COMP2410/6340 Automated Decision Making & Cyber (Physical) Security – Part 2

Hanna Kurniawati

http://users.cecs.anu.edu.au/~hannakur/

RESEARCH SCHOOL OF COMPUTER SCIENCE

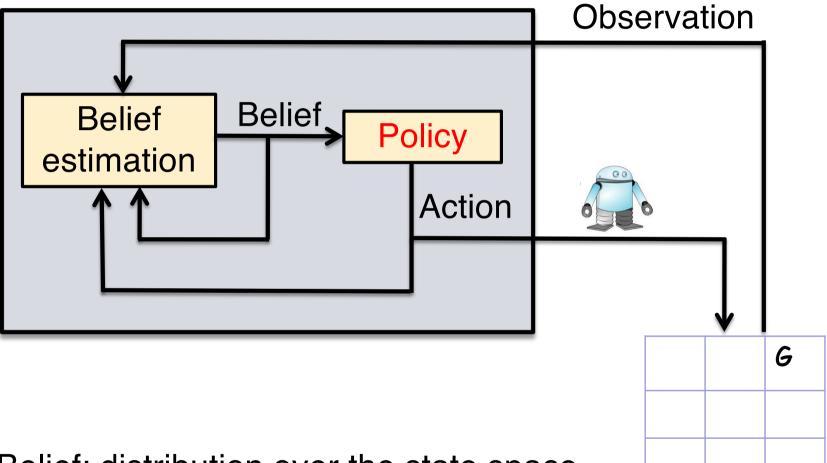
This set of videos

- ✓ Part-1: Intro
 - ✓ Automated decision-making
- Part-2: Intro to POMDP
 - Framework for decision-making under uncertainty
 - Solving, aka. generating strategic decisions
- Part-3: Example of POMDP in Cyber security
 - Autonomous pen-testing

Recall: Our agent is uncertain in ...

- Effects of actions, aka. non-deterministic
- Observation it can perceive, aka. partially observable
- The above types of uncertainty occur in many problems, including robotics and cyber-security
 - We will discuss an example of the problems in the next videos
 - For now, we'll discuss a mathematically principled framework for solving this type of decision-making problems: The Partially Observable Markov Decision Process (POMDP)

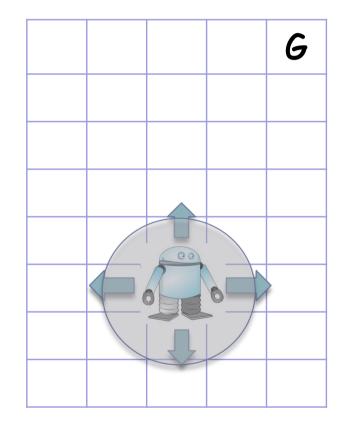
Partially Observable Markov Decision Processes (POMDP)



- Belief: distribution over the state space.
- Strategy/policy: Best mapping from beliefs to actions.

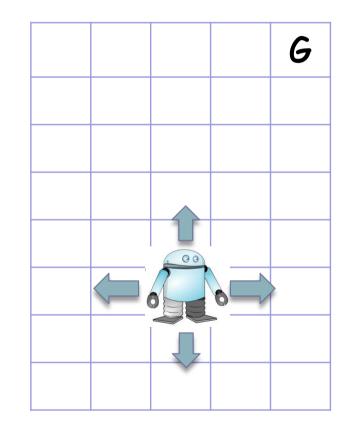
POMDP Model

- A 6-tuples (S, A, O, T, Z, R):
 - State space (S)
 - Action space (A)
 - Observation space (O)

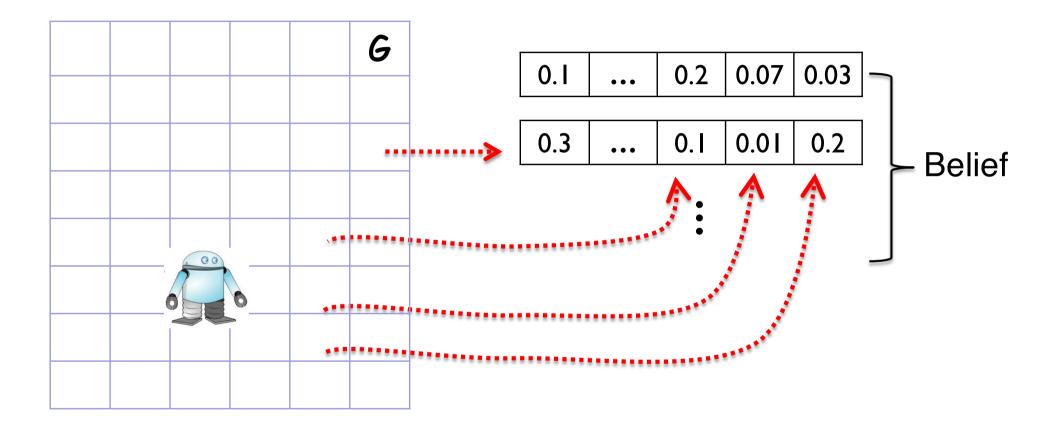


POMDP Model

- - Action space (A)
 - Observation space (O)
 - Transition function (T) T(s, a, s') = P(S_{t+1} = s' | S_t = s, A_t = a)
 - Observation function (Z) Z(s, a, o) = P(O_{t+1} = o I S_{t+1} = s, A_t = a)
 - Reward function (R)
 R(s, a)



POMDP Model



- Belief: distribution over the state space.
- Strategy/policy: Best mapping from beliefs to actions.

"Best" policy

 Maps each belief to an action that satisfies the following objective function

$$V^{*}(b) = \max_{a \in A} \left(\sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in O} P(o|b, a)V^{*}(b') \right)$$

Expected Expected total future immediate reward reward

- P(o|b,a): The probability of perceiving observation o after the system at belief *b* performs action *a*
- b': next belief after the system at belief b performs action a and observes o
- γ : discount factor, (0,1)

Just for completeness...

$$b'(s') = \frac{Z(s', a, o) \sum_{s \in S} T(s, a, s') b(s)}{P(o|a, b)}$$

P(o|a, b): can be computed as a normalizing factor

Derivation is not in this class, but I'll talk about them next semester in Advanced AI class

POMDP Solution

- The policy that maximizes the value of all beliefs
- Computing such a policy is PSPACE-hard [Papadimitriou & Tsikilis'87, Madani, et.al.'99]
- In practice,
 - Approximate the value function
 - Policy that maximizes the approximated value of the initial beliefs b_0
- Many practical methods for solving: <adMode = on>
 - Not in this class, but I'll talk about some of them next semester in Advanced AI class
 - Software, e.g.: <u>http://rdl.cecs.anu.edu.au/software</u>
 <adMode = off> ⁽²⁾

This set of videos

- ✓ Part-1: Intro
 - ✓ Automated decision-making
- ✓ Part-2: Intro to POMDP
 - ✓ Framework for decision-making under uncertainty
 - ✓ Solving, aka. generating strategic decisions
- Part-3: Example of POMDP in Cyber security
 - Autonomous pen-testing