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What we do

CSIT N323:  Robust Decision-making & Learning Lab (RDL2)

Algorithms for robust decision making:
• Large uncertainty
• Complex system dynamics (including multi 

agents & human intention) 



The dream: Where it all begins…

Make me a cup of 
coffee, 1st time seeing 
the coffee maker

???

Enable robots to manipulate objects to accomplish 
specific tasks when its understanding about the system 
(e.g., objects, available tools, and its environment) are 

limited to none



Slowly, slowly catchy monkey (hopefully)

Details in ICAPS’19



Usually:

What’s needed?

Sense Plan Act

1. Use sensors to collect lots of data & learn best 
model from data

2. Use deterministic planning, assuming the 
model is faithful

3. Execute the plan Just an approach to 

solve the problem



What’s the problem?

Excluding h/w design, the problem is:
What should robots do now, so that they can 
get good long term returns (e.g., accomplish 
a task), despite various types of uncertainty



The common approach… 

Deterministic 
planning

Imitation / 
Reinforcement 

Learning

Relevant initial information 
about the system 

Little to none A lot to all

Sense Plan Act

To a large extent is based on a dichotomy of 
planning vs learning (control vs SID): 



But, the world is usually not that binary…

• Know something (not all) about the 
system to some extent (not exact)

Relevant initial information 
about the system 

Little to none A lot to all



I’ll try to argue…

Learning (at least RL) ↔ Planning

Relevant initial information 
about the system 

Little to none A lot to all



The problem

What should robots do now, so that they can 
get good long term returns (e.g., accomplish 
a task), despite various types of uncertainty



Partially Observable Markov Decision 
Processes (POMDPs)

Belief 
estimate

Strategy 
/ Policy

Action

Observation

Decide the best strategy (often called policy) based on 
distributions over states (often called beliefs)

POMDP controller



G

Framing the Problem: POMDP Model
• Main components: 

• State space (S)
• Action space (A)
• Observation space (O)

G



• Main components:
• State space (S)
• Action space (A)
• Observation space (O)
• Transition function (T)
• Observation function (Z)
• Reward function (R)

Not known

G

Framing the Problem: POMDP Model



“Best” policy
• Maps each belief to an action that satisfies 

the following objective function

𝑉∗ 𝑏 = max
)∈+

,
-∈.

𝑅 𝑠, 𝑎 𝑏(𝑠) + 𝛾,
7∈8

𝑃 𝑜 𝑏, 𝑎 𝑉∗(𝑏;)

Expected immediate 
reward

Expected total future 
reward

𝑏;: next belief after the system at belief 𝑏 performs action 𝑎
and observes o

𝛾: discount factor, (0,1)



How to get the POMDP model?
• Spaces are easy, how about the functions?
• We could embed uncertainty about the 

POMDP model in the POMDP itself



In POMDP
MDP Model
• State space (SMDP)
• Action space (AMDP)
• Transition function (TMDP)
• Reward function (RMDP)

Not known

Construct a POMDP
• Where the states are  MDP 

states X parameters of the 
TMDP & RMDP

• Essentially, partial 
observability on which MDP 
model is the right model

• A, T, R follows from the 
particular MDP model 

• O & Z are observations & 
observation function about 
which MDP model is correct



But, how to get the POMDP model?
• POMDP is MDP in the belief space
• So, the same concept applies

• Off course, much more complicated



In POMDP
MDP Model
• State space (SMDP)
• Action space (AMDP)
• Transition function (TMDP)
• Reward function (RMDP)

Not known

Construct a POMDP
• Where the states are  MDP 

states X parameters of the 
TMDP & RMDP

• Essentially, partial 
observability on which MDP 
model is the right model

• A, T, R follows from the 
particular MDP model 

• O & Z are observations & 
observation function about 
which MDP model is correct

Reinforcement learning (RL)

Bayesian RL



So, everything is planning…

Just need to solve that huge POMDP problem



Reality Check

G

S

Computationally intractable [Papadimitriou & Tsikilis’87, Madani, et.al.’99].



Not all gloom & doom
• Close to optimal solution is often good enough
à Sampling

• There’s many useful “structures” even in 
seemingly unstructured problems
àPerhaps not environmental structures, but uncertainty 

structures (e.g., correlation, dependencies / 
independencies, etc.)

à Inherent properties of the problems (e.g., continuity of 
motion in robotics)

à Significantly reduce sampling domain, converge to good 
solutions faster



Scaling up POMDP solving capability 
• Large state space [Kurniawati, et.al. (RSS’08)]

• Large observation space [Kurniawati, et.al. (RSS’11, 
Auro’12 invited)]

• Long planning horizon [Kurniawati, et.al. (ISRR’09, 
IJRR’11 invited)]

• Model may change [Kurniawati & Patrikalakis
(WAFR’12), Kurniawati & Yadav (ISRR’13)]

• Large action space [Seiler, et.al. (ICRA’15, best paper 
award finalist), Wang, et.al. (ICAPS’18)]

• Complex transition functions [Hoerger, et.al. 
(WAFR’16), Hoerger et.al. (submitted to RSS’19)]

Implementation: http://rdl.cecs.anu.edu.au/software



Koval, et.al. (Sid 
Srinivasan’s group)

Some Progress
Horowitz & 
Burdick (Joel Burdick’s group)

Bandyopadhyay, et.al. (early work 
leading to nuTonomy)

Temizer, et.al. (Lincoln Lab TR’09)
Improve safety of TCAS by 20X

Nikolaidis, et.al. (Julie Shah’s 
group)

Wang, et.al. (ICAPS’15)
Learn interaction model of 
bees with reduced data

G

S

Hopefully, satisfied users of our POMDP solvers



But …
• Still not enough to consider uncertain model in 

general
• To model initially unknown transition of a simple grid 

navigation where
• A robot can move in 8 wind direction
• Assuming transition is the same everywhere
• The probability value is discretized into 5 bins

• we’ll need to multiply the number of states by ~390K 
• Also observations



Machine Learning Solutions
• Computing a good policy is viewed as the 

problem of finding a mapping that fits the data
• Mapping from which space to which space?

• Model-based
• Model-free

• Where does the data come from?
• Someone / something provides examples
• Trying on a simulator / the system

• Use optimization (e.g., policy search) to find a 
mapping that “best” fits the data

• More recently, frame as a deep learning problem



Embedding & Solving MDP w/o T & R in 
Neural Net

𝑉∗ 𝑠 = max
)∈+

𝑅 𝑠, 𝑎 + 𝛾 ,
-;∈.

𝑇 𝑠′ 𝑠, 𝑎 𝑉∗(𝑠;)

Convolution, T as the 
kernel (learned weight)

Sum, R as CNN (learn mapping from 
images to a map of real number)

max-pool
Iteration: RNN, 1 iteration = 1 layer
Train end-to-end, imitation learning

VIN (Tamar, et.al. NIPS’16)



POMDP?
• Propagate belief (Bayes filter)

• Jonchowski, et.al.: Histogram (NIPS’16), particle 
(RSS’18)

• Planning:
• Straightforward extension of MDP Value Iteration use 

QMDP planner

• Modify the planning architecture to embed better 
POMDP planner:? [Student Project]

QMDP-Net (Karkus, et.al. NIPS’17)



So, everything is learning…

Just need to get those data somehow



Reducing data requirements
• Turns out, non learning-techniques 

(including planning) helps …
• POMDP planning [ICAPS’15, best student paper]

• Computer graphics + sampling [ICRA’19]

• Local structures [submitted to CoRL’19]



POMDP planning to accentuate data

• Current view:
• Animal behavior optimizes certain criteria 
• The question is what criteria is being optimized

How do they avoid mid-air collision?

How do bees avoid collision?

Wang, et.al.  ICAPS’ 15 (Outstanding Student Paper Award) 



A Hypothesis Ranking System 

Criteria-1

Criteria-2

Criteria-n

:
:

Rank the criteria based on how similar the simulated 
trajectory is to the (limited) experimental data

POMDP 
model 2

POMDP 
model 1

:
:

POMDP 
model n

POMDP 
solver

POMDP 
solver

POMDP 
solver

:
:

Sim

Sim

Sim



930 mm 

120 m
m

 
10

0 
m

m
 

(Food) 

Hive Outgoing honeybee Incoming honeybee 

Correctly rank phototaxis behavior 
+ horizontal centering at the top of 
the bees’ behaviour

A Hypothesis Ranking System 
(from 100 real data) 



Reducing Data Requirements
• Turns out, non learning-techniques 

(including planning) helps …
üPOMDP planning [ICAPS’15, best student paper]

• Computer graphics + sampling [ICRA’19]

• Local structures [submitted to CoRL’19]



Robot Object Fetching 
• Household objects usually have logos
J Trademarks database contains

• Lots of logo images (designer images)
• Classification based on brand and type (e.g., food)

L Images from camera on robots are of much 
lower quality than designer images

• Randomization-based Data Synthesizer for 
Logos (RDSL): Use computer graphics 
rendering + domain randomization

Song & Kurniawati. To appear in ICRA’19



Randomization-based Data Synthesizer 
for Logos (RDSL)

SSD Mobile Net (an off-the-shelf CNN logo detector) 
trained with only the synthetic images RDSL generates



Reducing Data Requirements
• Turns out, non learning-techniques 

(including planning) helps …
üPOMDP planning [ICAPS’15, best student paper]

üComputer graphics + sampling [ICRA’19]

• Local structures [submitted to CoRL’19]



Caveat in VIN, QMDP-Net

• That T is assumed to be the independent 
of states… 
• Makes the #learned weight small
• Reduce data requirement

𝑉∗ 𝑠 = max
)∈+

𝑅 𝑠, 𝑎 + 𝛾 ,
-;∈.

𝑇 𝑠′ 𝑠, 𝑎 𝑉∗(𝑠;)

Convolution, T as the 
kernel (learned weight)



TransNet
• T depends on local geometry (and action) 

Collins & Kurniawati. Submitted to CoRL’19



Results
• 10X10 navigation in a grid world
• Input: Image of the environment (contain obstacles) & init. belief
• Obstacles are generated uniformly at random
• Train until convergence

#Trajectories Agent Success Traj Length Collision

2,000
Base 0.704 21.5 0.320

TransNet 0.982 15.3 0.112

10,000
Base 0.950 15.1 0.139

TransNet 0.998 14.1 0.1

50,000
Base 0.972 16.2 0.079

TransNet 0.992 15.4 0.068



Results

Domain Agent Success Traj Length Collision

Intel Labs 101x99 D
Base 0.400 100.0 0.066

TransNet 0.960 94.3 0.012

Building 079 145x57 D
Base 0.560 70.8 0.225

TransNet 0.780 65.2 0.048

Hospital 193x104 D
Base 0.140 85.1 0.286

TransNet 0.840 91.2 0.039

Train Run



Reducing Data Requirements
• Turns out, non learning-techniques 

(including planning) helps …
üPOMDP planning [ICAPS’15, best student paper]

üComputer graphics + sampling [ICRA’19]

üLocal structures [submitted to CoRL’19]



So, it seems…

Learning (at least RL) ↔ Planning

Relevant initial information 
about the system 

Little to none A lot to all



Perhaps…
• The Problem:

• Framework: MDP, RL (MDP w. missing 
component), POMDP, …

• Solution:

Robust Autonomy:
What should robots do now, so as to 

accomplish specific tasks well, 
despite various types of uncertainty

• Planning, learning, & combination
• The problem is hard, better take 

anything that can help solve
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What we do

CSIT N323:  Robust Decision-making & Learning Lab (RDL2)

Scaling up algorithms for robust autonomy:
• Large uncertainty
• Complex system dynamics (including multi 

agents & human intention) 



Thank you 

Q&A


