−ty tx 0


 . (5)

Any 3 × 3 skew-symmetric matrix can be represented in this way for some vector t.
Matrix [t]× is a singular matrix of rank 2, unless t = 0. Furthermore, the null-space of
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[t]× is generated by the vector t. This means that t� [t]× = [t]× t = 0 and that any
other vector annihilated by [t]× is a scalar multiple of t.

We now prove the existence and uniqueness of the solution for the essential matrix.

Lemma 1.1. Let up be a point in projective 2-space and let {ui} be a further set of
points. If there are at least three distinct lines among the lines < up,ui > then there
exists a unique matrix Q such that

up�Q = Qup = 0

and for all i
u′iQui = 0

Furthermore, Q is skew-symmetric, and hence Q ≈ [up]×.

Proof. Let us assume without loss of generality that the lines < up,ui > for i = 1, . . . , 3
are distinct.

Let P2 be a non-singular matrix such that

P2up = (0, 0, 1)�

P2u1 = (1, 0, 0)�

P2u2 = (0, 1, 0)�

Suppose that P2u3 = (r, s, t)�. Since the lines < up,ui > are distinct, so must be the
lines < P2up, P2ui >. From this it follows that both r and s are non-zero, for otherwise,
the line < P2up, P2u3 > must be the same as < P2up, P2ui > for i = 1 or 2. Now, define
the matrix Q2 = P2

�QP2. Then

P2
�Q2(0, 0, 1)� = P2

�Q2P2up = Qup = 0

and so
Q2(0, 0, 1)� = 0 (6)

Similarly,
(0, 0, 1)Q2 = 0 (7)

Next,
(1, 0, 0)Q2(1, 0, 0)� = u1

�P2
�Q2P2u1 = u1

�Qu1 = 0 (8)

and similarly,
(0, 1, 0)Q2(0, 1, 0)� = 0 . (9)

and
(r, s, t)Q2(r, s, t)� = 0 . (10)

Now, writing

Q2 =




a b c
d e f
g h j
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equation (6) implies c = f = j = 0. Equation (7) implies g = h = j = 0. Equation (8)
implies a = 0 and equation (9) implies e = 0. Finally, equation (10) implies rs(b+d) = 0
and since rs �= 0 this yields b+ d = 0. So,

Q2 =




0 b 0
−b 0 0
0 0 0




which is skew-symmetric. Therefore, Q = P−1
2
�Q2P

−1
2 is also skew-symmetric.

The first part of the lemma has been proven. Now, since Q is skew-symmetric and
Qup = 0, it follows that Q = [up]×, as required. This shows uniqueness of the essential
matrix Q. To show the existence of a matrix Q satisfying all the conditions of the
lemma, it is sufficient to observe that a skew-symmetric matrix Q has the property that
ui�Qui = 0 for any vector ui. 	


This lemma allows us to give an explicit form for the matrix Q expressed in terms of the
original matched points.

Theorem 1.2. Let {u′i} ↔ {ui} be a set of 6 image correspondences derived from 6
points xi in space, and suppose it is known that the points x1, . . . ,x4 lie in a plane.
Let P be a 3 × 3 matrix such that u′i = Pui for i = 1, . . . , 4. Suppose that the lines
< u′5, Pu5 > and < u′6, Pu6 > are distinct and let up be their intersection. Suppose
further that among the lines < u′i,up > there are at least three distinct lines. Then there
exists a unique essential matrix Q satisfying the point correspondences and the condition
of coplanarity of the points x1, . . . ,x4 and Q is given by the formula

Q = [up]×P

The conditions under which a unique solution exists may be expressed in geometrical
terms. Namely :

1. Points x1, . . . ,x4 lie in a plane π, but no three of them are collinear.

2. Points x5 and x6 do not lie in the plane π, and do not lie in a common plane
passing through the two camera centres.

3. The points x1, . . . ,x6 do not all lie in two planes passing through the camera
centres.

Under the above conditions, the essential matrix Q is determined uniquely by the set of
image correspondences. Note that according to [1], this in turn determines the locations
of the points themselves and the cameras up to a projective transformation of 3-space.

2 Why does this work ?

With 8 points of more it is possible to solve for the matrix Q by solving a set of linear
equations. If there are fewer than 8 points, the set of linear equations will be under-
determined, and hence there will be a family of solutions. It is instructive to consider
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how the extra condition that four of the points should be coplanar cuts this family down
to a single solution. Let us consider a particular example.

Consider a set of 6 matched points u′i ↔ ui as follows :

(1, 0, 0)� ↔ (1, 0, 0)�

(0, 1, 0)� ↔ (0, 1, 0)�

(0, 0, 1)� ↔ (0, 0, 1)�

(1, 1, 1)� ↔ (1, 1, 1)�

(1, 0, 0)� ↔ (−1, 1, 1)�
(0, 1, 0)� ↔ (−1, 1, 1)�

(11)

Assume that the first 4 points lie in a plane. From the previous discussion, it is obvious
that the epipole is the point (−1, 1, 1)�, and hence that

Q = [(−1, 1, 1)�]× =




0 −1 1
1 0 1
−1 −1 0


 .

However, we will compute Q directly. Each of the six point correspondences gives rise to
an equation u′iQui = 0 which is linear in the entries of Q. Since there are six equations
in nine unknowns, there will be a 3-parameter family of solutions. It is easily verified,
therefore, that the general solution is given by

Q =




0 A −A
B 0 B
C −C − 2B 0


 . (12)

Now, the condition det(Q) = 0 yields an equation 2AB(C + B) = 0, and hence, either
C = −B or A = 0 or B = 0. Thus, Q has one of the forms

Q =




0 A −A
B 0 B
−B −B 0


 or




0 0 0
B 0 B
C −C − 2B 0


 or




0 A −A
0 0 0
C −C 0


 .

(13)
We consider the first one of these solutions Since Q is determined only up to scale, we
may choose B = 1, and so

Q =




0 A −A
1 0 1
−1 −1 0


 . (14)

Next, we investigate the condition that the first four matched points lie in a plane. To
do this, it is necessary to find a pair of camera matrices that realize (see [1]) the matrix
Q. It does not matter which realization of Q is picked, since any other choice will be
equivalent to a projective transformation of object space (see [1]), which will take planes
to planes. Accordingly, since Q factors as

Q =



−A

1
1






0 −1 1
1 0 1
−1 −1 0




a realization of Q is given by the two camera matrices

M = (I | 0) and M ′ =




1
−A

−A

∣∣∣∣∣∣
1
A
A
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Then it is easily verified that the points

x1 = (1, 0, 0, 0)� , x2 = (0, 1, 0, 0)� , x3 = (0, 0, 1, 0)� , x4 = (1, 1, 1, k)� ,

where k is defined by 1 + k = −A+ kA, are mapped by the two cameras to the required
image points as specified by (11). However, the requirement that these four points lie in
a plane means that k = 0 and hence that A = −1. Substituting this value in (14) yields
the expected matrix Q = [(−1, 1, 1)�]×. It may be verified that the two other choices for
Q given in (13) do not lead to any further solution.

The role of the coplanarity condition now becomes clear. Without this condition, there
are a family of solutions for the essential matrix Q. Only one of the family of solutions
is consistent with the condition that the four points lie in a plane.
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