

Beyond Physical Connections: Tree Models in Human Pose Estimation

Fang Wang^{1, 2} and Yi Li²

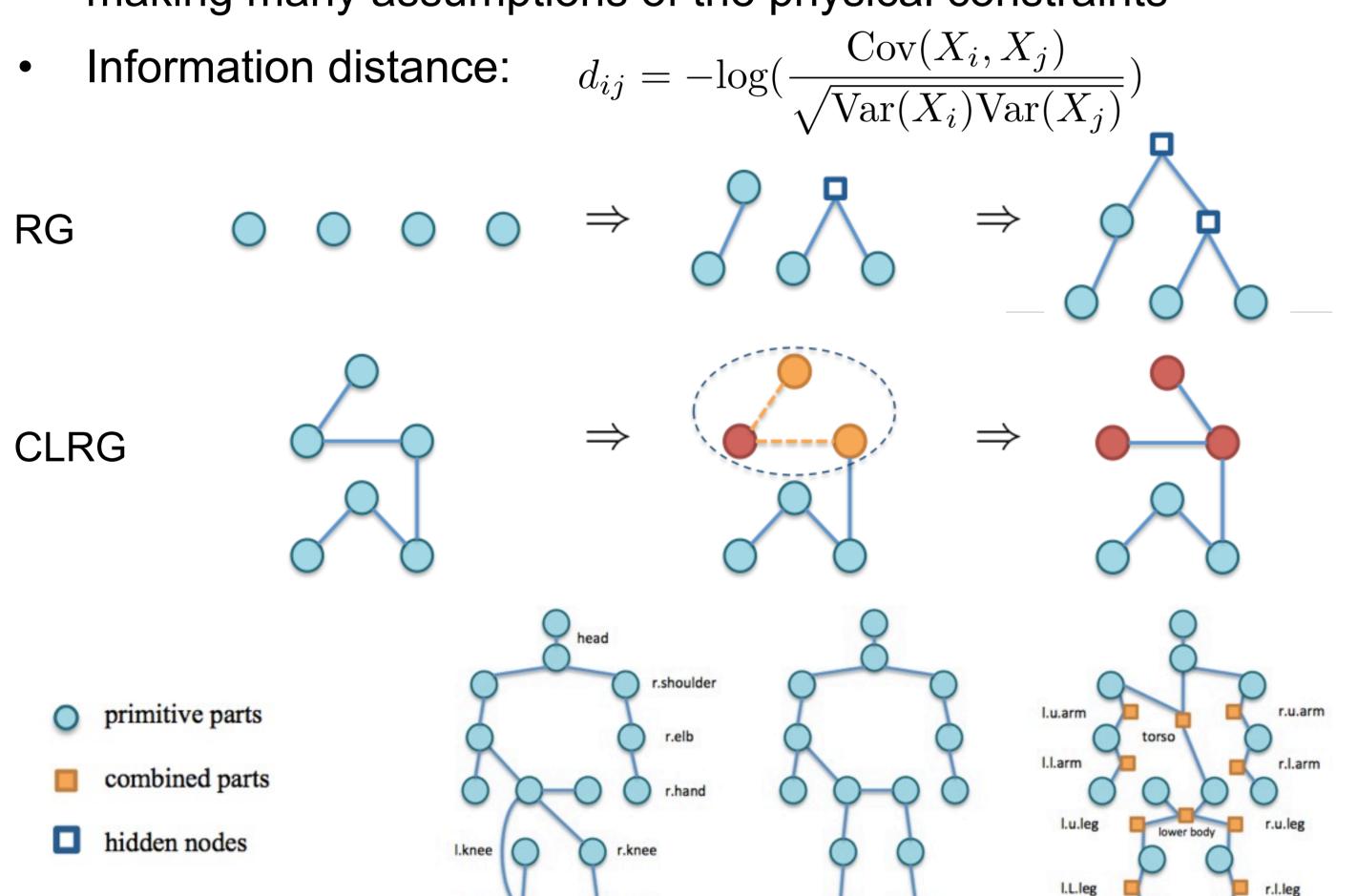
1 Nanjing University of Science and Technology, China 2 Canberra Research Laboratory, NICTA, Canberra, Australia; Yi.Li@nicta.com.au

Problem summary

- Human pose estimation in images via tree models
- Attempt to answer the following critical questions:
 - Are simple tree models sufficient?
 - How to use tree models in human pose estimation?
 - > How shall we use combined parts with single parts?
- Latent tree models for discovering graphical model structure
 - Exact inference
 - Visual categorization for combined parts
 - Better performance

Latent tree models for human pose

Learn a tree structure directly from our observations without making many assumptions of the physical constraints

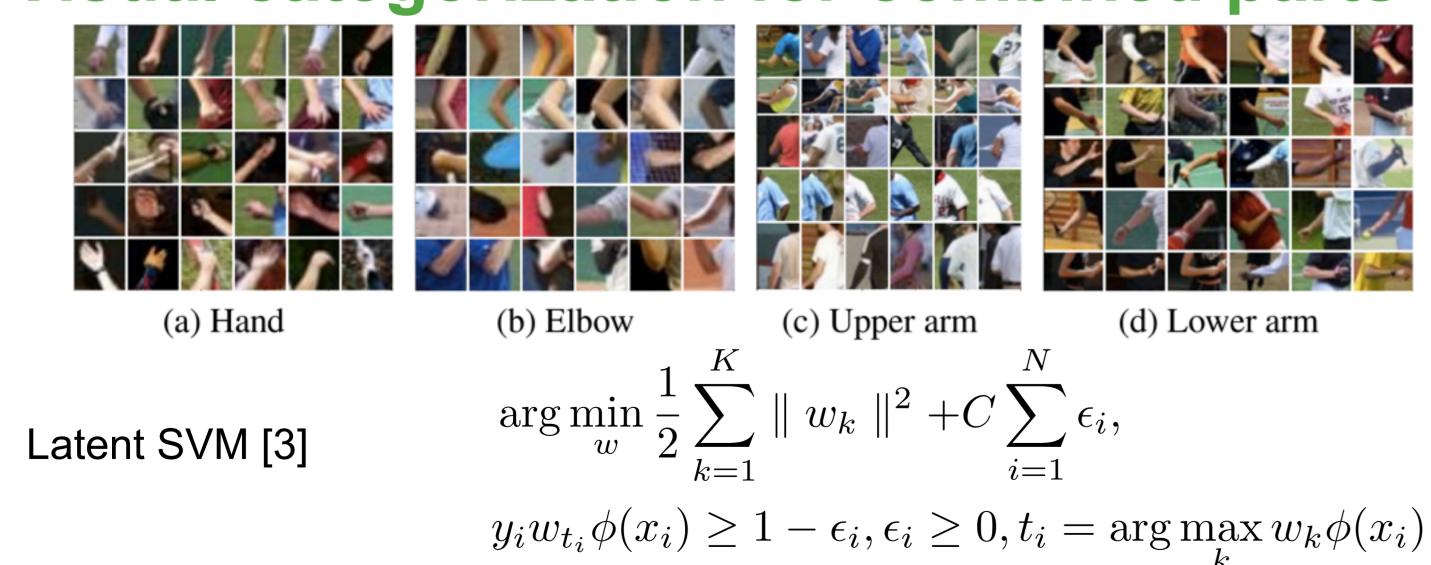


Our Approach

A framework for integrating primitive parts and combined parts [1]

- Primitive parts (non-oriented): geometric clustering [4]
- Combined parts: Visual Categorization SVM+HOG [3]
- Tree structured models Learned directly from data
- Textbook example of exact inference

Visual categorization for combined parts



Learned HOG Filters

Results

Dataset:

- > LSP: 2000 images, subject-centric
- > PARSE: 305 images, image-centric
- Pascal Dog dataset: subset

LSP

Exp.		Method	Torso	Head	U.Leg	L.Leg	U.Arm	L.Arm	Total
	L	Yang & Ramanan	92.6	87.4	66.4	57.7	50.0	30.4	58.9
	L	Tian <i>et al</i> . (First 200)	93.7	86.5	68.0	57.8	49.0	29.2	58.8
LSP	L	Tian <i>et al.</i> (5 models)	95.8	87.8	69.9	60.0	51.9	32.8	61.3
	L	Ours (First 200)	88.4	80.8	69.1	60.0	50.5	29.2	59.0
	L	Ours	91.9	86.0	74.0	69.8	48.9	32.2	62.8
	S	Johnson & Everingham	78.1	62.9	65.8	58.8	47.4	32.9	55.1
	S	Yang & Ramanan	82.0	75.8	54.4	51.6	41.0	28.4	50.9
	S	Ours (Restrict eval)	88.3	81.4	55.3	55.3	43.1	30.5	53.8
PARSE (cross dataset)	L	Yang & Ramanan	78.8	70.0	66.0	61.1	61.0	37.4	60.0
	L	Ours	88.3	78.7	75.2	71.8	60.0	35.9	65.3

L: Loose evaluation S: Strict evaluation

Method

Yang & Ramanan, CVPR 2011

Dog pose

•						
Ours	52.8	60.6	63.3	62.0	58.9	
			R			

Head

56.1

L.F.Leg

R.F.Leg

58.3

Total

55.7

Legs

55.6

Conclusion

- Tree models for human pose estimation are efficient
- Latent tree is an effective tool for recovering model structure
- Learning visual category of combined part becomes important.

References

[1] Fang Wang and Yi Li, "Beyond Physical Connections: Tree Models in Human Pose Estimation", CVPR 2013

[2] Fang Wang and Yi Li, "Learning Visual Symbols for Parsing Human Poses in Images", IJCAI 2013

[3] S. Divvala, A. Efros, and M. Hebert, "How important are deformable parts in the deformable parts model?," CoRR, vol. abs/1206.3714, 2012

[4] Y. Yang and D. Ramanan, "Articulated pose estimation with flexible mixtures-ofparts," in CVPR 2011

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council

From imagination to impact