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Abstract

In this paper we give a complete characterization of critical
configurations for projective reconstruction with any number
of points and views. A set of cameras and points is said to be
critical if the projected image points are insufficient to deter-
mine the placement of the points and the cameras uniquely,
up to a projective transformation. For two views, the critical
configurations are well-known. In this paper it is shown that
a configuration of n ≥ 3 cameras and m points is critical
if all points and cameras lie on the intersection of two dis-
tinct ruled quadrics. Contrary to the two-view case, which in
general allows two ambiguous solutions, there is a family of
ambiguous reconstructions for the n-view case. Conversely,
it is shown that (except for minimal cases) for any critical
configuration, all the points and cameras lie on the intersec-
tion of two ruled quadrics.

1 Introduction

A key problem in computer vision is to recover the shape of
an object from a number of images. This inverse problem has
a number of inherent ambiguities. It is well-known that from
image measurements alone, the cameras and the 3D points
can only be determined up to an unknown projective trans-
formation. For two views, additional ambiguities occur if
and only if all points and cameras lie on a ruled quadric. This
critical surface or “gefährlicher Ort” was studied by Krames
[8] in 1941. See [9, 4] for a more recent treatment.

In this paper, we consider the problem of ambiguity of
projective reconstruction from three or more views, and give
a complete description of the critical configurations. A con-
figuration of cameras Pi and points Pj is called critical if
there exists a second configuration of cameras Q i and points
Qj such that

PiPj = QiQj

for all i, j 1.
Understanding of the two-view case will be helpful for

reading this paper, though the important prerequisite results
will be quoted here for convenience. We follow the approach

1As part of this definition we exclude the trivial cases of ambiguity for
(i) projective coordinate system (ii) camera resection and (iii) point inter-
section.

and terminology used in [2, 4]. Other work on critical curves
and surfaces can be found in [6, 1, 7]. Partial results con-
cerning ambiguous configurations with more than two views
have been reported previously in the literature. Maybank
and Shashua ([10]) considered the case of many views of
6 points, showing that a configuration is critical if and only
if the points and camera all lie on a quadric. This was shown
to be dual to the two-view ambiguity in [3].

The first non-trivial examples of critical configurations for
the 3-view case were given in [2] in which it was shown that
three cameras always belong to some critical configuration
of points in which the cameras and points all lie on the in-
tersection of two ruled quadrics, known as an elliptic quartic
curve2. Furthermore in any critical configuration, all points
and cameras must lie on the intersection of three (and hence
two) ruled quadrics. However, the example given in [2] was
somewhat special, and the full range of critical curves was
not given. In the present paper, we show that any curve
formed as the intersection of two ruled quadrics is critical
– a set of cameras and points all lying on this intersection
curve allow an ambiguous reconstruction. This is a much
more general result than the single example of a critical curve
given in [2].

The result just quoted gives a complete description of the
critical configurations for three views of a set of points. This
paper extends that result by showing that the same quartic
curve is a critical set for n-view reconstruction. Thus, one
may add any number of further cameras with centres located
on the critical curve without removing the reconstruction am-
biguity – the curve remains critical for all the views. Thus,
the critical configurations for n views of≥ 7 points are com-
pletely described.

The results presented here are of both practical and theo-
retical interest. On a theoretical level, a classification of all
critical configurations is important and it has been an open
problem for a long time. The classification is also useful in
practical situations when designing measurement paths for
structure and motion estimation. Naturally, one wants to
avoid the critical configurations.

2In the classification of space curves [11], there are two types of irre-
ducible quartics, elliptic quartics (the intersection of two quadrics) and ra-
tional quartics (the intersection of a cubic and a quadric minus two lines).
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2 Statement of the problem

This section is largely to define the notation used in subse-
quent sections. We consider the case of n ≥ 3 cameras,
and denote the camera matrices by Pi, for i = 0, . . . , n− 1.
Consider also a set of points Pj . The question considered
is under what circumstances there exists an alternative set of
camera matrices Qi and points Qj such that PiPj = QiQj

for all i, j, but {Pj} and {Qj} are projectively inequivalent
point sets. If such an alternative set of points and cameras
exist, then we say that the configuration {Pi,Pj} is a criti-
cal configuration. In this case, the alternative configuration
{Qi,Qj} is its conjugate configuration.

It is expedient immediately to dispose of a trivial form
of ambiguity in which the point sets Pi and Qi are projec-
tively equivalent, and the only ambiguity is in the cameras.
This form of ambiguity is just a result of the ambiguity of
camera resectioning for a single camera. Such an ambiguity
arises (see [2]) when the points all lie on a common twisted
cubic with one of the camera centres ([1]). Other ambigui-
ties for camera resectioning are given in [4]. Another triv-
ial form of ambiguity arises in ray intersectioning, i.e. when
computing a 3D point from known camera positions. Am-
biguity occurs if and only if all cameras and (at least) one
point lie on a line. Since these forms of reconstruction ambi-
guity are of limited interest, they are excluded from further
discussion. Consequently the definition of critical configura-
tion will be strengthened to require that (i) the point sets and
(ii) the camera sets in the two alternative reconstructions are
not projectively equivalent.

Standard camera configurations. It is useful to put the
three camera matrices in a canonical form. The first remark
is that the precise form of the camera matrices Pi is not im-
portant for criticality, just their centres. This is expressed in
the following result that is proved in [2] (Proposition 1).

Theorem 2.1. If {Pi,Pj} is a critical configuration, and P̂
i

are cameras with the same centres as Pi, then {P̂i,Pj} is a
critical configuration as well.

For convenience, it may therefore be assumed that the three
camera matrices are of the form Pi = [I | vi], where vi is
the camera centre.

Critical surfaces for pairs of cameras. If {Pi,Pj}; i =
0, . . . , 2 is a critical configuration for three views, then it is
critical for any of the three pairs of cameras. Therefore, it
follows from the well-known results on 2-view critical sur-
faces that the set of points Pk and each of the camera centres
of Pi and Pj lie on a ruled quadric surface, denoted S ijP . Ac-
cording to [2], the quadric is given by the formula

SijP = Pi�FijQ P
j (1)
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Figure 1: Example of the variation of the four eigenvalues of
the quadrics in a pencil, as a function of a parameter (range
0 to 1) parametrizing the pencil. For a given value of the
parameter (horizontal axis) the quadric is ruled if there are
two positive and two negative eigenvalues, and otherwise un-
ruled. The quadric is degenerate at the points where one of
the eigenvalues becomes zero. See Figure 2 for more details.

where FijQ is the fundamental matrix for the pair of cameras
(Qi, Qj) in the conjugate configuration.

3 Pencils of quadrics

Given two quadrics represented by symmetric 4 × 4 matri-
ces A and B, the pencil generated by them consists of all
quadrics of the form αA+ βB.

Proposition 3.2. If C is the intersection of the quadrics A
and B, then C lies on each of the quadrics αA + βB in the
pencil. If

det
[
α β
γ δ

]
�= 0

then the intersection of quadrics αA + βB and γA+ δB is
the same as the intersection of the quadrics A and B.

A pencil of quadrics may be defined by either ruled or
unruled quadrics. In non-degenerate cases these correspond
to hyperboloids of one sheet, or ellipsoids. It is important to
note that a pencil of quadrics defined by two ellipsoids may
contain hyperboloids, and even imaginary quadrics (those
with no real points). Similarly, a pencil defined by hyper-
boloids may contain ellipsoids and imaginary conics. This
is easily seen by example. Figures 1 and 2 illustrate this
point. If the equation det(A + λB) has distinct real roots,
then it is possible to simultaneously diagonalize a pair of real
symmetric matrices by changing coordinate systems, to get a
canonical form. However, this is otherwise not possible. See
[12] for more details.

The intersection of two quadrics is a fourth-degree curve
called an elliptic quartic [11]. It has 16 degrees of freedom
(2 × 9 − 2 = 16 – two quadrics minus the choice of base
quadrics defining the pencil). Thus, 8 points in general posi-
tion define an elliptic quartic uniquely. Generically, a pencil
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Figure 2: The transition from ruled to unruled quadric takes
place at points where the determinant of the quadric in the
pencil vanishes. This is when det(A − λB) = 0, namely at
the generalized eigenvalues. This equation may have zero,
two or four real roots. This plot shows the value of det(A−
λB) for the example in Figure 1 showing that there are only
two real generalized eigenvalues for this pencil.
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Figure 3: Examples of randomly generated elliptic quartics.
In all examples, the pencils contain ruled quadrics.

of quadrics, with a non-empty set of points lying on the in-
tersection, contains distinct ruled quadrics. Some examples
of randomly generated elliptic quartics are given in Figure 3.

4 Critical surfaces for 3 views

Now, we prove the main theorem concerning critical config-
urations in three views.

Theorem 4.3. A configuration of three cameras P i and points
Pj , is critical if all points and cameras lie on the intersection
of two distinct ruled quadrics.

The proof consists of exhibiting an explicit formula for the
alternative configurations.

Proof. Without loss of generality, we may assume that S 10
P

is the quadric z = xy, represented by the matrix

A =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 , (2)

since all hyperboloids of one sheet are projectively equiva-
lent. Further, we may assume that the camera centres are
the points (0, 0, 0)� and (1, 1, 1)� and (−1,−1, 1).3 Ac-
cording to Theorem 2.1 the camera matrices may then be
taken as P0 = [ I | 0 ] and P1 = [ I | (−1,−1,−1)� ] and
P2 = [ I | (1, 1,−1)� ]

Next, we want another quadric B that passes through the
camera centres. As B varies over all possible quadrics pass-
ing through the three camera centres, the intersection of A
and B encompasses all elliptic quartics passing through the
three camera centres. In homogeneous coordinates, the three
camera centres are (0, 0, 0, 1), (1, 1, 1, 1) and (−1,−1, 1, 1).
Since (0, 0, 0, 1) lies on the quadricB, the bottom right-hand
entry of B is zero. The condition that the other two points
lie on the quadric implies that the sum of entries in the top
right 2× 2 block of B, is zero, and the sum of the remaining
entries of B is also zero. This means that quadric is of the
special form B = B ′ +B′�, where

B′ =



p q s− t −s− u
0 r s+ t −s+ u
0 0 −p− q − r − v v
0 0 0 0


 . (3)

Furthermore, we will be considering the pencil defined by A
and B, so we may assume that v = 0, since this can other-
wise be achieved by adding vA, without changing the inter-
section of the two quadrics A and B. Thus, the matrix B is
defined by 6 parameters, {p, q, r, s, t, u}.

Two alternative reconstructions involving cameras Q i and
points Q are given in Table 1 and Table 2. It may be verified
directly that PiP = QiQ for all points P = (x, y, xy, 1)� and
corresponding points Q, provided that P lies on the quadric
B. (It always lies on quadric A). The easiest way to see this
is to verify that (PiP) × (QiQ) = 0 for all such points. In
fact for i = 0, 1, the cross-product is always zero, whereas
for i = 2 it may be verified by direct computation that

(P2P)× (Q2Q) =
(
P�BP

)
(4,−4x, 4)�

for the first solution, and

(P2P)× (Q2Q) =
(
P�BP

)
(−4y, 4, 4)�

for the second solution. Thus P2P = Q2Q if and only if P

lies on B.
3Assuming that the three camera centres do not lie on the same generator

of the quadric. In this case the three centres are collinear. An analagous
proof can be derived for this case.
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The camera matrices are

Q0 =


 1 0 0 0

0 1 0 0
0 0 1 0


 , Q1 =


 −4 0 0 0

0 0 2 1
0 0 −2 1




and

Q2 =


 −4 (2p+ q − t+ u) 8r 4 (p+ q + 2r + s+ t) −2 (p+ q − s− t)

0 8 (r + s− u) −2 (q − t+ u) −q + t− u
8p −8r −2 (2p+ q − 2s+ 3t+ 3u) 2p+ q − 2s− t− u




The conjugate point to P = (x, y, xy, 1)� is Q = ((x− 1)x, (x − 1)y, (x− 1)xy,−2x (−2 + y + xy))�.

Table 1: First conjugate solution to reconstruction problem for cameras P i and points on the intersection of quadrics A and
B given by (2) and (3) respectively.

The camera matrices are

Q0 =


 1 0 0 0

0 1 0 0
0 0 1 0


 , Q1 =


 0 0 −2 1

0 4 0 0
0 0 2 1




and

Q2 =


 −8 (p+ s+ u) 0 2 (q + t− u) −q − t+ u

−8p 4 (q + 2r + t− u) −4 (2p+ q + r + s− t) −2 (q + r − s+ t)
8p −8r 2 (q + 2r − 2s− 3t− 3u) q + 2r − 2s+ t+ u




The conjugate point to P = (x, y, xy, 1)� is Q = ((y − 1)x, (y − 1)y, (y − 1)xy, 2y (−2 + x+ xy))�.

Table 2: Second conjugate solution to reconstruction problem.

5 A family of solutions

Given a quartic curve defined as the intersection of a pencil
of quadrics spanned byA andB, Table 1 and Table 2 give ex-
amples of conjugate solutions for which the critical quadric
S10
P is equal to A. However, A is just one of a family of

quadrics that may be used to span the pencil. For all values
of a parameter γ, the quadric γA+B may be chosen as one of
such a pair of spanning quadrics. Provided γA+B is a ruled
quadric, the argument and examples of section 4 show that
there is a conjugate configuration for which S 10

P = γA+B.
It is easy to see that the conjugate solutions arising from

two different quadrics A and A′ are projectively inequiva-
lent. For let F10

Q and F′10
Q be the fundamental matrices for

the two different configurations. Since A = P1�F10
Q P0 and

A′ = P1�F′10
Q P0 are different, it follows that F10

Q �= F′10
Q .

Since the fundamental matrices are different, the two config-
urations are not projectively equivalent. This shows

Theorem 5.4. Suppose three cameras, and a set of points
{Pi,Pj} lie on a curve defined as the intersection of a pen-
cil of quadrics. Then for each ruled quadric A in the pen-
cil, there exists a pair of conjugate configurations, each of

the form {Qi,Qj}, such that the critical quadric S10
P =

P1�F10
Q P0 = A.

Thus, unlike critical configurations in the two-view case,
which allow two conjugate solutions, critical configurations
for three views give rise to two one-parameter families of
conjugate configurations.

6 Linear mapping

Since the conjugate solutions were seemingly pulled out of a
hat, we will give a more theoretical treatment of the problem
now, which will partly elucidate the method used to arrive at
this solution.

We start by giving some properties of critical quadrics for
two views, as given by (1). For the proofs, see [2].

Theorem 6.5. Given camera matrices P and P′ and a 3 × 3
matrix F, define S = P′�FP. Let Ssym = S + S� represent
a quadric surface. Then

1. Ssym is zero if and only if F is the fundamental matrix
corresponding to the pair (P, P′).
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2. If non-zero, then Ssym represents a ruled quadric, if
det F = 0.

3. The camera centres of both P and P lie on Ssym.

Note the important information that this construction de-
fines a ruled quadric, provided det F = 0.

Let P and P′ be fixed, and consider the mapping f : F �→
Ssym defined in Theorem 6.5. This mapping is defined over
the set of all 3 × 3 matrices, and its range is in the space of
all symmetric 4 × 4 matrices representing quadrics passing
through the centres of P and P′. Let us count the dimensions
of the range and domain of this mapping.

The domain of f is the 9-dimensional space consisting of
all 3×3 matrices, effectivelyR9. The dimension of the space
of all 4×4 symmetric matrices is 10. However, the constraint
that the quadric Ssym should pass through a given point (a
camera centre) gives a single linear constraint on the entries
of Ssym. Hence, the set of symmetric matrices representing
quadrics passing through two given points has dimension 8,
and is in fact an 8-dimensional subspace ofR10. Thus, f is a
linear mapping from R9 to R8. According to Theorem 6.5,
the mapping f has a 1-dimensional kernel. It follows that
f is an epimorphism (onto-mapping). We have shown the
following result.

Theorem 6.6. For two given fixed camera matrices P and P ′,
the mapping f : F �→ Ssym is a linear transformation, map-
ping the vector space of all 3 × 3 matrices F onto the vector
space of all symmetric 4× 4 matrices representing quadrics
containing the two camera centres for P and P′. The ker-
nel of f is the linear subspace generated by the fundamental
matrix of the pair (P, P′).

This result does not take into account the condition
detF = 0 for a matrix to be a fundamental matrix. The
restriction of this map to the set of all zero-determinant fun-
damental matrices defines a 2-to-1 mapping from the set of
all fundamental matrices to a set of ruled quadrics, as enun-
ciated in the next theorem.

Theorem 6.7. Let P and P′ be fixed and define f(F) =
(P′�FP)sym. If F has zero determinant (hence is a funda-
mental matrix), then f(F) represents a ruled quadric pass-
ing through the camera centres of P and P ′. Conversely, let
S be any ruled non-degenerate quadric passing through the
centres of P and P′. Then there exist exactly two fundamental
matrices F (i.e. with zero determinant) such that f(F) = S.

Proof. We prove just the case that S is a non-degenerate
quadric (i.e. a hyperboloid of one sheet) and that the two
camera centres do not lie on the same generator.

Without loss of generality, we may assume that S is the
quadric z = xy, since all hyperboloids of one sheet are pro-
jectively equivalent. Further, we may assume that the cam-
era centres are the points (0, 0, 0)� and (1, 1, 1)�. The two

camera matrices must then be of the form P = K[I|0] and
P′ = K′[I | (1, 1, 1)�], where K and K′ are non-singular ma-
trices.

Now, it may be verified easily (see the example on page
929 of [2]) that the matrix F = K′−�GK−1 gives the required
result, where

G =


 0 1 0

0 0 1
0 −1 0


 or G =


 0 0 1

1 0 0
−1 0 0


 .

Thus, there are two separate choices of fundamental matrix
F that map onto the ruled quadric S.

7 Compatible fundamental matrices

We return to the consideration of three camera matrices
Pi; i = 0, . . . , 2. For each pair of camera matrices, Pi and
Pj , the mapping f is defined as in Theorem 6.6. Let the three
mappings obtained in this way be denoted by f ij , namely
f10, f20 and f 21. Given three fundamental matrices FijQ , we
can form the three quadrics f ij(FijQ ).

In this context, the three fundamental matrices F ijQ are the
fundamental matrices corresponding to pairs of views in a
conjugate configuration involving camera matrices Q i; i =
0, . . . , 2. An essential issue here is the compatibility of the
three fundamental matrices.

Definition 7.8. Three fundamental matrices F01, F02 and F12

are compatible if they satisfy the conditions

e12�F10e02 = 0, e21�F20e01 = 0, e20�F21e10 = 0.

The importance of this condition is given by the following
theorem [5].

Theorem 7.9. Given a compatible set of three fundamental
matrices F10, F20 and F21, there exist three camera matri-
ces Qi, Q1, Q2 such that Fij is the fundamental matrix corre-
sponding to the pair (Qi, Qj).

8 Discovering the conjugate solutions

The conjugate reconstructions that are given in Table 1 and
Table 2 may be verified directly, which is convincing proof
of their correctness, and hence constitutes a sufficiency proof
of Theorem 4.3. This may however be unsatisfying, since the
formulas have been pulled out of a hat by some sort of sleight
of hand. In this section, some indication is given of how they
were discovered.

We suppose given a pair of ruled quadricsA andB which
intersect in a space curve. Contained on this curve are the
centres of three cameras P0, P1 and P2, as well as any num-
ber of points Pj . If this is to be a critical configuration, then
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there will exist three conjugate cameras Q0, Q1 and Q2 and
also points Qj . The three-view critical configuration will
also be critical as a two-view configuration for each of the
pairs of cameras, and hence there will exist three critical
quadrics S10

P , S20
P and S21

P defined by (1), all meeting along
the curve defined by A and B. We attempt to construct three
conjugate camera matrices Qi by finding a set of compatible
fundamental matrices. The task then, is to find three funda-
mental matrices FijQ , which must satisfy the following condi-
tions.

1. The three quadrics S ijP defined by (1) in terms of the
given FijQ must belong to the pencil of quadrics defined
by A and B.

2. The three fundamental matrices FijQ must be compatible
in the sense of Definition 7.8.

If these conditions hold, then it is possible to extract three
camera matrices Qi that give rise to the three fundamen-
tal matrices FijQ . Furthermore, the three camera matrices P i

and the set of points on the intersection of the three critical
quadrics SijP form a critical configuration. Actually for this
last claim to be true, it is necessary that the three cameras Qi

not be collinear, as shown in [2]4.
Consider the condition that S ijP must belong to the pencil

defined by A and B. We assume that

S10
P = A, S20

P = α0A+B and S21
P = α1A+B.

Now, according to Theorem 6.7 there exist two choices of
fundamental matrix F10

Q such that f 10(F10
Q ) = A. We select

one of them – in fact the two different conjugate configura-
tions given in Table 1 and Table 2 correspond to the choice
of the two possible F10

Q at this stage. Now, for (i, j) = (2, 0)
or (2, 1), find matrices Gij and Hij (not necessarily singular)
such that

f ij(Gij) = A, f ij(Hij) = B.

Now, set

F20
Q = α0G

20 + H20 + β0F
20
P ,

F21
Q = α1G

21 + H21 + β1F
21
P .

Since the mapping f ij is linear, and maps FijP to zero, it fol-
lows that

f ij(FijQ ) = αjf
ij(Gij) + f ij(Hij) = αjA+B = SijP .

Unfortunately, the FijQ arbitrarily chosen in this way are nei-
ther true fundamental matrices (having determinant zero) nor

4As also shown in [2] points in the plane of the centres of the Q cameras
may not be critical. However this need not concern us, since the theorem
is being used only to guide our search for the conjugate configuration. The
result is justified by the displayed conjugate configurations.

are compatible. We need to choose αj and βj (four param-
eters) to satisfy the constraints det(FijQ ) = 0, and the three
compatibility constraints of Definition 7.8. Note that F10

Q was
chosen such that det(F10

Q ) = 0, so there are only five remain-
ing constraints.

We are faced with the problem of satisfying five non-
linear constraints with only four parameters. In addition, the
constraints are non-linear – the determinant constraints are
cubic, whereas the compatibility constraints involve extract-
ing epipoles (null-spaces of the matrices). No symbolic al-
gebra package (Mathematica or Maple) is capable of solving
this system without help even for numerical examples, and
let alone the general case where B is a function of symbolic
parameters, as in (3). Clearly we are going to need luck!

Since A may be assumed to be of a simple form (2),
it is easy to compute F10

Q , and from it extract the epipoles
e10 and e01.5Now, one of the consistency conditions is
e21�(F20

Q e01) = 0, which may be thought of as an equa-
tion involving the epipole e21. The equation e21�F21

Q gives
three further equations involving the epipole e 21, which also
ensure that F21

Q has zero determinant. Numerical examples
suggested that there were solutions to this set of equations
independent of the particular form of F20

Q , that is, valid for all
values of α0 and β0. This would imply that for some values
of (α1, β1) there is a solution for e21 to the set of equations

e21�(G20e01) = 0
e21�(H20e01) = 0
e21�(F20

P e01) = 0
e21�F21

Q = 0.

Note that the first three of these equations do not involve
any of the variables αj or βj , since G20, H20, F20

P are known
quantities (dependent only on the parameters of A and B).
The fourth equation (actually three equations) is linear in α 1

and β1. If such a solution for e21 exists, then a solution for
(α1, β1) can be obtained as follows:

1. Find the value of e21� as the left null-space of the ma-
trix [G20e01, H20e01, F20

P e01].

2. Linearly solve the equation e21�F21
Q = 0 for (α1, β1).

Thus, the solution for (α1, β1) is obtained by solving only
linear equations, which explains the absence of radicals in
the solution given in Table 1 and Table 2. A similar pro-
cedure may be used to solve for the remaining variables
(α0, β0) defining fundamental matrix F20

Q . The epipoles were
next extracted from the computed F20

Q and F21
Q and the third

consistency condition e12�F10
Q e02 = 0 verified. Finally, the

camera matrices Qi were extracted from the three consistent
fundamental matrices. Necessary simplifications of the ob-
tained matrices were done interactively.

5Epipoles are labelled according to the convention that FijQ eji = 0.
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This whole computation was carried out for a general
symbolic value of B given by (3), resulting in the general
solution given in Table 1 and Table 2, and thereby justifying
the procedure.

9 n-view critical configurations

We now wish to extend this result to n views. By adding
a fourth camera to a critical three-view configuration, one
might suspect that the criticality would disappear. However,
this is not the case.

The goal of this section is the following theorem.

Theorem 9.10. Given n ≥ 3 cameras Pi; i = 0, . . . , n − 1
and Pj , then the configuration is critical if all points and
cameras lie on the intersection of two distinct ruled quadrics
A and B.

Proof. Assume that configuration is on the intersection of A
and B. For simplicity of notation, we consider the 4-view
case. The result for n views follows by induction. The three
cameras P0, P1, P2 along with the points form a critical con-
figuration, and hence a conjugate configuration exists. Sim-
ilarly a conjugate configuration exists for the points along
with the three cameras P0, P1, P3. The goal is to show that
these two conjugate configurations are compatible. This will
be done by showing that the cameras Q0 and Q1 may be cho-
sen to be the same in each of the two configurations derived
from the two camera triples.

Consider the way that the cameras Q0 and Q1 are con-
structed. Let Pi; i = 0, . . . , 2 be the first triple of cameras.
They and the points Pj lie (without loss of generality) on
the quadric A. The fundamental matrix F10

Q is chosen so that
A = f10(F10

Q ). From this value of F10
Q two camera matrices

Q0 and Q1 may be computed. The choice of the pair (Q0, Q1)
is unique up to a projectivity.

We proceed in the same way with the second triple of
cameras P0, P1, P3. Since the camera P2 or P3 does not take
part in this construction, the resulting fundamental matrix
F10
Q is the same, and from it one may extract two camera ma-

trices, which will be denoted (Q′0, Q′1), which must be pro-
jectively equivalent to the pair (Q0, Q1). However (and this
is the main point) a conjugate configuration is defined only
up to projectivity. Consequently, it is possible to choose the
camera pair (Q′0, Q′1) to be identical to (Q0, Q1). In this way,
from the two conjugate configurations corresponding to the
two triples of cameras with indices (0, 1, 2) and (0, 1, 3), we
get four camera matrices Qi; i = 0, . . . , 3.

So far we have not mentioned the points. Now let Q j be
points derived from the (0, 1, 2)-configuration, and let Q ′j be
the points derived from the (0, 1, 3)-configuration. By the
definition of criticality,

PiPj = QiQj for i = 0, 1, 2

and
PiPj = QiQ′j for i = 0, 1, 3.

Considering only the first two cameras here, we see that

QiQj = QiQ′j for i = 0, 1.

Since the image of a point in two views is sufficient to de-
termine its position (by triangulation), it follows that Q j =
Q′j . Consequently PiPj = QiQj for i = 0, . . . , 3, and so
{Qi,Qj} forms a conjugate configuration to {Pi,Pj}, which
therefore is a critical configuration.

10 Converse

It is natural to ask whether the critical configurations consid-
ered here account for all possible critical configurations in-
volvingn ≥ 3 cameras. The answer is that this is true, except
for certain minimal configurations involving small numbers
of points.

According to Theorem 6.5 and [2], the centre of the cam-
era Pi belonging to a critical configuration lies on each of
the quadrics S ijP , as do all the points Pj belonging to the
critical configuration. By intersecting these quadrics for two
different values of j, we see that the centre of P i must lie
on the intersection of two quadrics also passing through the
points. It follows that if the set of all points Pj lie on a
unique quadric, then all the camera centres must lie on this
same quadric. Therefore, we can state:

• If {Pi,Pj} is a critical configuration with at least 3
cameras, then all the points Pj must lie on the inter-
section of two ruled quadrics. If there is a unique such
quadric intersection containing all the points, then it
must contain all the camera centres as well.

One may wonder whether there are critical configurations
in which the quartic curve passing through the points is not
unique, and in which all the points and cameras do not lie
on a single elliptic quartic. The answer to this question is
yes, according to ([10]). In that paper, it is shown that a
configuration of six points and any number of cameras lying
on a ruled quadric surface is critical. Note that six points
are insufficient to define a unique quadric. In this case, the
points and camera centres do not all lie on the same quartic
curve.

Note that in general 8 points are necessary to define a
unique quartic curve, but not sufficient. For instance three
quadrics will in general intersect in 8 points, which there-
fore do not lie on a unique quartic. Furthermore, the set of
all quadrics intersecting in a given twisted cubic do not be-
long to a single pencil, forming in fact a two-parameter fam-
ily. However, three independent quadrics can not intersect in
more than 8 isolated points ([11].
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11 Conclusion

We have given a complete categorization of all ambiguous
configurations for projective reconstruction from n ≥ 2
views, except for the case where the set of points is insuf-
ficient to define a unique elliptic quartic. The main ambigu-
ity is when all object points (regardless of how many) and
all camera centres (again, regardless of the number of cam-
eras) lie on an elliptic quartic curve. Furthermore, unlike the
two-view case, there is a one-parameter family of conjugate
reconstructions which give the same image projections.
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