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Abstract

The critical configurations for projective reconstruction from three views are
discussed. A set of cameras and points is said to be critical if the projected image
points are insufficient to determine the placement of the points and cameras
uniquely, up to projective transformation. For two views, the classification of
critical configurations is well known - the configuration is critical if and only
if the points and camera centres all lie on a ruled quadric. For three views
the critical configurations have not been identified previously. In this paper it
is shown that for any placement of three given cameras there always exists a
critical set consisting of a fourth-degree curve – any number of points on the
curve form a critical set for the three cameras. Dual to this result, for a set of
seven points there exists a fourth-degree curve such that a configuration of any
number of cameras placed on this curve is critical for the set of points. Other
critical configurations exist in cases where the points all lie in a plane, or one of
the cameras lies on a twisted cubic.

1 Introduction

The critical configurations for one and two views of a set of points are well un-
derstood. For one view the critical sets consist of either a twisted cubic, or plane
plus a line.1. Camera position can not be determined from the image projections
if and only if the camera and the points lie in one of these configurations. This
is a classic result reintroduced by Buchanan ([1]).

For two views the critical configuration consists of a ruled quadric, that is,
a hyperboloid of one sheet, or one of its degenerate versions. Any configuration
consisting of two cameras and any number of points lying on the ruled quadric
is critical. An interesting dual result proved by Maybank and Shashua ([10])
is that a configuration of six points and any number of cameras lying on a
ruled quadric is critical. This result though originally proved using sophisticated
geometric techniques was subsequently shown to follow easily from the two-view
critical configuration result using Carlsson duality ( [2, 12, 4]).

1 Configurations consisting of degenerate forms of a twisted cubic also exist



No paper analyzing the three-view critical configurations has previously been
published. An unpublished paper by Shashua and Maybank ([9]) addressed this
problem but did not identify any critical configurations other than ones consist-
ing of isolated points. In this paper it is shown that various critical configurations
exist for three views. Different types of critical surface exist, in particular :

1. A fourth-degree curve, the intersection of two quadric surfaces. If the cameras
and points lie on this curve, then the configuration is critical.

2. A set of points all lying on a plane and any three cameras lying off the plane.
3. A configuration consisting of points lying on a twisted cubic and at least one

of the three cameras also lying on the twisted cubic.

No attempt is made in this paper to determine if this is an exhaustive list of
critical surfaces for three view, though this would not be unlikely.

Application of duality to the first of these cases generates a critical curve for
any number of views of seven points. If all cameras lie along a specific fourth-
degree curve, the intersection of two ruled quadrics, then the configuration is
critical.

Although critical configurations exist for three views, they are much less
common than for two views, and most importantly the critical configurations
are of low dimension, being the itersection of quadric surfaces, whereas in the
two-view case the critical surface has codimension one. In addition in the two
view case there is much more freedom in finding critical surfaces. One can go
as far as to specify two separate pairs of cameras (P, P′) and (Q, Q′) up front.
There will always exist a ruled quadric critical surface for which two projective
reconstructions exist, with cameras (P, P′) in the one reconstruction, and cam-
eras (Q, Q′) in the other. In the three-view case this is not true. If two camera
triples (P, P′, P′′) and (Q, Q′, Q′′) are specified in advance, then the critical set on
which one can not distinguish between them consists of the intersection of three
quadrics, generally consisting of at most eight points.

Notation In this paper, the camera matrices are represented by P and Q, 3D
points by P and Q, and corresponding 2D points by p = PP or q = QQ. Thus
cameras and 3D point are distinguished only by their type-face. This may appear
to be a little confusing, but the alternative of using subscripts or primes proved
to be much more confusing. In the context of ambiguous reconstructions from
image coordinates we distinguish the two reconstructions by using P and P for
one, and Q and Q for the other.

2 Definitions

We begin by defining the concept of critical configurations of points and cameras.
These are essentially those configurations for which a unique projective recon-
struction is not possible. The following definitions will be given for the two-view
case, but the extension to three views is immediate. In fact it is the three-view



case that we will mainly be interested in in this paper, but we will need the
two-view case as well.

A configuration of points and camera is a triple2 {P, P′,Pi} where P and P′ are
camera matrices and Pi are a set of 3D points. Such a configuration is called a
critical configuration if there exists another inequivalent configuration {Q, Q′,Qi}
such that PPi = QQi and P′Pi = Q′Qi for all i.

Unspecified in the last paragraph was what is meant by equivalent. One
would like to define two configurations as being equivalent if they are related via
a projective transformation, that is there exists a 3D projective transformation
H such that P = QH−1 and P′ = Q′H−1, and Pi = HQi for all i. Because of a
technicality, this definition of equivalence is not quite appropriate to the present
discussion. This is because from image correspondences one can not determine
the position of a point lying on the line joining the two camera centres. Hence,
non-projectively-equivalent reconstructions will always exist if some points lie
on the line of camera centres. (Points not on the line of the camera centres are
of course uniquely determined by their images with respect to a pair of known
cameras.) This type of reconstruction ambiguity is not of great interest, and
so we will modify the notion of equivalence by defining two reconstructions to
be equivalent if H exists such that P = QH−1 and P′ = Q′H−1. Assuming that
PPi = QQi and P′Pi = Q′Qi, such an H will also map Pi to Qi, except possibly
for reconstructed points Pi lying on the line of the camera centres. This condition
is also equivalent to the condition that FP = FQ (up to scale of course), where FP
and FQ are the fundamental matrices corresponding to the camera pairs (P, P′)
and (Q, Q′).

Thus, a critical configuration is one in which one can not reconstruct the
cameras uniquely from the image correspondences derived from the 3D points
– there will exist an alternative inequivalent configuration that gives rise to
the same image correspondences. The alternative configuration will be called a
conjugate configuration.

We now show the important result that the property of being a critical con-
figuration does not depend on any property of the camera matrices involved,
other than their two camera centres. The following remark is well known and
easily proved, so we omit the proof.

Proposition 1. Let P and P′ be two camera matrices with the same centre. Then
there exists a 2D projective image transformation represented by a non-singular
matrix H such that P′ = HP. Conversely, for any such matrix H, two cameras P
and P′ = HP have the same centre.

This proposition may be interpreted as saying that an image is determined
up to projectivity by the camera centre alone. It has the following consequence.

Proposition 2. If {P, P′,Pi} is a critical configuration and P̂ and P̂
′

are two
cameras with the same centres as P and P′ respectively, then {P̂, P̂′,Pi} is a
critical configuration as well.
2 In the three-view case, there will be an extra camera P′′ of course.



Proof. This is easily seen as follows. Since {P, P′,Pi} is a critical configuration
there exists an alternative configuration {Q, Q′,Qi} such that PPi = QQi and
P′Pi = Q′Qi for all i. However, since P and P̂ have the same camera centre,
P̂ = HP according to Proposition 2 and similarly P̂

′
= H′P′. Therefore

P̂Pi = HPPi = HQQi and
P̂
′
Pi = H′P′Pi = H′Q′Qi .

It follows that {HQ, H′Q′,Qi} is an alternative configuration to {P̂0, P̂
′
0,Pi}, which

is therefore critical.

3 Two view ambiguity

The critical configurations for two-view reconstruction are well known : A con-
figuration is critical if and only if the points and the two camera centres all lie on
a ruled quadric (in the non-degenerate case, a hyperboloid of one sheet). What
is perhaps not so well appreciated is that one may choose both pairs of camera
matrices in advance and find a critical surface.

It is customary to represent a quadric by a symmetric matrix S. A point
will lie on the quadric if and only if P�SP = 0. However, notice that it is not
essential that the matrix S be symmetric for this to make sense. In the rest of
this paper quadrics will commonly be represented by non-symmetric matrices.
Note that P�SP = 0 if and only if P�(S+ S�)P = 0. Thus, S and its symmetric
part S + S� represent the same quadric.

Lemma 1. Consider two pairs of cameras (P, P′) and (Q, Q′), with corresponding
fundamental matrices FP′P and FQ′Q. Define a quadric SP = P′�FQ′QP�, and SQ =
Q′�FP′PQ�.

1. The quadric SP contains the camera centres of P and P′. Similarly, SQ contains
the camera centres of Q and Q′.

2. If P and Q are 3D points such that PP = QQ and P′P = Q′Q, then P lies on
the quadric SP, and Q lies on SQ.

3. Conversely, if P is a point lying on the quadric SP, then there exists a point
Q lying on SQ such that PP = QQ and P′P = Q′Q.

4. If eQ is the epipole defined by FQ′QeQ = 0, then the ray passing through CP

consisting of points P such that eQ = PP lies on the quadric SP.

Proof. The matrix FP′P corresponding to a pair of cameras (P, P′) is characterized
by the fact that P′�FP′PP is skew-symmetric ([3]). Since FP′P �= FQ′Q, however, the
matrices SP and SQ defined here are not skew-symmetric, and hence represent
well-defined quadrics.

We denote the centre of a camera with matrix such as P by CP. Then

1. The camera centre of P satisfies PCP = 0. Then CP
�SPCP = CP

�(P′�FQ′QP)CP =
CP
�(P′�FQ′Q)PCP = 0, since PCP = 0. So, CP lies on the quadric SP. In a sim-

ilar manner, CP′ lies on SP.



2. Under the given conditions one sees that

P�SPP = P�P′�FQ′QPP = Q�(Q′�FQ′QQ)Q = 0

since Q′�FQ′QQ is skew-symmetric. Thus, P lies on the quadric SP. By a similar
argument, Q lies on SQ.

3. Let P lie on SP and define p = PP and p′ = P′P. Then, from P�SPP = 0 we
deduce 0 = P�P′�FQ′QPP = p′�FQ′Qp, and so p′ ↔ p are a corresponding
pair of points with respect to FQ′Q. Therefore, there exists a point Q such
that QQ = p = PP, and Q′Q = p′ = P′P. From part 2 of this lemma, Q must
lie on SQ.

4. For a point P such that eQ = PP one verifies that SPP = P′�FQ′QPP =
P′�FQ′QeQ = 0, so P lies on SP.

This lemma completely describes the sets of 3D points giving rise to ambigu-
ous image correspondences. Note that any two arbitrarily chosen camera pairs
can give rise to ambiguous image correspondences, provided that the world points
lie on the given quadrics. The quadric SP is a ruled quadric, since it contains a
ray.

4 Three view critical surfaces

We now turn to the main subject of this paper – the ambiguous configurations
that may arise in the three-view case. To distinguish the three cameras, we use
superscripts instead of primes. Thus, let P0, P1, P2 be three cameras and {Pi} be
a set of points. One asks under what circumstances there exists another config-
uration consisting of three other camera matrices Q0, Q1 and Q2 and points {Qi}
such that PjPi = QjQi for all i and j. One requires that the two configurations
be projectively inequivalent.

Various special ambiguous configurations exist.

Points in a plane

If all the points lie in a plane, and Pi = Qi for all i, then one may move any of
the cameras without changing the projective equivalence class of the projected
points. Then one may choose Pj and Qj with centres at any two preassigned
locations in such a way that PjPi = QjQi. This ambiguity has also been observed
in [11].

Points on a twisted cubic.

One has a similar ambiguous situation when all the points plus one of the cam-
eras, say P2 lie on a twisted cubic. In this case, one may choose Q0 = P0, and
Q1 = P1 and the points Qi = Pi for all i. Then according to the well known am-
biguity of camera resectioning for points on a twisted cubic ([1]) for any point



C′′Q on the twisted cubic, one may choose a camera matrix Q2 with centre at C′′Q
such that P2Pi = Q2Qi for all i.

These examples of ambiguity are not very interesting, since they are no more
than extensions of the 1-view camera resectioning ambiguity. In the above ex-
amples, the points Pi and Qi are the same in each case, and the ambiguity lies
only in the placement of the cameras with respect to the points. More interesting
ambiguities may also occur, as we consider next.

General 3-view ambiguity

Suppose that the camera matrices (P0, P1, P2) and (Q0, Q1, Q2) are fixed, and we
wish to find the set of all points such that PiP = QiQ for i = 0, 1, 2. Note that
we are trying here to copy the 2-view case in which both sets of camera matrices
are chosen up front. Later, we will turn to the less restricted case in which just
one set of cameras are chosen in advance.

A simple observation is that a critical configuration for three views is also
a critical set for each of the pairs of views as well. Thus one is led naturally to
assume that the set of points for which {P0, P1, P2,Pi} is a critical configuration is
simply the intersection of the point sets for which each of {P0, P1,Pi}, {P1, P2,Pi}
and {P0, P2,Pi} are critical configurations. Since by lemma 1 each of these point
sets is a ruled quadric, one is led to assume that the critical point set in the
3-view case is simply an intersection of three quadrics. Although this is not far
from the truth, the reasoning is somewhat fuzzy. The crucial point missing in
this argument is that the corresponding conjugate points may not the same for
each of the three pairs.

More precisely, corresponding to the critical configuration {P0, P1,Pi}, there
exists a conjugate configuration {Q0, Q1,Q01

i } for which PjPi = QjQ01
i for j =

0, 1. Similarly, for the critical configuration {P0, P2,Pi}, there exists a conjugate
configuration {Q0, Q2,Q02

i } for which PjPi = QjQ02
i for j = 0, 2. However, the

points Q02
i are not necessarily the same as Q01

i , so we can not conclude that
there exist points Qi such that PjPi = QjQi for all i and j = 0, 1, 2 – at least
not immediately.

We now consider this a little more closely. Considering just the first pairs of
cameras (P0, P1) and (Q0, Q1), lemma 1 tells us that if P and Q are points such
that PjP = QjQ, then P must lie on a quadric surface S01

P determined by these
camera matrices. Similarly, point Q lies on a quadric S01

Q . Likewise considering
the camera pairs (P0, P2) and (Q0, Q2) one finds that the point P must lie on a
second quadric S02

P defined by these two camera pairs. Similarly, there exists a
further quadric defined by the camera pairs (P1, P2) and (Q1, Q2) on which the
point P must lie. Thus for points P and Q to exist such that PjP = QjQ for
j = 0, 1, 2 it is necessary that P lie on the intersection of the three quadrics :
P ∈ S01

P ∩ S02
P ∩ S12

P . It will now be seen that this is almost a necessary and
sufficient condition.3

3 A reviewer of this paper reports that parts of this theorem were known to Buchanan,
but I am unable to provide a reference.



Theorem 1. Let (P0, P1, P2) and (Q0, Q1, Q2) be two triplets of camera matrices
and assume P0 = Q0. For each of the pairs (i, j) = (0, 1), (0, 2) and (1, 2), let
SijP and SijQ be the ruled quadric critical surfaces defined for camera matrix pairs
(Pi, Pj) and (Qi, Qj) as in lemma 1.

1. If there exist points P and Q such that PiP = QiQ for all i = 0, 1, 2, then P

must lie on the intersection S01
P ∩S02

P ∩S12
P and Q must lie on S01

Q ∩S02
Q ∩S12

Q .
2. Conversely, if P is a point lying on the intersection of quadrics S01

P ∩S02
P ∩S12

P ,
but not on a plane containing the three camera centres C0

Q, C1
Q and C2

Q, then
there exists a point Q lying on S01

Q ∩ S02
Q ∩ S12

Q such that PiP = QiQ for all
i = 0, 1, 2.

Note that the condition that P0 = Q0 is not any restriction of generality, since
the projective frames for the two configurations (P0, P1, P2) and (Q0, Q1, Q2) are
independent. One may easily choose a projective frame for the second configu-
ration in which this condition is true. This assumption is made simply so that
one may consider the point P in relation to the projective frame of the second
set of cameras.

The extra condition that the point P not lie on the plane of camera centres
Ci

Q is necessary, as will be seen later. Note that in most cases this case will not
arise, however, since the intersection point of the three quadrics with the trifocal
plane will be empty, or in special cases consist of a finite number of points.

Proof. For the first part, the fact that the points P and Q lie on the intersections
of the three quadrics follows (as pointed out before the statement of the theorem)
from lemma 1 applied to each pair of cameras in turn.

To prove the converse, suppose that P lies on the intersection of the three
quadrics. Then from lemma 1, applied to each of the three quadrics SijP , there
exist points Qij such that the following conditions hold :

P0P = Q0Q01 ; P1P = Q1Q01

P0P = Q0Q02 ; P2P = Q2Q02

P1P = Q1Q12 ; P2P = Q2Q12

It is easy to be confused by the superscripts here, but the main point is that
each line is precisely the result of lemma 1 applied to one of the three pairs of
camera matrices at a time. Now, these equations may be rearranged as

P0P = Q0Q01 = Q0Q02

P1P = Q1Q01 = Q1Q12

P2P = Q2Q02 = Q2Q12

Now, the condition that Q1Q01 = Q1Q12 means that the points Q01 and Q12

are collinear with the camera centre C1
Q of Q1. Thus, assuming that the points

Qij are distinct, they must lie in a configuration as shown in Fig 1. One sees



from the diagram that if two of the points are the same, then the third one is
the same as the other two. If the three points are distinct, then the three points
Qij and the three camera centres Ci

Q are coplanar, since they all lie in the plane
defined by Q01 and the line joining Q02 to Q12. Thus the three points all lie in
the plane of the camera centres Ci

Q. Howevever, since P0P = Q0Q01 = Q0Q02 and
P0 = Q0, it follows that P must lie along the same line as Q01 and Q02, and hence
must lie in the same plane as the camera centres Ci

Q.

P0 Q 0=
Q1

Q 2

Q 12

Q 01

Q 02

P

Fig. 1. Configuration of the three camera centres and the three ambiguous points. If the
three points Qij are distinct, then they all lie in the plane of the camera centres Ci

Q.

In general, the intersection of three quadrics will consist of eight points. In
this case, the critical set with respect to the two triplets of camera matrices
will consist of these eight points alone. In some cases, however, the camera
matrices may be chosen such that the three quadric surfaces meet in a curve.
This will occur if the three quadrics SijP are linearly dependent. For instance if
S12
P = αS01

P +βS02
P , then any points P that satisfies P�S01

P P = 0 and P�S02
P P = 0

will also satisfy P�S12
P P = 0. Thus the intersection of the three quadrics is the

same as the intersection of two of them, which will in general be a fourth-degree
space curve.

An example

As a specific example of ambiguity, consider the following configuration. Let

P0 = [I | 0] Q0 = [I | 0]

P1 =




1 −1
1 −1

1 −1


 Q1 =




1 1
−1 0

1 −1 1




P2 =




1 1
1 1

1 −1


 Q2 =




1 0
1 −1
−1 1 1


 .



In this case, one may verify that

F10
Q =




0 1 0
0 0 1
0 −1 0


 ; F20

Q =




0 0 −1
1 0 0
1 0 0


 ; F21

Q =




0 1 −1
1 0 0
1 0 0




and from lemma 1 one may compute that the quadric surfaces S01
P = S02

P , both
represent the quadric xy = z represented by the matrix




0 1
1 0

0 −1
−1 0




The intersection of this quadric with S12
P will be a curve. In fact, for any t, let

y(t) = 1− t2 ±
√

1− t2 + t4, and

Pt = (t,y(t), ty(t), 1)�

Qt = (t,y(t), ty(t), (y(t)− t)/(1 + t))� . (1)

One may then verify that PiPt = QiQt for all i and t. One alse verifies that
all the three camera centres C0

P = (0, 0, 0, 1)�, C1
P = (1, 1, 1, 1)� and C2

P =
(−1,−1, 1, 1)� lie on the curve Pt.

The method of discovering this example was to start with the camera ma-
trices Pi, and then compute the required fundamental matrices F10

Q and F20
Q nec-

essary to ensure that the quadrics S01
P and S02

P have the desired form. From the
fundamental matrices one then computes the matrices Qj by standard means.

Note that this example may appear a little special, since two of the quadrics
are equal. However, this case is only special, because we are choosing all six
camera matrices in advance. Using this example, we are now able to describe a
critical set for any configuration of three cameras.

Theorem 2. Given three cameras (P0, P1, P2) with non-collinear centres, there
exists (at least) a fourth-degree curve Pt formed as the intersection of two ruled
quadrics containing the three camera centres that can not be uniquely recon-
structed from projections from these three camera centres. In particular, there
exist three alternative cameras Qi and another fourth-degree curve Qt such that
for all i and t

PiPt = QiQt

and such that the two configurations {P0, P1, P2,Pt} and {Q0, Q1, Q2,Qt} are not
projectively equivalent.

Proof. The proof is quite simple. Since the three camera centres are non-collinear
one may transform them by a projective transform if necessary to the three
camera centres C0

P = (0, 0, 0, 1)�, C1
P = (1, 1, 1, 1)� and C2

P = (−1,−1, 1, 1)�

of the foregoing example. Now, applying Proposition 2 we may assume that
the three cameras are identical with the three cameras Pi of the example. Now,
choosing Qi, Pt and Qt as in the example gives the required reconstruction
ambiguity.



It is significant to note that the critical curve for the three specified cameras
in Theorem 2 is not unique even for fixed camera matrices – rather there exists a
6-parameter family of such curves, since any projective transformation that maps
the three camera centres to themselves will map the critical curve to another
critical curve. Summing up, given three fixed cameras (P0, P1, P2) In total we
have identified the following critical configurations :

1. A six-parameter family of fourth-degree curves containing the three camera
centres.

2. Any plane not containing the camera centres.
3. Any twisted cubic passing through one of the three camera centres.

Can all three quadrics be the same?

It is natural to ask whether it is possible to choose camera matrices so that all
three quadrics S01

P , S02
P and S12

P are equal, and whether in this case this constitutes
a critical set for all three cameras. The answer to this question is yes and no –
it is possible to choose the camera matrices such that the three quadrics SijP are
the same, but this does not constitute a critical surface for the three cameras,
since the three quadrics SijQ are different. This seems to contradict Theorem 1,
but it in fact does not, as we shall see in the following discussion. We consider
only the case where the three camera centres for Pi are non-collinear.

Since all hyperboloids of one sheet are projectively equivalent, one can assume
that each SijP is the quadric xy = z. Then there are sufficiently many remaining
degrees of freedom to allow as to assume that the three camera centres are at
(0, 0, 0)�, (1, 1, 1)� and (−1,−1, 1). (This is valid, unless two of the centres lie on
the same generator of the quadric.) We can therefore conclude that the camera
matrices Pj are the same as in the example above. Next, we wish to find the
fundamental matrices FijQ . The constraint that SijP is the quadric xy = z in each
case constrains the form of FijQ computed according to the formula SijP = Pi�FijQ P

j

given in lemma 1. One finds that there are only two possibilities for each FijQ .
One possibility is

F10
Q =




0 1 0
0 0 1
0 −1 0


 ; F20

Q =




0 1 0
0 0 −1
0 1 0


 ; F21

Q =




0 1 0
1 0 1
0 −1 0


 . (2)

The other possibility for each of the three fundamental matrices is obtained by
simultaneously swapping the first two rows and the first two columns of each
fundamental matrix. Thus there are two choices for each FijQ , making a total of
eight choices in all. However to be compatible the three fundamental matrices
must satisfy coplanarity constraints. Specifically, denoting an epipole in the j-th
view as ekj , one requires that eki�FijQ ekj = 0 for all choices of i, j, k = 1, 2, 3.
This condition rules out all choices of FijQ except for the ones in (2) and the set
obtained by swapping the first two rows and columns of all three FijQ at once.
This second choice of FijQ is substantially the same as the one in (2), and hence



we may assume that the three fundamental matrices are as in (2). Now one
observes that the epipoles e10 and e20 obtained as the right null-vectors of F10

Q

and F20
Q are both the same, equal to (1, 0, 0)�. This means that the three camera

Qi are collinear. This gives the curious result :

– Suppose that (P0, P1, P2) and (Q0, Q1, Q2) are two triplets of cameras for which
the three critical quadric surfaces SijP are all equal. If the centres of cameras
Pi are noncollinear, then the centres of Qi are collinear.

Finally, from the three fundamental matrices one can reconstruct the three cam-
era matrices Qi. Because the camera centres are collinear, there is not a unique
solution – the general solution (up to projectivity) is

Q0 = [I|0] ; Q1 =




1 0 0 1
0 −1 0 0
1 0 −1 1


 ; Q2 =




a b c d
0 −1 0 0
−a −b −c− 1 − d


 (3)

One can now compute the three quadrics S01
Q explicitly using lemma 1 One finds

that they are not the same. Thus, the three quadrics SijP are the same, but the
three quadrics SiQ are different, and so SijP is not a critical surface for all three
views. It follows from this that it is not possible for the intersection of all three
quadrics to form a critical surface for all three views.

How is this to be reconciled with Theorem 1 which states (roughly) that the
critical point set is the intersection of the three quadrics SijP ? The answer is in
the exception concerning points that lie in the trifocal plane of the three camera
centres of Qj . In the present case the centres of the three cameras Qi are collinear,
so any point P lies in a common plane with the three camera centres and we
are unable to conclude from Theorem 1 that there exists a point Q such that
PiP = QiQ. There are actually three points Qij as in Fig 1.

More about Theorem 1

The second part of Theorem 1 is useful only in the case where the three camera
centres of the second set of cameras, Qi, are non-collinear, since otherwise any
point lies on the plane of the three camera centres. The geometry of this plane
is quite interesting, and so a few more remarks will be made here.

Define π0 to be the plane passing through the centres of the three cameras
Qi when a projective frame is chosen such that Q0 = P0. Theorem 1 states that
if P is a point on the intersection of the three quadrics SijP and not on the plane
π0, then there exists a point Q such that PiP = QiQ for all i.

Now, there is nothing that distinguishes the first camera P0 in this situation.
One is free to choose the projective frame for the three cameras Qi independently
of the Pi. Note in particular that SijP is unchanged by applying a projective
transform to the camera matrices Qi and Qj , since it depends only on their
fundamental matrix FQiQj . Thus, one could just as well choose a frame for the
cameras Qi such that Q1 = P1. The resulting plane of the three camera centres
Qi would be a different plane, denoted π1. Similarly one can obtain a further



plane π2 by choosing a frame such that Q2 = P2. In general the planes πi will be
different. If the point P lies off one of the planes πi, then one may conclude from
Theorem 1 that a point Q exists such that PiP = QiQ for all i. The preceding
discussion may be summarized in the following corollary to Theorem 1.

Corollary 1. Let (P0, P1, P2) and (Q0, Q1, Q2) be two triples of camera matrices,
and assume that the three camera centres Ci

Q are non-collinear. Let SijP and SijQ
be defined as in Theorem 1. For each i = 1, . . . , 3, let Hi be a 3D projective
transformation such that Pi = Qi(Hi)−1. Let πi be the plane passing through the
three transformed camera centres HiC0

Q, H
iC1

Q and HiC2
Q.

1. If there exist points P and Q such that PiP = QiQ for all i = 0, 1, 2, then P

must lie on the intersection S01
P ∩S02

P ∩S12
P and Q must lie on S01

Q ∩S02
Q ∩S12

Q .
2. Conversely, if P is a point lying on the intersection of quadrics S01

P ∩S02
P ∩S12

P ,
but not on the intersection of the three planes π0 ∩ π1 ∩ π2, then there exists
a point Q lying on S01

Q ∩ S02
Q ∩ S12

Q such that PiP = QiQ for all i = 0, 1, 2.

For cameras not in any special configuration, the three planes πi meet in a
single point, and apart from this point the critical set consists of the intersection
of the three quadrics SijP .

The planes πi have other interesting geometric properties, which allow them
to be defined somewhat differently. This brief discussion requires an understand-
ing of the geometry of ruled quadric surfaces, for which the reader is referred to
[8]. Refer back to Fig 1. According to part 4 of Theorem 1, the line between the
centres of cameras P0 = Q0 and Q1 lies on the surface S01

P . Thus, the plane π0

meets S01
P in one of its generators, and hence is a tangent plane to S01

P . Similarly,
π0 meets S02

P in one of its generators, namely the line joining the centres of P0

and Q2. Thus, π0 is a common tangent plane to S01
P and S02

P , passing through
the centre of camera P0, which lies on the two quadrics. (However, π0 is not
necessarily tangent to the surfaces at the centre of P0.)

In a similar way it may be argued that π1 is a tangent plane to the pairs of
quadrics S01

P and S12
P and π2 is tangent to S02

P and S12
P .

5 Ambiguous views of seven points.

In [4] a general method was given based on a duality concept introduced by
Carlsson ([2]) for dualizing statements about projective reconstructions. The
basic idea is that the Cremona transform ([8])

Γ : (x,y, z,t) �→ (yzt,xzt,xyt,xyz)

induces a duality that swaps the role of points and camera, with the excep-
tion of 4 reference points, the vertices of the reference tetrahedron, the points
E1 = (1, 0, 0, 0)�, . . . ,E4 = (0, 0, 0, 1)�. Relevant to the present subject is the
observation ([4]) that the Carlsson map Γ takes a ruled quadric containing the
points Ei to another ruled quadric.

In dualizing the statement of Theorem 2



– the three non-linear camera centres become seven points not lying on a
twisted cubic.

– the intersection of two ruled quadrics remains an intersection of two ruled
quadrics

– The seven points must contain at least a set of four non-coplanar points to
act as the reference tetrahedron.

Theorem 3. Given a set of seven non-coplanar points Pj not lying on a twisted
cubic, there exists a curve γ formed by the intersection of two quadrics such that
the projections of the Pj from any number of cameras Pi with centres Ci

P lying on
the curve γ are insufficient to determine the projective structure of the points Pj
uniquely. In particular, there exists an inequivalent set of points Qj and cameras
Qi such that PiPj = QiQj for all i and j.

No proof of this is given here, since it follows almost immediately from The-
orem 2 by an application of Carlsson duality. For a description of the general
principal of duality as it relates to questions of this type, see [4].

6 Summary of critical configurations

The various critical configurations discussed here are summarized in the following
table.

Problem Dual Critical set

2 views, 7 points
(various authors, e.g. [3])

3 views 6 points
(Quan [7])

ruled quadric

2 views, n ≥ 7 points
(classical result, see [5, 6])

n ≥ 3 views, 6 points
(Maybank-Shashua [10])

ruled quadric

3 views, n ≥ 6 points
(this paper)

n ≥ 2 views, 7 points
(this paper)

4-th degree
curve, etc

Table 1. Summary of different critical configurations.

The minimal cases (first line of the table) are of course simply special cases of
those considered in the next line of the table. They have, however been considered
separately in the literature and have been shown to have either one or three real
solutions. Note that these configurations involve 9 points (either scene points or
camera centres). However, 9 points always lie on a quadric surface. There will
be one or three solutions depending on whether the quadric is ruled or not.



7 Conclusions

Although critical configurations for three views do exist, they are less common
than for two views, and are of lower dimension. Thus for practical algorithms of
reconstruction from three views it is safer to ignore the probability of encounter-
ing a critical set than in the two view case. The exception is for a set of points
in the plane, for which it will always be impossible to determine the camera
placement.

Though no formal claim is made that the list of critical configurations given
here is complete, it shows that such configurations are more common than might
have been thought. My expectation is that a closer analysis will show that in
fact this list is substantially complete.
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