This set of videos

✓ Part-1: Intro
 ✓ Automated decision-making

• Part-2: Intro to POMDP
 • Framework for decision-making under uncertainty
 • Solving, aka. generating strategic decisions

• Part-3: Example of POMDP in Cyber security
 • Autonomous pen-testing
Recall: Our agent is uncertain in …

• Effects of actions, aka. non-deterministic
• Observation it can perceive, aka. partially observable
• The above types of uncertainty occur in many problems, including robotics and cyber-security
 • We will discuss an example of the problems in the next videos
 • For now, we’ll discuss a mathematically principled framework for solving this type of decision-making problems: The Partially Observable Markov Decision Process (POMDP)
Partially Observable Markov Decision Processes (POMDP)

- Belief: distribution over the state space.
- Strategy/policy: Best mapping from beliefs to actions.
POMDP Model

- A 6-tuples \((S, A, O, T, Z, R)\):
 - State space \((S)\)
 - Action space \((A)\)
 - Observation space \((O)\)
POMDP Model

• A 6-tuples \((S, A, O, T, Z, R)\):
 - State space \((S)\) Not known
 - Action space \((A)\)
 - Observation space \((O)\)
 - Transition function \((T)\)
 \[T(s, a, s') = P(S_{t+1} = s' \mid S_t = s, A_t = a) \]
 - Observation function \((Z)\)
 \[Z(s, a, o) = P(O_{t+1} = o \mid S_{t+1} = s, A_t = a) \]
 - Reward function \((R)\)
 \[R(s, a) \]
POMDP Model

• Belief: distribution over the state space.
• Strategy/policy: Best mapping from beliefs to actions.
“Best” policy

• Maps each belief to an action that satisfies the following objective function

\[V^*(b) = \max_{a \in A} \left(\sum_{s \in S} R(s, a) b(s) + \gamma \sum_{o \in O} P(o|b, a) V^*(b') \right) \]

- **Expected immediate reward**
- **Expected total future reward**

\(P(o|b, a) \): The probability of perceiving observation \(o \) after the system at belief \(b \) performs action \(a \)

\(b' \): next belief after the system at belief \(b \) performs action \(a \) and observes \(o \)

\(\gamma \): discount factor, \((0,1)\)
Just for completeness...

\[
 b'(s') = \frac{Z(s', a, o) \sum_{s \in S} T(s, a, s') b(s)}{P(o|a, b)}
\]

\(P(o|a, b)\): can be computed as a normalizing factor

Derivation is not in this class, but I’ll talk about them next semester in Advanced AI class
POMDP Solution

• The policy that maximizes the value of all beliefs
• Computing such a policy is PSPACE-hard
 [Papadimitriou & Tsikilis’87, Madani, et.al.’99]
• In practice,
 • Approximate the value function
 • Policy that maximizes the approximated value of the initial beliefs b_0
• Many practical methods for solving:
 <adMode = on>
 • Not in this class, but I’ll talk about some of them next semester in Advanced AI class
 • Software, e.g.: http://rdl.cecs.anu.edu.au/software
<adMode = off> 😊
This set of videos

✓ Part-1: Intro
 ✓ Automated decision-making

✓ Part-2: Intro to POMDP
 ✓ Framework for decision-making under uncertainty
 ✓ Solving, aka. generating strategic decisions

• Part-3: Example of POMDP in Cyber security
 • Autonomous pen-testing