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ABSTRACT
Existing dual image deblurring methods usually model blurred
image pairs being taken from exactly the same viewpoint
and restore a single clear image. This imposes a strong as-
sumption that the latent clear images of both images must
be completely identical. In contrast to this restricted sce-
nario, we assume that the restored pair are different, but can
be approximated by image warping due to small viewpoint
change. This allows us to deblur each image individually,
but still being able to make use of the matched areas in im-
age pairs. Our deblurring algorithm iteratively performs a
two-directional dual image deblurring, which uses the Split
Bregman method, and matches the latent clear image pairs
by a homography. Experiments show that the proposed algo-
rithm automatically recovers clear images from blurred image
pairs in the same scene. Statistics suggest that the method is
robust to viewpoint change and different noise levels.

1. INTRODUCTION

Blind image deblurring aims at restoring clear latent images
and blur kernels simultaneously. Recently, dual image deblur-
ring has received more attention in image processing commu-
nity [1, 2, 3, 4, 5, 6]. These methods make use of the redun-
dant information in image pairs in optimization, and provide
more effective restoration results.

However, most existing dual image deblurring methods
assume both input images are taken from exactly the same
viewpoint, and attempt to restore a single clear image. This
strict assumption limits the applications in many situations,
where viewpoints of these images may vary reasonably. For
example, consecutive images from handheld cameras may be
contaminated by different linear blur kernels and noises.

This mismatch in image pairs may significantly influence
kernel estimations in dual deblurring methods, subsequently
degrade the recovered results, and result in severe artifacts
[7]. This cannot be handled by easy solutions such as align-
ing two blurred images, because the projective transformation
from one image to the other leads to a non-uniformly blurred
image, resulting in severe artifacts in deblurring.

To avoid the distortion of projecting blur kernels, we pro-
pose to deblur the image pair to two latent clear images in

their original image planes. Further, we assume these two
clear latent images are approximated by a homography. Our
goal is to deblur each image individually, but iteratively es-
timate the homography between latent images and use the
matched area to improve the deblurring results.

Therefore, our novel objective function minimizes the re-
construction error of blur images and the matching penalty
between two latent images. This penalty can be regarded as
a relaxation in optimization, making the solving procedure
avoid local minima and achieve better performance.

Our approach has two alternate procedures. A local fea-
ture based image matching method accounts for warping one
latent image to another, and vice versa. In the alternate step,
we extend an iterative blind dual image deblurring method
to handle matching penalty, and simultaneously estimate the
blur kernels and recover latent clear image pair. This proce-
dure assumes uniform camera blur over input images.

We demonstrate the performance on both synthetic and
real images. Experiments suggest that our method achieves
better restorations and image matchings are well recovered.

2. RELATED WORK

Early works on blind image deblurring usually focus on sin-
gle image restoration [8, 9]. A typical approach is to for-
mulate the blind deconvolution as a minimization problem,
regularized by additional priors on both clear images and blur
kernels. Fergus at el. [8] and Shan at el. [9] used a heavy-
tailed gradient distribution as a statistic prior of nature im-
ages. Chan at el. [10] used TV (Total Variation) norm as
regularization term to solve blind deblurring problem.

However, recovering clear image from single images can
be challenging, because the blind restoration process is ill-
posed. It may be more promising to perform blind image
deblurring using multiple images captured in the same scene
[11, 12] . The blurred image pairs are modeled as being cap-
tured with exactly the same contents but different luminances
or noises, and smeared by different motion blurs.

Yuan et al.[2] proposed a dual deblurring method using
blurred/noisy pair. They used the built-in exposure brack-
eting function of DSLR to obtain blurred/noisy image pairs
with small translations. The denoised image was used as a
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initialization of the latent sharp image. Li et al. [13] gen-
erated panoramas from consecutive frames picked out from
video, which ensures the motion between two images is rela-
tively small. Cai et al.’s method [1] also depended on aligned
image pair. They simultaneously estimated blur kernels from
multiple blurred images. A framelet based prior of blur ker-
nels was introduced and lead to a deblurring algorithm ro-
bust to matching error. Compared to these methods, we allow
alignment error and focus on deblurring of unaligned blurred
image pair.

3. DUAL IMAGE DEBLURRING

Image blur is modeled as a convolution between a latent sharp
image and a blur kernel. Given two blur images from similar
viewpoints, we assume they are smeared by different uniform
blur kernels independently as follows:

B1 = I1 ∗ k1 + n1 (1)
B2 = I2 ∗ k2 + n2 (2)

where Bi denotes the blurred images, Ii denotes the latent
sharp counterparts, ki is blur kernels, and ni is additive noise,
i ∈ {1, 2}.

Existing dual deblurring methods usually make assump-
tion that I1 = I2. We relax this strict constraint by intro-
ducing a divergence penalty term between them in Sec. 3.1.
Separately modeling latent image pair allow each of the blur-
ring process obey spacial-invariant blur kernel assumption in
the deconvolution process.

3.1. Blind Image Dual Deblurring

We first define the divergence penalty between two latent im-
ages, and then present our deblurring procedure.

Divergence Penalty Denote H as the projective transfor-
mation between this clear image pair, we have

It2 = H(I1), (3)

It1 = H−1(I2). (4)

where and H−1 denotes the inverse projection.
We evaluate the matching error by a divergence evaluation

term of the match area, Eq , which is defined as follows:

Eq(I1, I2) = ‖I1 −H(I2)‖2 = ‖I2 −H−1(I1)‖2 (5)

where ‖ · ‖2 denotes l2-norm. Intuitively, this is a two-
directional measurement. The two formulation of Eq is in-
trinsically the same, subject to boundary conditions. The two
directional measurement allow us to separate the deblurring
process in our modeling.

Two-direction dual image deblurring framework We
present a two-direction dual image deblurring framework.
The primary idea is that when solving I1 we firstly calculate
It2 using Eq. 3 and use the matched area as side information,
and vice versa. In this method, I1 and I2 will be optimized
alternatively.

Combining the two-direction divergence penalty term, we
can estimate blur kernel pair by minimizing

E(k1, k2) = ‖I1 ∗ k1 −B1‖2 + λ1Ef (I1) + λ2Ek(k1)

+ ‖I2 ∗ k2 −B2‖2 + λ1Ef (I2) + λ2Ek(k2)

+ Eq(I1, I2), (6)

where Ef (Ii) denotes priors of clear images, Ek(ki) denotes
priors of blur kernels, and λ1, λ2 are weighted parameters. By
modeling I1, I2 separately, we simultaneously solve the two
single blind deburring problems for Bi. We also minimize
matching error between latent clear images.

Sparsity Priors To optimize I1, I2 and k1, k2 simultane-
ously in Eq. 6, we adopt the framelet system and sparsity
constrains proposed in [1], and use l1-norm based optimiza-
tions for both blur kernel ki and clear image Ii. To use the
framelet system, we transform I1, I2 and k1, k2 to their cor-
responding framelet coefficients using

Ii = Dvi, (7)
ki = Aui, (8)

where D and A are framelet transforms of clear images and
blur kernels, respectively.

We apply Split Bregman iteration [14] to solve Ii and ki
alternatively. Our iterative dual image deblurring algorithm is
formulated as follows:

1. Given I1, I2, we solve u1, u2 separately by minimizing

‖Ii ∗ (Aui)−Bi‖2 + λ2‖ui‖1, i ∈ {1, 2}, (9)

where ‖ · ‖1 denotes l1-norm. Then we can reconstruct
k1, k2 using Eq. 8.

2. Given I2 and k1, we solve v1 by minimizing

‖(Dv1) ∗ k1 −B1‖2+‖(Dv1)−H(I2)‖2+λ1‖v1‖1.
(10)

Then I1 is reconstructed using Eq. 7.

3. Given I1 and k2, we solve v2 and I2 using similar pro-
cedure with Step 2.

The sub-problem in Eq. 9 corresponds to a l1-regularized
problem. Eq. 10 is least square minimization problem, which
is efficiently solved by iteratively applying conjugate gradi-
ent algorithm. Please note our algorithm handles a special
case where both images are taken from the same viewpoint.
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3.2. Image Matching

We use a feature based technique to match images. To find
the geometric transformation between two images, a set of
SIFT features [15] are detected for each image. Then, we
adopt the RANSAC-based approach to robustly find a set of
matched features. Since RANSAC does not guarantee to min-
imize matching error, we use the divergence penalty term in
Eq. 5 as the criteria of warping error, and we repeatedly per-
form the re-matching until the divergence penalty converges.

Fig. 1 shows two blurred images, their intermediate re-
sults, and their warping. These image from the “graffiti” se-
quence [16] are blurred by real kernels from the work in [17].
One can also see that the clear latent images are more accu-
rate to match. Therefore, our method has better results both
in terms of matching accuracy and deblurring performance.

When the overlapped region is flat, i.e. hardly to find any
feature to match, our method may become weak since the ini-
tialization matching depends on SIFT features. But take into
the consideration that current deblurring methods are not very
promising on flat images, this should not be a big problem in
our algorithm.

Fig. 1. Feature-based image warping. (a) and (b) are two
blurred images, (c) and (d) are their deblurred results (3rd
iteration), respectively. (e) is the warping from (d) to (c).

4. EXPERIMENTS AND RESULTS

We present our dual deblurring experiments in this section.
Firstly, we demonstrate that our deblurring algorithm is appli-
cable to small matching error using synthetic images. Then,
we statistically show that our method is robust to translation,
rotation, and more general, affine transformation. Finally, we
use real image pairs to demonstrate the effectiveness of our
method. The optimal parameters to achieve best performance
on different images may vary. For fairly comparison purpose,
we used 300 iterations and fixed kernel size (64 × 64) for all
images in both dual deblurring and single image deblurring.

Please note that other dual deblurring methods require im-
ages from exactly the same viewpoint, so it may be fair for
us to generate our own synthetic data and real dataset, and

compare to a single image deblurring method. Therefore, we
chose a single image deblurring algorithm proposed by Cai et
al. [1] for comparison. We conduct our dual image deblurring
method on image pairs, where we use the divergence penalty
term to regularize both images. In single image deblurring
comparison, we only used the first image in the pair.

4.1. Synthetic Images

We first show that our method handles small matching error.
The two blurred images were generated (Fig. 2a and 2b) using
synthetic motion blurs over the clear image (Fig. 2c) with
the parameters (9pixel, 90◦) and (11pixel, 45◦), respectively.
Both images were degraded by 20 dB Gaussian noise. The
second image was rotated by a small angle (0.5◦).

Fig. 2d and 2e show the deblurring results of our ap-
proach. One can see that estimated blur kernels of our method
are very similar with the ground truth. In comparison with the
single deblurring result shown in Fig. 2f, images generated by
our method are clearer.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Dual deblurring results on synthetic images. (a)(b)
Two blurred inputs. (c) Ground truth image. (d)(e) Results
of our approach. (f) Results of single image deblurring. The
synthetic and estimated motion blur kernels are overlaid in
the bottom left corner.

4.2. Statistical results

We statistically show our dual deblurring is robust to rota-
tion, translation, and homography transformation. We used
the following three sets of images: 1) two pairs in the “graf-
fiti” sequence for affine transformation, 2) two pairs of rotated
“Lena” (±5◦), 3) two pairs of shifted Cameraman. Different
noise levels (20 to 60 dB) were added for all images.

Fig. 4 shows an example. Fig. 4b and 4f were generated
by convolving the input pairs Fig. 4a and 4e by two large ker-
nels from [17], and the images were degraded by 20 dB noise.
Our restored results are shown in Fig. 4c and 4g, and Fig. 4e
and 4h are the single image deblurring results, respectively.

We further computed the average error per pixel with re-
spect to different noise levels for the whole test set (Fig. 5).
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(a) (b) (c) (d) (e)

Fig. 3. Dual deblurring result. (a)(b) The input blurred pair. (c)(d) Results for our dual deblurring approach. (e) Results for
single image deblurring method from Cai et al. . Estimated blur kernels are overlaid on the bottom right corner of each image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. A dual deblurring example. See text for description.

One can see that the errors of our method are consistently
lower. The error generally decreases as noise become smaller.
This experiment suggests our method is robust and handles a
number of geometric transformation.

4.3. Real Images

In this section, we present deblurring results of real images.
All images in this experiment were taken by DSLR camera,
using 0.1s shutter speed and indoor lighting environment.

Fig. 3 shows our results on real blurred image pairs. The
first two columns (Fig. 3a and 3b) show unaligned blurred
image pairs, and Fig. 3c and 3d are the recovered clear images
using our method. Results for single image deblurring are

Fig. 5. Statistical performance evaluation.

shown in Fig. 3e. All estimated blur kernels are overlaid on
the bottom right corners, respectively.

Compared to the results of single image deblurring, our
approach produced clearer and sharper images with higher vi-
sual quality and less artifacts.

5. CONCLUSION

We present a robust algorithm for deblurring a pair of in-
dividually captured blurred images. In contrast to previous
methods, our approach jointly models two latent clear images
using an iterative optimization algorithm. In each iteration,
deblurring and matching are performed alternatively. Exper-
iments show that our dual image deblurring method recovers
clear results on image pairs and handles matching error.
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