
University of Karlsruhe (TH)
Faculty of Computer Science
Industrial Applications of Informatics and Microsystems (IAIM)
Prof. Dr.-Ing. R. Dillmann

Australian National University
Research School for Information Sciences and Engineering
Department of Systems Engineering

“Distributed temporal event mapping
and fusion”

Diploma thesis

Felix Schill

01. April 2002 – 30. September 2002

Referees: Prof. Dr.-Ing. R. Dillmann (IAIM)
Prof. Alex Zelinsky (RSISE)

Supervisors: Dr. rer. nat. Uwe R. Zimmer (RSISE)
Dipl.-Ing. T. Asfour (IAIM)

Abstract

Localisation and mapping relies on the representation and recognition of features or
patterns detected in sensor data. An important aspect is the temporal relation between
observations in multiple sensor data streams. This thesis proposes a new approach for
simultaneous localisation and mapping of temporal relations between observations.

Sensor data is interpreted as a sequence of events, where an event is the occurence of a
distinguishable feature in the sensor data stream. The goal of this work is to develop a
method for finding spatio-temporal correlations between those events from different sensor
modalities, which occur simultaneously or which are reproducibly in causal order. Those
correlations should be identified in an unsupervised learning process, represented in a
suitable manner, and recognised efficiently. It also should be investigated, how temporal
information can be used for localisation and mapping in a robotic context.

A dynamical system is proposed to acquire correlations between simultaneous and sequen-
tial events from different sources, to map causal sequences considering time spans, and
to recognise previously observed patterns (localisation). The proposed method combines
sensor modalities with different characteristics and timing behaviours, and is suitable for
distributed computing. All sensor data streams are assigned to symmetric processes. For
each sensor, mapping takes place locally in the assigned process. To achieve sensor fusion,
all local maps are dynamically linked in realtime using direct inter-process communica-
tion. Mapping and localisation take place simultaneously in an infinite unsupervised
distributed online learning process.

The dynamical system has been implemented as a distributed realtime system with sym-
metric processes. All processes communicate over ethernet. The final implementation
uses the UDP protocol. The processes can be located on any computer connected to the
robot’s network. A realtime clustering network reduces the dimension of raw sensor data;
cluster transitions are used as input for the dynamical mapping system. The functional-
ity of the method has been evaluated in experiments with artificial and real sensor input
data. Results from several physical experiments with different sensor configurations are
presented.

Acknowlegdements

This thesis is the result of my visit at the Department of Systems Engineering
at the Australian National University in Canberra. I would like to thank my
supervisor Uwe Zimmer for the excellent support. I would also like to thank
Alex Zelinsky, John Moore, Jochen Heinzmann, the staff and the members of the
Department of Systems Engineering for inviting me, helping me organising my
visit, and supplying support, a working environment, and all the ressources I
required.

Hiermit bestätige ich, daß ich die vorliegende Arbeit selbstständig und nur mit
zulässigen Hilfsmitteln angefertigt habe. Alle benutzten Hilfsmittel sind im Lit-
eraturverzeichnis vollständig angegeben.

Karlsruhe, den 23. 9. 2002 Felix Schill

Zusammenfassung

Bei der Kartographierung und Positionsbestimmung kommt es darauf an, Merkmale und
Muster in den Eingabedaten zu finden, geeignet abzulegen und sie wiederzuerkennen.
Ein wichtiger Aspekt ist das zeitliche Verhältnis zwischen bestimmten Beobachtungen in
mehreren Eingabekanälen. In dieser Diplomarbeit wird eine neue Methode zur simultanen
Kartographierung und Positionsbestimmmung vorgestellt. Das Verfahren berücksichtigt
und verwendet dabei zeitliche Verhältnisse in der Abfolge von charakteristischen Ereignis-
sen in den Sensorkanälen.

Es handelt sich dabei um topologische Kartographierung im Raum der uninterpretierten
Sensordaten. Die Sensordaten werden als Sequenz von Ereignissen interpretiert. Ein
Ereignis ist das Auftreten eines unterscheidbaren Merkmals im Datenstrom. In dieser
Arbeit geht es darum, eine Methode zu entwickeln, mit der es möglich ist, zeitliche Korre-
lationen zwischen jenen Ereignissen zu finden, die reproduzierbar gleichzeitig auftreten,
oder in kausalem Zusammenhang stehen. Diese Korrelationen sollen unüberwacht iden-
tifiziert, geeignet abgelegt und effizient wiedererkannt werden. Es soll ausserdem unter-
sucht werden, inwiefern zeitliche Information zur Positionsbestimmung genutzt werden
kann.

Zu diesem Zweck wurde ein dynamisches System entwickelt. Dieses dynamische System
ist in der Lage, in mehreren Eingangskanälen kausale Zusammenhänge unter Berück-
sichtigung der zeitlichen Abfolge festzuhalten, und bereits vorher beoachtete Muster
wiederzuerkennen. Es kann auf Sensormodalitäten mit unterschiedlichem zeitlichen Ver-
halten und Eigenschaften angewandt werden, und ist besonders geeignet, als verteiltes
System implementiert zu werden. Hierzu werden die Sensor-Datenströme symmetrischen
Prozessen zugeordnet. Für jeden Sensor wird von dem entsprechenden Prozess eine lokale
Karte erstellt. Alle lokalen Karten werden dynamisch in Echtzeit verknüpft. Kartogra-
phierung und Positionsbestimmung finden gleichzeitig und in Echtzeit statt. Es handelt
sich um einen ununterbrochenen, unüberwachten Lernprozess.

Das dynamische System wurde als verteiltes Echtzeitsystem mit symmetrischen Prozessen
implementiert. Zur direkten Prozesskommunikation wird UDP eingesetzt. Die Prozesse
können auf beliebigen Computern laufen, die über ein Netzwerk verbunden sind. Zur Di-
mensionsreduktion der Eingabedaten wird ein dynamisches Echtzeit-Clustering-System

eingesetzt. Übergänge zwischen Clustern werden als Ereignisse betrachtet, und dienen
als Eingabedaten für das dynamische System. Die Funktion des Systems wurde ex-
perimentell untersucht. Mehrere Experimente mit simulierten und echten Sensordaten
wurden durchgeführt. Die Ergebnisse zahlreicher physikalischer Experimente mit ver-
schiedenen Sensorkonfigurationen werden am Ende dieser Arbeit präsentiert.

Contents

1 Introduction 13

1.1 The role of temporal information . 14

1.2 Time sequence analysis for localisation and topological mapping . 16

1.3 Overview: Existing works . 16

2 Multiple Hypotheses Temporal Mapping 19

2.1 Continuous analog model . 19

2.2 The recognition process . 21

2.3 Learning . 22

2.3.1 Aquisition . 22

2.3.2 Adaptation . 24

2.4 Model characteristics . 25

2.5 Discrete model for digital computers 25

2.5.1 General problems . 26

2.5.2 Clustering / data preprocessing 26

2.5.3 Discrete events . 27

2.5.4 Calculation of receptor activity 28

2.5.5 Damping of activity waves 28

2.5.6 Learning . 29

2.5.7 Time warping . 29

2.5.8 Complexity and realtime constraints 29

10 CONTENTS

3 Sensor fusion and Distributed Temporal Event Mapping 31

3.1 Extension to multiple sensor modalities 31

3.1.1 Creation of cross edges . 31

3.1.2 Adaptation of cross edges . 32

3.1.3 Modification of Receptor activity calculation 33

3.2 Interaction between sensor modalities 33

3.3 Discrete model . 35

3.3.1 Handling of intermodal graph edges (cross edges) 35

4 Implementation and design issues 37

4.1 Programming language of choice . 37

4.2 Tasks and monitors . 38

4.3 Graph data structure of the topological map 40

4.3.1 Receptors . 40

4.3.2 Edges . 40

4.4 Data layout of the system . 41

4.4.1 Protected list . 41

4.4.2 Event association table . 42

4.4.3 Activity table . 43

4.4.4 Concurrent activity table . 43

4.5 Communication layout for distributed computing 43

4.5.1 Ada RPC and distributed object dispatching 45

4.5.2 TCP/IP and UDP/IP communication 46

4.6 Dependencies . 48

5 Experiments 49

5.1 Measurements and criteria . 49

5.2 Simulated data experiments . 50

5.2.1 Clean and noisy input comparison 51

5.2.2 Sensor fusion in simulation 52

5.3 Real world experiments . 54

5.3.1 General experiment setup . 54

5.3.2 Exploration strategy . 57

CONTENTS 11

5.4 Software setup and constants . 58

5.5 Results . 59

5.5.1 Experiment 1: one internal laser sensor only 59

5.5.2 Experiment 2: two internal laser sensors and one sonar sensor 59

5.5.3 Experiment 3: internal laser sensor, external laser sensor . . 61

5.5.4 Experiment 4: laser range finder and manual landmark input 65

5.5.5 Experiment 5: Attaching and comparing landmark information 66

6 Conclusion 69

6.1 Future work . 70

7 Appendix A: Kurzfassung in deutscher Sprache 73

7.1 Einleitung . 73

7.2 Ereignissequenzen . 74

7.3 Das dynamische System . 74

7.3.1 Die Erkennung von zeitlichen Sequenzen 75

7.3.2 Der Lernprozess . 75

7.4 Sensorfusion . 76

7.5 Berechnung der Rezeptor-Aktivität 77

7.6 Experimente . 78

7.6.1 Sensorfusion in der Simulation 78

7.6.2 Experiment mit echten Sensordaten 79

7.7 Zusammenfassung der Ergebnisse 79

8 Appendix B: Selection of source codes 83

8.1 Specification of the generic protected list 83

8.2 Specification of the communication module 85

8.2.1 The communication package 85

8.2.2 The message retrieval monitor 85

8.2.3 The identification specification 86

8.3 Mapping constants . 86

8.4 Main module of the mapping system (graphmanager) 87

8.4.1 Specification file “graphmanager.ads” 87

8.4.2 Implementation file “graphmanager.adb” 88

Bibliography 103

Chapter 1

Introduction

When regarding the localisation and mapping problem in mobile robotics, one ap-
proach is to geometrically interprete sensor data, and to create a kind of cartesian
map ([5] and [6]). In some cases, though, a geometrical or any other interpretation
of the sensor data is not clear, or not possible at all. Here mapping techniques
working in sensor space have a big advantage, since they are still able to use the
provided information. An example is an autonomous submarine robot: It is pos-
sible to use laser and sonar distance sensors and computer vision for localisation,
but these sensors are very dependent on water conditions such as visibility, the
amount of solved salt and suspended particles, water pressure, temperature and
other parameters. While it is very difficult to consider all this information in a
geometrical model, it is not necessary to consider it in a topological sensor space
model of the environment, as long as local conditions are reproducible.

When working in sensor space, a great number of sensor measurements can be
used, which would be useless otherwise. Water temperature, electric conductivity
or the received light spectrum are just some examples. Of course, there are some
drawbacks when mapping in sensor space. It is not easily possible to extrapolate
the map for spots which have not been visited yet, but have been in sensor range.
Here, the geometrical approach has a clear advantage. But there are many cases
where geometrical information is not available, and localisation can only be done
in sensor space. In a practical system, a combination of both approaches would
be appropriate. Topological mapping usually has a lower resolution in space
than geometrical approaches, but has less problems when dealing with large
scale maps. Where precision is needed, a local geometrical map can be used and
integrated into the topological world model.

The topic of this work is to develop a method for topological simultaneous local-
isation and mapping working in sensor space.

14 Chapter 1: Introduction

1.1 The role of temporal information

The context of a location plays an important role in the localisation and mapping
problem. There are cases where no fixed reference frame is available, and move-
ments in space cannot be detected reliably. This is usually not a problem while
moving around on solid ground, but becomes obvious under water, or in the
air. Good examples are submarines, hovercrafts, or flying objects such as planes,
gliders, or balloons.

In those cases, time is the only reference frame for the context of a location which
is left. The basic assumption behind this is a relation between the location and the
behaviour of the vessel. In most robotic applications requiring localisation and
mapping, this is given, at least in small scales. Usually this is sufficient to provide
a stable temporal context.

The problem is how to represent time in a map. In the localisation and mapping
context, time is not just the fourth dimension added to a three-dimensional map.
The model of a four-dimensional space time is often useful in physics, but doesn’t
make sense for localisation. The big difference is, that a robot usually can move
around freely (more or less) in three-dimensional space. But the movement in
the time domain is predefined, unidirectional and cannot be influenced. The
consequences are clear: If a location is defined in four-dimensional space, a
robot could never return to the same location. Since localisation usually boils
down to recognising a previously visited location in the map, this would make
a localisation and mapping system obsolete. Mapping would be reduced to
recording the input. Since no location could be visited twice, there is no possibility
to generalise, or to close loops. Obviously, time can only be considered relatively,
as time spans, or durations.

In this work, a location is defined as the position in three dimensional space, the
orientation, the direction and current speed of movement. Since a robot is always
moving through space on continuously differentiable trajectories, a location is
correlated with a temporal context of locations along the current direction of
movement. Assuming a sensor delivers a data stream which is correlated in some
way with the actual location of the robot, it is possible to estimate the location
from the lapse of sensor measurements over time.

A sensor stream can be abstracted to a sequence of events, where an event is
the occurence of a transition to a previously observed similar sample of data.
This transformation to an event sequence is a sampling process with an adaptive
sampling frequency. The time span between samples is controlled by the amount
of change in the input data. The maximal difference to the original data can be
easily controlled by the distance measure used.

The task is now to identify sequences in the input stream, and to find out if they
are reproducibly correlated to the location, and to their context. While it is easily

1.1 The role of temporal information 15

Fixed frequency sampling

Adaptive frequency sampling

Figure 1.1: Illustration of data sampling with fixed frequency (above) and adaptive
sampling.

16 Chapter 1: Introduction

possible to analyse the correct order of events (an automaton can do this), it is not
so obvious how to recognise temporal patterns or rhythms. This is the main topic
of this work.

1.2 Time sequence analysis for localisation and
topological mapping

It is assumed that temporal information of input streams provides a lot of informa-
tion about the current location, especially in environments with few features. The
goal is to develop a mapping system, which identifies and uses spatio-temporal
information in raw sensor data streams, in an unsupervised life-long learning
process. It should be suitable for online operation in realtime environments. The
emphasis is on considering temporal relations in sensor data streams, and finding
correlations in data streams originating from multiple sensors with different char-
acteristics. To remain as flexible as possible, as few assumptions as possible about
the sensor characteristics, and no specific interpretation of sensor data should be
used in the mapping system.

A single measurement at a discrete point in time only gives a faint idea about the
location, since the dimensionality of reality is always reduced by the sensor. This
creates ambiguities. Since a location is bound to its local context, time sequence
analysis of the measurements can improve the estimation of the current location
in space. Obviously it is impossible to be absolutely sure about the own location.
Considering the recent context, and using all available sensors, it is possible to
increase certainty to a sufficient level.

1.3 Overview: Existing works

There are several approaches to consider temporal information in the given input.
An overview can be found in [2].

In [3], Barreto et al. present a neural network design which is able to learn
and distinguish spatiotemporal sequences. The artificial neural network is used
to track robot trajectories, and to learn and reproduce motion patterns. Their
approach requires a dedicated learning phase, and is not able to automatically
learn new inputs online. Also the amount of required neurons must be known in
advance. It is not easily possible to let the network grow dynamically, to adapt to
growing complexity of the input.

Euliano and Principe [4] extended the Self-Organizing Map and the Neural Gas
with a Temporal Activity Diffusion mechanism (SOMTAD and GASTAD). As most

1.3 Overview: Existing works 17

Self-Organizing Map models, the size of the map must be known in advance, and
cannot be easily changed lateron.

Most methods were not designed for online and life-long realtime learning. The
number of features in the input or the number or required neurons must be defined
in advance. A common feature of those approaches is the required rigid timing
of input streams, even if they originate from different sensors. That means that
all input streams have to be resampled to a global sampling rate. This drastically
reduces the possible temporal resolution in faster sensors, and often creates jitter
effects and temporal artefacts. The other problem is, that a fast, high-bandwidth
sensor observing a static environment, doesn’t provide much new information in
successive measurements. It would be appropriate to adapt the sampling rate to
the complexity and dynamics of the measured data.

A biological method to deal with spatio-temporal patterns can be found in the
cerebellum. In [1], it is assumed that the recognition of temporal patterns is
based on ’tidal waves’ of activity travelling along parallel delay lines. The input
releases pulses on parallel axons. If (and only if) those pulses on neighboured
axons arrive at a detector cell (called ’Purkinje cell’) in a synchronized manner,
they can stimulate this Purkinje cell. Temporal relations in the input are mapped
to length differences on the parallel delay lines.

The basic idea of represent temporal patterns as lengths of delay lines and recog-
nising patterns by detecting ’tidal waves’ of activity was an inspiration for the
model presented in this work. The proposed model is not similar to a biological
cerebellum, and doesn’t claim a biological background. The ’activity wave’ idea
and the concept of adaptable delay lines has been developed and adapted to meet
the requirements of the localisation and mapping problem in robotics, and the
possibilities of digital computers. The following chapters describe the design and
functionality of this new approach.

Chapter 2

Multiple Hypotheses Temporal Mapping

This chapter proposes a method for topological mapping and pattern recognition
in the time domain. At first a theoretical continous asynchronous analog model
is presented, to explain the basic features and properties of the proposed system.
The end of this chapter describes a similar model suitable for execution on digital
computers.

2.1 Continuous analog model

The following description of the analog model should just simplify the explanation
of the basic structure and functionality of the system, since it is more intuitive to
describe. A precise definition and analysis of the analog system would go beyond
the frame of this thesis. New analytic methods to analyse the system behaviour
would have to be developed. In addition, it is impossible to implement the analog
system with currently known technology. Thus all experiments, the analysis and
the evaluation were done using the discrete model, described in 2.5.

The proposed model is a continuous asynchronous analog dynamical system.
The input can be any n-dimensional continous analog sensor data stream. The
system is able to map and to recognise reproducible temporal patterns in the input
stream. The basic elements of the system are simple analog computation units,
referred to as receptors, and delay edges connecting those receptors.

A receptor has an input for the sensor signal, and is permanently connected to the
system’s sensor input. For ease of description it is assumed that every receptor
has immediate access to the current sensor data. Apart from the sensor data
input channel, a receptor has one-dimensional input channels Ik, and one output
channel O, which is also one-dimensional. The output is referred to as the activity
level α of the receptor.

Receptors are connected by delay lines (or delay edges) E = (δE, σE, ωE, λE) , which
transmit the activity level of a receptor’s output to an input of another receptor.

20 Chapter 2: Multiple Hypotheses Temporal Mapping

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

t/sec

d
(t

)

Figure 2.1: Plot of temporal transfer function dE(t) for δE = 3, σE = 0.5 and ωE = 1

The transmission of the signal takes a defined, but adjustable time span δ. The
signal is also damped during transmission; this is described by the adjustable
parameter ω, called “edge weight”. While travelling along the edge, the signal
is widened to some extent, which is described by the parameter σ. The transfer
function of a delay edge is as follows:

Definition 2.1.1 Temporal function dE(t)

dE :<+ → [0, 1]

dE(t) 7→ ωE · e

(

−(t−δE)

σE

)4

(2.1)

This function is symmetrically centered around δE; σE describes the tolerance or
the width of the function. These two parameters are set and modified by the
learning algorithm, as described later in 2.3.

A delay edge also has a “learning rate” factor λ, which describes the ability of the
edge to adapt its parameters to other values.

A receptor can have an arbitrary number of incoming and outgoing delay edges.
All outgoing edges are fed with the same activity level, while each incoming delay
edge has an own input channel. Receptors and connecting edges are created online
while learning temporal patterns, as described later in 2.3.

A receptor R holds a reference sample of sensor data, which it compares to the
actual sensor data. This results in a similarity measure sR(t) ∈ [0, 1]. The basic
functionality of a receptor is to select the input edge Ei with the maximum activity
αEi

, to amplify this activity level, and to send the amplified signal to the output.

2.2 The recognition process 21

The amplification function amp(sR(t)) ∈ [1/cdamp, ca] is controlled by the similarity
measure sR(t). The constant cdamp > 0 describes the maximal damping, ca > 0 the
maximal amplification of the function. The function should have steep flanks to
narrow the shape of an activity wave going through a receptor.

The amplification function used in the later implementation has an impulse re-
sponse of ca, when the similarity measure enters an environment centered around
1, and is 1/cdamp otherwise. The size of this environment is controlled by a precision
parameter p.

Definition 2.1.2 Amplification function amp(s(t))

amp(s(t)) 7→

{

ca if sR(t) = p ∧ s′R(t) > 0
1/cdamp otherwise

(2.2)

To simplify later descriptions, the moment when the amplification function of
a receptor R reaches the maximum of ca shall be called “firing” of receptor R.
“Firing” is a point in time and has no duration.

The output activity level of a receptor is limited by a saturating transfer function
of the amplifier; the maximum output can be assumed to be 1. It is also assumed
that each receptor has a minimum activity level min(αR(t)) > 0, which is necessary
to activate the system. This is controlled by the global parameter ε.

Definition 2.1.3 Receptor activity: Let E be the set of all input edges of a receptor R.
The receptor activity αR(t) is calculated according to

αR(t) = φ

(

amp(s(t)) · fR(t)

(

ε +max
Ei∈E

{

αEi
(t)

}

))

(2.3)

φ is a saturating function, i.e. φ(x) = 1 − e−x

The function fR(t) describes the available firing energy of the receptor. It is zero
after a receptor fired, and exponentially reloads to 1 afterwards (tR is the last time
receptor R fired, E(t) is the number of events at time t since startup time t0):

fR(t) = 1 − ecR(E(t)−E(tR) (2.4)

2.2 The recognition process

The recognition of temporal patterns in the input stream is based on activity
waves flowing through the network of receptors and delay edges. A pattern is
represented by receptors holding a sample of the input at a certain time, and
delay lines connecting those receptors. The delay lines hold the information

22 Chapter 2: Multiple Hypotheses Temporal Mapping

about the temporal relation between the samples. Every activity wave represents
a hypothesis about the current input. The location of a wave in the network
describes the current input.

Assume there is already a network of receptors, representing a pattern in the
input stream. Also assume the activity level of all receptors is minimal, and
now the represented pattern occurs again in the input. This pattern will now
shortly increase the amplification factor in the corresponding receptors, in a certain
rhythm. The first stimulated receptor R1 will amplify the low activity level on its
inputs (caused by the self-activation term ε), resulting in a slightly higher activity
on its outputs. This higher activity signal is transmitted along the outgoing
delay edges to other receptors. One of those is stimulated by the sensor input
approximately when this (widened) signal arrives. The signal is amplified again,
transmitted to other receptors, and so on, until it saturates at the maximum activity
level 1. A more accurate timing will result in a faster increase of activity and a
higher over all activity level than inaccurate timing of events.

If the input differs from all represented patterns, the amplification factor of the
receptors is low, when the activity wave arrives at their input. The activity wave
is damped and disappears after a while.

It is obvious that several waves can appear and run simultaneously in the system,
if parts of input patterns are similar. Those waves represent different hypotheses
about the input. Nevertheless, the wave with the best matching receptors and
delays will produce the highest activity, while other waves will decrease in activity
or disappear completely.

2.3 Learning

Learning in this case has two aspects:

1. Learning new sequences by creating new receptors and edges (acquisition)

2. Modifying existing edges while recognising known sequences (adaptation)

The adaptation process runs continuously, the acquisition process is only activated
if the current input stream is not recognized. There is no dedicated “learning
phase”. Acquisition and adaptation are a continuous life-long process, controlled
by the input.

2.3.1 Aquisition

The acquisition process should obviously start when an input sequence is not
recognised. Successful recognition of a sequence results in a high activity level

2.3 Learning 23

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Successful activations

A
ct

iv
it

y
(%

)

Figure 2.2: Boost of an activity wave (ca = 5, ε = 0.01).

of the corresponding receptors. To distinguish between recognition and non-
recognition, a threshold αhigh shall be introduced. Additionally it is assumed that
the most active activity wave in the system is known at all times.

If the similarity measure of the last most active receptor drops below the precision
threshold p, and in the same moment, all other receptors have an activity level
below αhigh, the current sensor input is regarded as not recognised. In this case,
the acquisition process starts.

A new receptor sensible for the current input is created. This is simply achieved
by setting the internal reference sample of the new receptor to the current sensor
input. The new receptor is connected to that receptor of the last most active
activity wave, which most recently had an activity level higher than αhigh. 1

The delay δE of the connecting edge is set according to the observed time span
between the last firing of the source receptor, and the creation time of the new
receptor. It can be imagined that each receptor has an outgoing delay edge of
infinite length, and the new receptor is connected to it where the maximum of
the output pulse currently travels. The temporal tolerance σE is initialised with
a fraction of δE, i.e. σE := δE/10. The edge weight ωE is initialised with a value
lower than 1. This avoids that newly created edges dominate older and already
stabilised edges. The initial value for the edge weight must be chosen high enough
that an activation of the next receptor is still possible, though; that means it must

1This is described more precisely for the discrete model. Since the analog model cannot be implemented,
it is difficult to describe this process.

24 Chapter 2: Multiple Hypotheses Temporal Mapping

be greater than 1/ca. In the experiments ωE is initialised with 0.7. The learning
rate λ is set to a plausible start value, i.e. 1

2
.

While the acquisition process continues, new receptors are created accordingly.
Those are connected to the last newly created receptor, to represent the input signal
over time. During this process, other hypotheses may emerge in the network.
When an activity wave reaches the activity levelαhigh , the acquisition process stops,
and the last newly created receptor is connected to the first receptor reaching an
activity level greater than αhigh.

Another aquisition mechanism fuses parallel hypotheses. Whenever two succe-
sive most active receptors are not connected by a delay edge, the missing edge is
inserted. If the edge already exists, it is adapted according to the adaptation rules
described in the next section. This reduces the number of multiple similar hy-
potheses by fusing them. The adaption process will strengthen the most adequate
path through the interconnected hypotheses, creating a suitable representation for
all corresponding input patterns.

2.3.2 Adaptation

To consider variations of patterns in the input stream, adaptation of the internal
parameters is necessary. Most information is stored in the delay edges. The
sample of input data contained in receptors can also be adapted. This is not
considered here, but dealt with in 2.5.2.

Whenever a receptor R j fires and reaches a sufficient activity level (αR j
(t) > αhigh),

the input edge ERi,R j
=: Ei j with the highest edge activity level is selected. The

selected edge is adapted using the following rules (∆t = t− tRi
, tRi

is the time when
Ri most recently fired):

δ′E = δE + λE (τE∆t − δE) (2.5)

σ′E = σE + λE

(

|τE∆t − δE| + tpmax − σE

)

(2.6)

ω′E = ωE + λE (1 − ωE) (2.7)

λ′E = cλλE (2.8)

On good matches, the temporal tolerance σE is reduced, and the edge weight
ωE increases. The constant tpmax expresses the maximal temporal precision, that
means σE will not drop below this value. The duration parameter δE is adapted
to get closer to the current observation. The reduction of the learning rate λE

stabilises the process. The weights of the output edges of R j are decayed by the
constant cd:

ω′E = ωE − λEcdωE (2.9)

This effect is inversed in the next step for the edge which successfully activates
a receptor. The weights of all other edges remain slightly lowered. Frequently

2.4 Model characteristics 25

occuring and successfully recognized sequences strengthen corresponding edge
weights, while unused or inaccurate edges decay. This results in a probality
representation coded into the edge weights, which enables the system to consider
statistical information.

2.4 Model characteristics

The presented model is an asynchronous analog parallel system, which samples
the input with a variable, sensor data driven time basis, and connects these
samples to a graph representing causal and temporal correlations. Recognition
of known input patterns is based on resonance of an input with sequences of
receptors in the network, connected with delay edges. This resonance behaviour
is realised with activity waves travelling through the network, being amplified or
damped depending on the input.

The resonance behaviour is (apart from the sensor input) mainly controlled by the
amplification function amp(s(t)) (the parameters ca and cdamp) and the self activation
parameter ε. A high amplification term leads to steep growth of activity waves.
The parameter ε controls the startup time of a wave.

Since there is no rigid time basis, the system is able to cope with any speed of
change in the input, as long as not limited by hardware constraints. The sampling
precision in the acquisition process is controlled by the similarity measure s(t) and
the threshold p.

The immediate acquisition of input data enables the system to learn new input
patterns extremely fast. The adaption process improves the recognition by con-
sidering the temporal variance and probability distribution of similar patterns.

2.5 Discrete model for digital computers

An analog implementation of the mapping system would have great advantages.
Unfortunately it is impossible to implement the system with currently available
analog technology. No technique is known to implement fully adjustable analog
delay edges, which are able to produce delays ranging from microseconds up
to several seconds or even longer. It is also extremely difficult to implement a
dynamical creation of receptors and edges in a hardware system. To solve these
problems, a similar model suitable for execution on digital computers is presented
in this section.

26 Chapter 2: Multiple Hypotheses Temporal Mapping

Sensor Clustering

analog signal Events

Temporal Event Mapping

Figure 2.3: The basic layout of the discrete mapping system

2.5.1 General problems

Obviously it is impossible to achieve exactly the same behaviour as in the analog
counterpart. But since most sensors used in robotics provide discrete samples with
a fixed frequency, a discrete processing of this data is adequate and legitimate.

One problem is the execution of the massively parallel analog system on a single
digital processor. Another problem is the simulation of a continous process on a
sequential machine. To solve these problems, the input sensor data is discretised
by a clustering technique described in the next section, and discrete events in time
are introduced. This allows the calculation of receptor and edge activities at a
definite time.

2.5.2 Clustering / data preprocessing

To reduce the dimension of the input data, a dynamical online clustering technique
from [7] is applied. The clustering system is a modified neural gas algorithm, but
without any static restrictions. A network

Net = (C,E,R,N, α) =

(ci,

(c j, ck) ∈ [0, 1],

R(ci) ∈ <
n,

α(ci) ∈ [0, 1]), i ∈ 1..n

(2.10)

is created online, representing the clusters identified in the input data. It consists
of n cells C, edges E, representatives R (the ’centers’ of the data space covered by
one cell), and an adaptation parameter α.

2.5 Discrete model for digital computers 27

Starting with an empty network, new cells are created whenever an input sample
St doesn’t match the representative R(ci) of any cell in the network. If a match
was found, the cell parameters and edges are adapted. For comparing input
samples with representatives, a metrics ‖ •, • ‖ is defined; the resulting distance
is compared to a precision parameter p.

To meet realtime constraints, the network is only searched and adapted locally,
until a match was found. The typical execution time after stabilisation is low and
more or less constant. Only unknown input or rare transitions cause a slightly
longer execution time for a complete search and reorganisation of the network.
Experiments show that the clustering system works stable and can handle in-
put streams from commonly used sensors in realtime. For the localisation and
mapping approach in this work, the ability of the network to grow dynamically,
was considered to be more important than hard realtime constraints. Graceful
degradation is acceptable for this application.

Using the described clustering network, a multi-dimensional sensor data sample
is reduced to a one-dimensional cluster identifier.

2.5.3 Discrete events

Instead of feeding a continous sensor data stream into all receptors, it simpli-
fies calculation a lot to define points in time when certain receptors should be
evaluated since they are likely to fire. In the analog model a receptor decides
itsself if to become active, depending on the current sensor input. In combination
with the clustering technique, this can be separated completely from the receptors
themselves. A transition between clusters in the clustering system is a significant
occurence, which shall be called event.

An event happens at a discrete point in time, and is described by the identifier
of the cluster which became active with the occurence of the event. The average
event frequency will usually be significantly lower than the sensor frequency
(which is the upper bound for the event frequency). The time span between two
events can be any multiple of the time span between two sensor data samples,
and depends on the variations in the sensor data stream.

Instead of receptors with individual samples of data, there are now sets of recep-
tors sensible to a certain event class (cluster identity). Now only when an event
occurs, all receptors of its class have to be evaluated. This slightly varies from
the firing behaviour of a receptor in the analog system, but this doesn’t affect the
functionality of the system. The difference is that now several receptors share
the same sample of input data, instead of carrying an own sample each. The
recognition process is not affected by this, since it could happen in the analog
model as well, that several receptors carry identical sensor data samples. The
resulting graph structure is slightly different, but is still a valid representation of
the corresponding input data. Solely the sample points in time vary negligibly.

28 Chapter 2: Multiple Hypotheses Temporal Mapping

2.5.4 Calculation of receptor activity

On an occurence of an event, all receptors sensible to its event class are evaluated.
Since the comparison of the current input data with a sample has already been
done in the clustering network, the similarity measure is assumed to be 1.

The edge activity of incoming delay edges has to be calculated using the temporal
transfer function, and the time when the last pulse has been sent over that edge,
that is the last activation time of the receptor at the origin of this edge.

Definition 2.5.1 Edge Activity: Let Ei j be a delay edge leading from receptor Ri to R j.
The edge activity αEi j

(t) is calculated according to

αEi j
(t) = dEi j

(

t − tRi

)

αRi
(tRi

) (2.11)

(tRi
is the time of the last activation of Ri)

The receptor activity is calculated as defined in the analog model (definition
2.1.3). Since this calculation only takes place when a receptor fires (i.e. the sensor
data enters the cluster around the data sample of that receptor), the amplification
function amp(s(t)) can be replaced by the maximum ca.

The activity of a receptor Ri is now coupled to the discrete point in time when the
triggering event occured. This time is stored in the receptor as the time stamp tRi

of the last activation.

2.5.5 Damping of activity waves

Since receptors not corresponding to incoming events are not evaluated, damping
of activity waves is not done by now. Instead, waves are lost completely when an
event does not occur as expected. To implement the damping feature of the analog
model in the discrete model, a bit of extra effort has to be done. The following
approach solves the problem.

Whenever a receptor is activated, all receptors connected to its output are added
to a list, together with the times the output pulse will arrive at their inputs (these
time spans are stored in the corresponding delay edges).

A separate task waits until the next pulse arrives at a receptor in this list (the
time can be read from the list). If the event triggering this receptor has not yet
occured, the output activity of this receptor is calculated, using the damping
factor cdamp, instead of the amplification factor ca. This is equivalent to a similarity
measure s(t) = 0. Again, the receptors connected to the output are added to the
list, provided the output activity level is not too low.

This process will continue all activity waves in the network, damping them,
until their activity is below an “activity noise level” αlow. If an event should

2.5 Discrete model for digital computers 29

trigger a receptor after the damping process, the output activity is automatically
overwritten with the new value. This leads to the desired behaviour, that a wave
is amplified if the expected event occurs in time, and damped otherwise.

To ensure consistency of the graph data structure and the states of receptors,
mutual exclusion of input data processing and damping of activity waves has to
be guaranteed. Whenever new data arrives, the task processing the damping of
ongoing activity waves is suspended, but only after it finished its current work.
When calculations for the newly arrived data are finished, this task is notified and
continues processing.

2.5.6 Learning

Learning works similar to learning in the analog model (section 2.3). The only
difference is the start criterion for the acquisition process. This is easier to define
in the discrete model, since activity is now partially synchronized to events.
Whenever an event occurs, and, after evaluation of all corresponding receptors,
none of them reaches an activity level above αhigh, the input can be regarded as
not recognised. This triggers the acquisition, which stops after an event occurs
and one of the already existing receptors reaches a high activity level.

2.5.7 Time warping

The model can easily be extended to be able to recognise known sequences even
if they occur faster or slower. This effect is called time-warping. Therefore a
time-warping factor is introduced, controlling the speed a signal travels on the
edge. The calculation of edge activity as defined in definition 2.5.1 changes as
follows:

Definition 2.5.2 Edge Activity with time-warping: (Ei j is a delay edge from receptor Ri

to R j)

αEi j
(t) = ωEi j

· dEi j

(

τEi j
(t)(t − tRi

)
)

αRi
(tRi

) (2.12)

The time-warping factor τEi j
is dynamically adapted during the recognition pro-

cess. On activation of receptor R j, the best matching input edge (Ri,R j) with
maximum activity is selected, and τ′ is adapted to maximize dEi j

(

τ′ · (t − tRi
)
)

. The
new time-warping factor τE jk

= τEi j
+ ct(τ

′ − τEi j
) is propagated to all output edges

E jk of R j (ct controls the speed of the time warp adaptation). If a receptor doesn’t
reach a sufficient activity level, the time warping factor is reset to 1.

2.5.8 Complexity and realtime constraints

The temporal mapping system dynamically grows to meet the spatio-temporal
complexity of the input data. The typical calculation time per sample of the

30 Chapter 2: Multiple Hypotheses Temporal Mapping

clustering system linearly depends mostly on the sensor data dimensionality n.
The maximum complexity is O(nk) for k clusters. The complexity of the temporal
event mapping network depends on the number of receptors per cluster. The
average complexity thus is O(|R|/k). The problem is, that both the number of
clusters k and the number of receptors |R| grow dynamically, to meet the intrinsic
spatiotemporal complexity of the input data.

In a limited environment, the whole system stabilises after a while, which means
that the number of clusters and receptors remains constant. So if the available
processing power is chosen according to the expected complexity of the target
environment, realtime operation is possible. In the experiments described later
(5.3), the system stabilised with ususally 50-70 clusters, and 400-500 receptors.
Using an Intel Pentium III system with 633Mhz and a SICK laser sensor with 5
scans per second as input, this leads to typical average execution times per event
of 180 ms for the clustering network, and 3-5 ms for the temporal mapping system.
The sensor frequency of 5 Hz could be maintained most of the time. It should
be mentioned that the occasional loss of few samples is not critical towards the
functionality of the mapping system (graceful degradation).

Chapter 3

Sensor fusion and Distributed Temporal
Event Mapping

The model described in the previous chapter is able to map temporal correlations
in one input stream into a topological map. This chapter extends the single sensor
model to cope with multiple sensor modalities. The goal is to achieve more
stability by using and correlating input data from all available sensors, where this
is possible. This is realised by mapping temporal and causal correlations between
different sensors in a similar way as it is done for each single sensor.

3.1 Extension to multiple sensor modalities

Let S be a set of arbitrary sensors Sψ, which produce nψ-dimensional data streams.
The basic idea for the extension is to apply the single-sensor system to each
available sensor Sψ, and then cross-correlate causalities and temporal relations
between the sensors. Again, this process is fully sensor-data driven.

In the first step, the dynamical systems for all sensors run independently, building
up graphs representing the transitions of input data. For interconnection of
different sensor modalities, the same basic mechanisms from the single sensor
model can be used. To represent a temporal relation between patterns in different
sensors, the corresponding receptors in both systems are connected with a delay
edge similar to internal delay edges. The properties of these intermodal graph
edges (referred to as “cross edges”) are identical to those of internal delay edges.
Though, the creation and adaptation of cross edges follows different rules, and
their influence on receptor activity has to be adapted.

3.1.1 Creation of cross edges

When a receptor R fires and reaches an activity which is higher than αhigh, this
means that some structure in the input stream has been recognised.

32 Chapter 3: Sensor fusion and Distributed Temporal Event Mapping

Whenever this happens, for each other sensor modality a limited set of the last
most active receptors Rlma since creation of the last cross edge with an activity
level greater than αhigh is determined. The size limitation of the set Rlma is chosen
depending on the average frequencies of involved sensors, and the expected
influence of an event on following events in other sensors. The size of this set
represents the “short term memory” of the system for external input, describing
for how long an event is still considered to have influence on the current status.
In the experiments, the set was limited to the 3 last most active receptors.

For each Receptor in Rlma a cross edge to R is created, using the difference of
the maximum activation times as the delay. The other edge parameters except
the edge weight are also initialised according to the rules for internal edges as
described in section 2.3.1. The edge weight ω is initialised with a value close to
zero, i.e. 0.1. This requires cross edges to establish before they can have influence
on the system.

3.1.2 Adaptation of cross edges

The learning rules of cross edges are similar to normal edges (see 2.3.2). The only
difference is, that not only the most active edge is adapted. Instead, all incoming
cross edges are adapted, while the amount of adaptation is weighted by their
output activity, not considering the current weight. This leads to the following
slightly modified adaptation rules:

δ′E = δE + βE(t) · λE (τE∆t − δE) (3.1)

σ′E = σE + βE(t) · λE

(

|τE∆t − δE| + tpmax − σE

)

(3.2)

ω′E = ωE + βE(t) · λE (1 − ωE) (3.3)

λ′E = βE(t) · cλλE (3.4)

with

βE(t) = e













−((t−tRi)−δE)
σE













4

αRi
(tRi

) (3.5)

(see also definition 2.1.1 and section 2.3.2).

It is necessary to have a weighted adaptation for all edges in this case. For
internal edges, the goal is to establish one path per hypothesis through the graph,
to stabilise recognition and prediction ability. This is not the case for cross edges.
Here it is important to find correlations, and to weight the influence depending
on reproducability and accuracy. When using the “winner takes it all” strategy
of internal edges for cross edge adaptation, it was observed that the input cross
edge which could establish was not necessarily the most important one. Small

3.2 Interaction between sensor modalities 33

advantages depending on the start conditions increased, so that it was sometimes
rather random which edge was selected. Once ahead, winning was much easier
for this edge, so it supressed all other edges. The weighted adaptation approach
doesn’t suffer these problems.

3.1.3 Modification of Receptor activity calculation

Since a receptor can now have inputs from different sensor modalities, the calcu-
lation of output activity has to be slightly modified. As before, the internal edge
with the maximum edge activity is selected for activity calculation. The activity
of all incoming cross edges is summed up and put through a saturating function,
to limit cross edge influence. The result is added to the internal edge activity
influence:

Definition 3.1.1 Receptor activity for multiple sensors: Let ESψ := {Ei j = E(Ri,R j) : Ri ∈

RSψ} be the set of all input cross edges of receptor R j from sensor modality Sψ ∈ S, and let
SI ∈ S be the set of involved sensor modalities:

SI :=
{

Sψ ∈ S : ESψ(Ri,R j) , ∅

}

.

The receptor activity αR j
(t) is calculated according to

αR j
(t) = φ

(

amp (s(t))

(

ε +max
Ei∈E

{

αEi
(t)

}

+ cI · tanh
(γ

cM

)

))

γ =
∑

Sψ∈SI

∑

Ei j∈ESψ

αEi j
(t) (3.6)

(see also definition 2.1.3)

The constants cI and cM control the strength of influence from cross edges. The
parameter cI describes the upper limit of cross edge influence, and cM describes
the number of modalities with maximum input, for which the influence saturates.

3.2 Interaction between sensor modalities

Active receptors in different sensor processes can now influence each other. If
events from different sensors occur in the same temporal order as they were pre-
viously observed, activity in the corresponding receptors is reinforced over the
previously created cross edges. Hypotheses in each modality which consider
external input are more likely to become most active. Uncertainties in one sensor
modality can be eliminated or reduced now, using information from other modal-
ities. The system is less sensible to noise, since the sensor modalities stabilise each
other.

34 Chapter 3: Sensor fusion and Distributed Temporal Event Mapping

Sensor Clustering

Sensor Clustering

analog signal Events

Temporal Event Mapping

cross edges

Figure 3.1: The distributed mapping system for multiple sensors.

Cross edges are initialised with a low edge weight. If a cross edge represents a real
correlation, it will be strengthened by the adaptation process, since it successfully
contributes to the activation of the target receptor. Otherwise, this cross edge
decays. The system is able to detect and use temporal and causal correlations,
which are reproducible, and ignores irreproducible noise.

The system behaviour of the multi-sensor model applied to only one sensor is
identical to the behaviour of the single sensor model. Since cross edges are only
created after a high activity level is reached, the startup behaviour of each single
sensor in the multi-sensor system is also identical to the single-sensor case. After
a stabilisation phase in each single sensor modality, the number of cross edges
and the effects of sensor fusion increase. It is always possible to add another
sensor modality to the system. It will integrate itself into the existing system
after local stabilisation. A sensor can also be easily removed from the system by
simply deleting all existing cross edges between this sensor modality and the rest
of the system. It is even possible to temporarily deactivate a sensor by ignoring its
cross edges during the receptor activity calculation. This flexibility is very useful
for real systems, where sensors can fail, or are not necessarily available from the
beginning.

3.3 Discrete model 35

3.3 Discrete model

The modifications of the analog model as described in the single sensor case
(section 2.5) also apply to the multiple sensor analog model. Other modifications
are not necessary.

The discrete multiple sensor system consists of symmetric partitions, one for each
sensor. Splitting the whole application into symmetric partitions to be executed
on different machines, holds many advantages. In real systems, the number of
interfaces for sensors on one computer is limited, and so is the available processing
power. A distributed mapping system makes less limitations to the number and
geographical position of sensors. Every partition does the mapping for one sensor,
which is locally accessible. The sensor fusion functionality, as described in this
chapter, is achieved by communication over a network with the partitions for
the other sensors, which are running on computers accessible over the network.
This approach also enables the use of different platforms and architectures for
each sensor in the same system. Depending on the sampling rate and data
dimensionality of a sensor, a small microprocessor system might be appropriate
for one sensor, whilst another sensor should be connected to a high performance
computer. The only requirement is the availability of the desired network protocol
and the compiler on each target platform.

This section discusses topics concerning the implementation of the discrete multi-
sensor mapping system as a symmetrical distributed application.

3.3.1 Handling of intermodal graph edges (cross edges)

It is obvious that delay edges between sensor modalities running on physically
separated machines have to be handled differently than internal graph edges. To
reduce the amount of communication, and to keep the partitions as independent
as possible, the following approach has been chosen.

Only active receptors have an influence on other sensor modalities. Thus it is
sufficient to transmit information about active receptors to all other partitions.
Due to real time constraints, it is necessary to limit the message size, so only the
states of the n most active receptors are transmitted.

The activity of cross edges is needed for receptor activity calculation. It is very
useful to keep all information about incoming cross edges on the receiver side.
On sender side, no information about outgoing cross edges is necessary. When
a message containing the state of the most active receptors of sensor modality
Sψ arrives, the receiver decides if to create cross edges. If a cross edge has to be
created, a local copy of the corresponding source receptor from Sψ is created. The
cross edge can now be created and treated as an internal edge, since the source
receptor is now in the same memory space. The state of the local copy of the remote

36 Chapter 3: Sensor fusion and Distributed Temporal Event Mapping

receptor is regularly updated, whenever a message containing information about
it arrives.

The activity calculation is timestamp oriented. The timestamp of the local copy
has to be consistent to the local system time. One method to achieve this, is
to synchronize the clocks of all participating machines, respective to calculate
clock skews to be able to translate timestamps to the internal time. The clock
synchronisation has to be repeated regularly, since clocks can drift during runtime.

Since messages about activation are always sent out immediately after an event
occured, it is also possible to use the arrival time of a message as the timestamp.
In this case, communication delays are mapped into the system together with the
usual delays between events. This is not a problem, as long as they are more or
less reproducible. Both methods are legitimate and yield similar results.

Chapter 4

Implementation and design issues

The distributed mapping system presented in the last chapter has high demands
towards implementation. This chapter describes the design of the most important
features, and the layout of the distributed system. A big issue is task synchroni-
sation, and controlled access on shared dynamical data structures.

4.1 Programming language of choice

The described system requires support for realtime programming and multi-
tasking. Especially task synchronisation mechanisms, mutual exclusion (mon-
itors), controlled time-outs and guaranteed scheduling times are important re-
quirements. It is clear that a temporal mapping system relies on quick response
times, and a sophisticated handling of time in the programming language and the
runtime environment. For development and debugging, features like exception
handling and range checks at runtime are useful.

A language which meets most requirements is Ada95. This revision of Ada83
from 1995 extends the original Ada with object-orientation, and many loadable
extensions (annexes) for realtime programming, distributed systems, communi-
cation and more. Ada95 has a built-in language support for multi-tasking, mon-
itors, guarded and unguarded entries, task synchronisation, exception handling,
flexible scheduling time handling (“delay until”-statement), and offers many pos-
sibilities for flexible type definitions. All types are checked during runtime. It
is possible to define protected types or methods which can only be accessed by
one task at a time (mutual exclusion). The realtime scheduler of the included
runtime environment can be configured freely or even be replaced by an own
implementation, if necessary. An open source compiler is available for most
platforms.

Other common languages like C++ or Java are usually missing the flexible type
definitions and the support for monitors, guarded task entries, and protected

38 Chapter 4: Implementation and design issues

types. Since these are basic requirements for the implementation of the presented
temporal mapping system, Ada95 is the language of choice for this project.

4.2 Tasks and monitors

Basically, there a two input sources. One is the event stream from the clustering
system or the sensor. The other input is the communication system, receiving
messages from other partitions. Both input interfaces should be designed as
monitors, equipped with a non-blocking input entry, and a blocking data retrieval
entry. Following processes (or tasks) are necessary in the mapping system itself.

The event input monitor. This monitor has a non-blocking “Notify” entry, to feed
an event into the system. The event is buffered in the monitor, and retrieved
by the main mapping task using the “GetEvent” entry. The “GetEvent”
entry is a guarded entry, which blocks until a new Event has arrived, and
the system is up and running. Another entry called “ShutDown” triggers
the system shutdown of the mapping system. For the experiments with
manually entered landmarks, another entry “SubmitLandmarks” receives
externally entered landmarks and forwards them to the mapping system,
where they are attached to the related receptors. With these entries, the event
input monitor offers a complete input interface for the mapping system.

The main mapping task. This task blocks itself by calling the data retrieval entry
of the event input monitor. Thus this task is fully event-triggered, and doesn’t
become active without incoming events. It is responsible for all calculations
and procedures concerning the local mapping and recognition. Here, the
activity levels of receptors are recalculated. Only this task can create edges
and receptors, and it is responsible for edge adaptation.

The wave damping task. In the analog system, activity waves not supported by
the current input do not disappear suddenly, but travel along through the
graph for a while, being damped until they disappear. To achieve this be-
haviour in the discrete system, a separate task is necessary. This task is
suspended while the main mapping task is active. After the main mapping
task has finished its active phase, it notifies the wave damping task. This
task calculates the time when an activity wave will reach the next receptor
in the system, and waits until then. Now, the activity level of this receptor is
recalculated using the activity level of the considered wave, and the damping
factor. Again, the time is recalculated, when an activity wave reaches the next
receptor.

This task has to store information about current activity waves in the system.
To meet realtime constraints, waves are not continued anymore, after their
activity drops below an insignificant level αlow. Since this task also accesses

4.2 Tasks and monitors 39

the main graph data structure, and reads and modifies receptor activity lev-
els, mutual exclusion with the main mapping task has to be guaranteed.
To achieve this, the main mapping task calls a blocking “suspend” entry
of the damping task. The damping task completes its calculations, and is
suspended. It only becomes active again, after the main mapping task has
finished, and calls the “notify” entry of the damping task.

The communication task. This task obtains its input data from a blocking mon-
itor entry of the communication subsystem. It becomes active, whenever a
message arrives. To avoid data access conflicts or inconsistencies in the graph
data structure, it only processes the incoming message and buffers all relevant
data in a protected list. The main mapping task considers the information in
this list, and creates or adapts cross edges if necessary.

This task also updates all local copies of remote receptors, for cross edge
activity calculation. To guarantee data consistency, all local receptor copies
are stored in protected list structures. This protected list provides atomic
read and write access to list elements, and is used in several places of the
implementation.

The communication input monitor. This monitor is responsible for the interac-
tion of the communication subsystem, and the mapping task. It has been
integrated into the communication subsystem. It offers a “Listen” entry for
message retrieval. The “Listen” entry itself is non-blocking, but callers are
requeued to a blocking waiting queue entry. There they are blocked until a
message arrives. Like this, an arbitrary number of recipients can be accepted,
which are all blocked until a message arrives. Then they all are released and
obtain the current message. Messages are delivered to the monitor by the
communication subsystem.

The main application task. This task is responsible for sensor data retrieval, sen-
sor data preprocessing (clustering), and triggers the mapping system by de-
livering events to the event input monitor. It is not belonging to the mapping
subsystem like the tasks and monitors described before, but runs externally.
The mapping system itself is event-triggered, and does not run without event
input. Usually, the main application task blocks itself at the sensor driver,
waiting for new sensor input. In this case, it is the resposibility of the sensor
driver to provide a continous input stream. If the sensor driver is passive,
the main application task has to poll the sensor driver for new input.

All procedures accessing the graph data structure of the topological map are
defined in a monitor. This guarantees atomic operations and data consistency.

40 Chapter 4: Implementation and design issues

4.3 Graph data structure of the topological map

The main data structure is the graph representing the topological map. The graph
consists of receptors and edges, which are stored in separated data objects each.
Both receptor and edge data objects have to be allocated dynamically. This enables
the graph to grow dynamically during runtime.

4.3.1 Receptors

A receptor has to carry the following data:

ID ∈ N: A unique identifier. All identifiers in the implementation are numerical
identifiers, stored in a long integer variable.

Triggering Event: The last event which activated this receptor most recently. An
event is described by the time when it occured (timestamp), and the event
ID. The event ID is usually derived from the corresponding cluster ID.

Activity: The output activity of the last activation. This information together
with the event timestamp is necessary for the activity calculation of following
receptors.

Event count ∈ N: This value is updated every time the receptor is activated. It
is used to determine the number of events since a previous activation, to
calculate the firing energy.

Input edges: A list of incoming internal edges. The list entries are only references
to the edge objects, since edges are also accessed as output edges of the source
receptor.

Output edges: A list of outgoing edges. Again, a list entry is only a reference.

Input crossedges: A list of modality descriptors with incoming crossedges. A list
entry is a descriptor containing the modality identifier, and a list of references
to crossedges from this modality.

Mirror flag ∈ {true, f alse}: This flag indicates if the receptor is a local receptor, or
a local copy of a remote receptor in another modality.

4.3.2 Edges

An edge object contains the following data structures:

Edge parameters: The delay duration δ, temporal precision σ, learning rate λ and
the edge weight ω (δ, σ, λ, ω ∈ [0, 1]). These parameters are described in
chapter 2.

Time warping factor: The time warping factor τ ∈ < is forward propagated
along the output edges during the recognition process.

4.4 Data layout of the system 41

Source: A reference to the source receptor of the edge.

Target: A reference to the target receptor of the edge.

Crossedge flag ∈ {true, f alse}: A flag indicating if the edge is a crossedge, or an
internal edge.

4.4 Data layout of the system

Apart from the main graph data structure, some other constructs are required.
These supplemental data structures are necessary for efficient access to the graph
structure, and for the management of the distributed system.

4.4.1 Protected list

For concurrent access control on multiple data elements, a protected list structure
is necessary. The list has been designed as a double-linked list. In this implemen-
tation, a list is described by a list descriptor. The list descriptor contains references
to the head and the tail of the list (the first and the last element).

For all list operations, a list handle is required. A handle either specifies exactly
one element in the list, or is outside the list and doesn’t specify an element. A
handle for a list can be created from a list descriptor with a protected procedure
(CreateHandle).

The following operations on the list are required:

• Jump to head (moves the handle to the begin of the list)

• Jump to tail

• Step forward

• Step back

• Get current element

• Add (append to list)

• Insert element at current position

• Remove (removes the specified element from the list

• Overwrite (overwrites the specified element with a new value)

Additionally, for list management, the following operations are necessary:

• Create list (creates a list descriptor, defining a new list)

• Create list handle

• Duplicate list handle

42 Chapter 4: Implementation and design issues

• Release list handle

A status function IsValid checks if the list handle specifies an element, or points
outside the list.

To guarantee data consistency with concurrent access on the list, a list element
may only be accessed by one process at a time, and all operations have to be
atomic. To achieve atomicity, all list access procedures have been defined in a
protected monitor.

Additionally, a list element must not be removed if it is still referenced (there
are list handles pointing to it). Every list element counts the number of existing
references. The reference counters are updated by all procedures which are mod-
ifying list handles. The “remove” procedure marks the list element for deletion.
Afterwards, it is not possible anymore to move a list handle to this element. List
handles still pointing to an element marked for deletion, are still valid. As soon
as the last list handle leaves this element, it is finally removed from the list and
deleted.

It is important to release list handles after use. This means that they are moved
outside the list. If this wouldn’t be done, it could prevent list elements from being
deleted.

To guarantee the correctness of the reference counter in list elements, list handles
may only be created, modified and duplicated by special procedures, which are
updating these counters. They should be declared as limited private types.

The list was implemented as a generic list. List elements are containers, which
carry an object of the specified type. Deleted list element containers are collected
in an internal recycling list, and reused for new elements. This avoids deallocation
of memory, and thus avoids memory fragmentation.

4.4.2 Event association table

Incoming events have to be associated with their corresponding receptors. For
this, a list is used, where the elements contain the event ID, and the list descriptor
of the list with the corresponding receptors. When a new event arrives, the cor-
responding list element is identified, to get the list with corresponding receptors.
All receptors in this list have to be evaluated.

If the incoming event cannot be found in the list, a new entry is created, and
appended to the list. The event association table dynamically grows with the
number of possible events. Newly created receptors are appended to the receptor
list corresponding to their event ID.

To identify events, it would be more efficient to use a binary search tree. Since the
number of possible events is usually relatively low, it is possible to use the list for
this task without loosing to much performance.

4.5 Communication layout for distributed computing 43

4.4.3 Activity table

The most active receptors have to be known by the system. First, the most active
receptor must be known for the acquisition process, and to identify the most active
wave, i.e. the best hypothesis, in the system. Second, the most significant activity
waves have to be known to be continued and damped by the wave damping
task. For efficiency reasons, only the n most active waves are considered (in the
experiments, n was set to 5). The activity table is implemented as an array with
n elements. This array is updated every time an event arrives, and is filled with
the most active receptors, if their activity level is above the low activity threshold
αlow. If there are less than n receptors with a significant activity level, the rest of
the array is empty.

4.4.4 Concurrent activity table

The concurrent activity table is a list with an entry for each involved external
sensor modality. A list entry is called “Modality descriptor”, and contains the
unique modality ID, a list with all local copies of remote receptors, and a activity
cache list with recently active receptors of this modality.

Whenever a message arrives, the Communication Task selects the corresponding
modality descriptor, updates all local copies of remote receptors in this descriptor,
and updates the activity cache list. The activity cache list is read by the main
mapping task, for the creation of cross edges. Data consistency with concurrent
access is provided by the protected list structure, as described before.

4.5 Communication layout for distributed computing

The most important required feature of the communication system is a possibility
to broadcast a message to all other sensor partitions. The only messages sent by
a partition are messages containing its most active receptors, and are adressed
to all other partitions. It would be possible to use mechanisms like ethernet
broadcast to address all machines in the local network. This is not very useful,
since many computers not belonging to the mapping system would be affected,
while it would not be possible to connect computers from different subnets to one
mapping system.

A better approach is to create a virtual peer-to-peer network, where every partici-
pant knows all other participants, and newcomers have to register at the existing
communication system. The registration process works as follows: A newcomer
(client) sends a registration request, containing its own address, to a participant
(server) which already knows all other participants of the system. The server
assigns a unique ID, sends it back to the client, and updates its own participant
list with the new member’s ID and address.

44 Chapter 4: Implementation and design issues

Request (1)
Registration

New ID (2)
New Partition

New Partition New Partition

New Partition

Existing mapping systemExisting mapping system

Existing mapping system Existing mapping system

"Ack" (4)

"New Member ID" (3)

Figure 4.1: The registration of a new member. Thin solid arrows indicate knowl-
edge relations, thick dashed arrows represent messages.

4.5 Communication layout for distributed computing 45

Now the server sends a “New Member” message to all other participants. Those
update their local participant lists with the ID and address of the new member,
and send an “Acknowledge” message to the new member. The server also sends
an “Acknowlegde” message. The new member now receives “Acknowlegde”
messages from all other participants, containing their IDs and addresses, and
builds up its own local participant list.

After the registration process, all participants of the system hold a complete list of
all other participants, which enables them to broadcast messages. Once running,
the system doesn’t rely on a central server, which improves the robustness.

Two different communication methods have been implemented.

4.5.1 Ada RPC and distributed object dispatching

This implementation uses the Distributed Systems Annex of Ada95, in the GLADE
implementation. It offers Remote Procedure Calls (RPC), and is fairly independent
of the underlying network protocol.

For addressing of the symmetric partitions, distributed object dispatching is used.
A common, abstract ID type (“AbstractID”) and an abstract message passing
“SendEvent” procedure is defined. This procedure expects three parameters: a
class wide access to an object of type “AbstractID”, the message to be delivered,
and the numerical ID of the sender. The class wide access type for “AbstractID”
is declared as a “Remote Call Interface”.

Every partition defines a type which inherits from “AbstractID”, and overwrites
“SendEvent”, using the local inherited type. The complete ID of a partition
consists of a numerical ID which was assigned during the registration process,
and an ID object of the local derivate of “AbstractID”. To pass a message, an access
to the ID object of the receiver is required. A call of SendEvent with the receiver’s
ID object is automatically dispatched to the partition holding the implementation
of that procedure with the respective ID object access.

For registration, a partition server is required. This server offers a remote call
interface with three procedures.

The “Register” procedure has an input parameter, which is the access type for
the “AbstractID” derivate of the new member, and an output parameter de-
livering the numerical ID to the caller. The registration process was described
earlier.

The “Broadcast” procedure passes a message to all clients known to the partition
server. The numerical ID of the sender has to be provided.

The “AddressResolution” procedure expects a numerical ID as input, and re-
turns the ID object derived from “AbstractID” belonging to the member with
the respective numerical ID.

46 Chapter 4: Implementation and design issues

Every partition builds up a local list of all participants, containing their numerical
ID and an access to their ID object. With every message, the numerical ID of the
sender is delivered. If the corresponding ID object is unknown, it can be obtained
from the partition server, using the “AddressResolution” procedure. After all
partitions are registered, the partition server is not needed any more. Every
partition is able to broadcast messages to all other members.

4.5.2 TCP/IP and UDP/IP communication

Another communication system using Unix Sockets has been implemented. The
basic structure is identical, but the central partition server is not needed any more.
A new member can register at any participant of the mapping system, making it
an absolutely symmetrical distributed system.

The complete ID of a partition now contains the IP address plus port number, and
a numerical ID. The registration process is identical to earlier descriptions, with
the difference that any of the symmetrical partitions can be the registration server
now.

The implementation using TCP/IP offers a more reliable communication, but
caused some problems concerning realtime constraints. A message containing
the most active receptors which cannot be sent due to poor network conditions,
must not block the system. This applies also to the case when the receiver accepted
a TCP connection, but the actual message never arrives. In both cases, a time-
out must be implemented, and the communication must be aborted. A lost
message just slows down the sensor fusion process. This is not problematical,
but a delayed execution of input data with possible loss of samples is. In some
cases, an abortion of the Linux/Unix Socket system call lead to an undefined
state of the communication interface on the operation system side. This caused a
loss of the SIGIO signal, probably due to processor overload, which affected the
communication with the SICK Laser Sensor over the serial port.

The UDP implementation doesn’t suffer these problems, since it is not connection-
oriented, and both the “send” and “receive” Linux/Unix system call are non-
blocking. For realtime applications, a UDP communication system is often more
appropriate. For this system, packet loss has no severe consequences and can be
ignored, since every partition is fully operative without any communication. Of
course, sensor fusion is slowed down by large scale packet loss, but this only has an
impact on performance, but not on principal functionality. UDP communication
is the appropriate choice for this system, and proved functionality and efficiency
in the experiments.

4.6 Dependencies 47

data structure

Graph

Task

Wave damping Task

Task

Main Mapping Task

Monitor

InputHandler

Task

Concurrent Activity

Handler

Monitor

Data access

procedures

Monitor

Communication Input

Task

Communication

subsystem

(protected list)

Concurrent
activity cache

Non−blocking entry call

Blocking entry call

Data access

Read

Write

ReleaseSuspend

Figure 4.2: Illustration of the most important parts of the system and their depen-
dencies

48 Chapter 4: Implementation and design issues

4.6 Dependencies

An important question in multitasking systems is if deadlocks can occur. Dead-
locks can be caused by concurrent resource dependencies, or circular task wait
conditions. All data access procedures have been designed non-blocking and
atomic. Where the protected list is used, this is already provided by the non-
blocking atomic list operations. More complex operations have been declared in
a separate monitor, to guarantee atomicity within the system. The result is that all
concurrent data accesses on common data structures are serialised. This makes
locking mechanisms unnecessary, and avoids deadlocks. It would be possible to
allow concurrent read access in some cases. But since only three tasks are access-
ing the data, and read conflicts hardly occur, this would not increase performance
a lot.

There are dependencies between the tasks and monitors of the system (see fig.
4.2. The main mapping task and the wave damping task have to run in mutual
exclusion. Before starting a calculation cycle, the main mapping task blocks itself
while trying to suspend the wave damping task, until the latter has finished its
cycle. After this, the main mapping task is released, and the wave damping task
remains blocked. When the main mapping task has finished its cycle, it resumes
the wave damping task again. This guarantees mutual exclusion. Deadlocks
can’t occur here, since the main mapping task is only blocked while calling the
suspend entry, and the suspend entry is only temporarily blocking. The wave
damping task does not depend on the main mapping task, so there is no circular
dependency.

All other tasks only block themselves at monitors, waiting for new input data.
The monitors can’t lock, and as long as new data arrives, the system is alive.

Chapter 5

Experiments

The expected functionality of the proposed system is to recognise and identify
repeating temporal patterns or rhythms in the input data streams. To evaluate
the capabilities of the system, several experiments have been accomplished, using
simulated and real sensor data.

The discrete multiple sensor system has been implemented with the programming
language Ada95, including the realtime annex. It has been compiled with the gnat
compiler for 32 bit Intel 80x86-compatible linux platforms. The final version used
for the experiments communicates over the UDP/IP protocol.

5.1 Measurements and criteria

To measure the success of the method, respective the quality of the mapping and
recognition process, the following measurement shall be introduced. The system
has to make one guess, which receptor will be the most active in the close future,
everytime an event arrives. This guess is determined by simulating a perfectly
timed activation of the receptors on each outgoing edge of the currently most
active receptor. For this simulation, all information including cross edge activity
is used. The receptor which can achieve the highest activity level in this simulation
is guessed to be most active in the close future. When the available information
from cross edges changes, the guess may be modified, but only before the next
event occured. A correct guess is rewarded with the value 1. A guess expires, if
the time span represented by the connecting edges from the currently most active
receptor have expired. An expired guess results in a 0. A sliding mean value P(t)
(prediction success) represents the outcome of the last guesses.

Predicting the next most active receptor is a very strong criteria. The activation
of a certain receptor not only depends on the occurence of the right event in
approximately the right time, but also in the history of events, since the activity
level of the input edges is relevant. A correct guess therefore expresses a big

50 Chapter 5: Experiments

Figure 5.1: Internal representation of the input data from the second experiment
with perfectly reproducible simulated data

certainty of the system about the current and future input data, and is a good
quality measure of the current most probable hypothesis of the system. The
noise level of P(t) depends on the number of events and the variance of time
spans between events. Assuming that events arrive with a constant frequency,
and all transitions have the same probability (white noise), the expectation value
of P(t) is below 1

|E|
, with |E| being the number of possible events. For varying

time intervals between events, the expectation value of P(t) is lower. The actual
expectation value depends on the timing variety of events, which is not restricted
and thus hard to determine. It is also dependent on system parameters such as
the initial temporal tolerance σE, the amplification parameters, and the adaptation
parameters.

5.2 Simulated data experiments

Real sensor data from real world experiments has a complexity that makes it
difficult to analyse the behaviour of a system reacting to this input. To get a better
understanding of how the system works, it is useful to construct some artificial
scenarios which aim for a certain behaviour of the system, and to compare the
system’s reaction to the expectations. Two basic simulated experiments have been
chosen. The first experiment shows the functionality for one sensor input. The
second experiment analyses the functionality and the impact of sensor fusion.

5.2 Simulated data experiments 51

5.2.1 Clean and noisy input comparison

To test the system’s basic functionality, the signal to noise distance of the pre-
diction success measure P(t) is determined by feeding the mapping system with
a sequence of evenly distributed random events, and with a sequence of events
consisting of one repeating subsequence. To simplify the experiments, the time in-
terval between events is constant. Any real world experiment will add complexity
due to the varying time base of event sequences.

In the first experiment, every 0.2 seconds one event out of 20 unique events is
randomly selected (using the Ada random numbers package), and fed into the
mapping system. It is expected that the system will reach a low activity level,
since no sequence is repeated accurately in this experiment. The P(t) measurement
should reach the statistical prediction average of 1/20.

In the second experiment a sequence of 20 unique events is repeatingly fed into
the system, again with 0.2 seconds delay between two events. After a few re-
peated observations of this subsequence, it should be internally represented and
recognised by the system, resulting in a high activity level. The P(t) measurement
should reach its maximum value, since there is no ambiguity, and all predictions
should be correct.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time (sec)

A
ct

iv
it

y
, H

(t
)

(%
)

0 5 10 15 20 25 30 35 40
0

50

100

Time (sec)

A
ct

iv
it

y
, H

(t
)

(%
)

Figure 5.2: Activation (blue, upper curve) and P(t) (black) for random input data
(upper plot) and for absolutely reproducible input data (lower plot)

The expected behaviour can clearly be seen in figure 5.2. It takes approximately 50
seconds or 250 events for the system to adapt to most of the occuring single-step
transitions. This results in a visible, but still low activity level. The activity level

52 Chapter 5: Experiments

ususally remains below the recognition threshold αhigh = 0.5. Still there are no
accurate predictions possible, which is represented in a low value for P(t). The
prediction success rate is approximately the statistical average of 1/20.

In the second experiment, the same sequence repeats every 4 seconds. It can be
seen how the activity level quickly reaches the maximum, when the sequence is
observed the second time. The value P(t) grows exponentially, since all predictions
are correct from that moment.

5.2.2 Sensor fusion in simulation

This experiment is to investigate the functionality of sensor fusion. A sequence of
10 events, containing one bifurcation point, is used as input. At the bifurcation,
each path has a 50% probability, and is randomly chosen. The experiment setup
consists of two mapping systems, which communicate over UDP. The input se-
quence is repeatedly fed into the first mapping system. At the bifurcation point, a
random decision is made. The second mapping system receives exactly the same
input sequence, with the same decisions made, but with a short delay.

Without sensor fusion, both mapping systems should achieve a prediction success
rate lower than 100%, since the bifurcation decision cannot be predicted. With
sensor fusion, the mapping system with the delayed input should be able to use
the information of the other mapping system to predict the bifurcation decision
correctly.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time (sec)

A
ct

iv
it

y
, H

(t
)

(%
)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time (sec)

A
ct

iv
it

y
, H

(t
)

(%
)

Figure 5.3: Activation (blue, upper curve) and P(t) (black) for the preceding (upper
plot) and succeeding (lower plot) mapping system

5.2 Simulated data experiments 53

Figure 5.4: The internal graph structure of one of the mapping systems in the
simulated sensor fusion experiment.

It can easily be seen in the plots (fig. 5.3) how the succeeding mapping system
(lower plot) produces 100% correct predictions, after the sensor fusion process
has stabilised. This shows that the described method for fusing mapping systems
with cross edges enables modalities to consider information from other modalities
to improve recognition and predictability of input data.

Experiments with different delays for the input of the second system produced
similar results, except in two cases: If both systems receive the same input exactly
synchronized, neither of the modalities shows improvements. This is clear, since
no further information about the further path at the bifurcation point is available,
when the prediction has to be made. The other case is when the delay is bigger
than the system’s time window (the maximal size of Rlma, see 3.1.1), so that no
temporal correlations can be observed any more. In both cases, both systems
achieve the same performance as if working alone. Here another feature of the
system appears: Correlations across sensor modalities are used where they exist,
and performance is improved. Where no reproducible correlations exist, external
influence is ignored.

54 Chapter 5: Experiments

Figure 5.5: The Nomad XR4000 mobile robot

5.3 Real world experiments

It has been shown that the mapping system shows stable behaviour with noise
and perfect input data, and that sensor fusion works in simulation. Input data
from real sensors is always interfered with noise. The complexity of reality
always leads to ambiguities, wrong measurements, and unpredictable events.
This section examines the behaviour and stability of the mapping system under
real world conditions.

To obtain event sequences, raw sensor data is clustered, using the clustering
system described in 2.5.2. The events resulting from cluster transitions are used
as input for the dynamical mapping system (see also section 2.5.2).

5.3.1 General experiment setup

A landbound autonomous mobile robot has been chosen for the following ex-
periments. While the robot drives around using a reflexive exploration strategy,
the mapping system processes incoming sensor data, trying to recognise known
patterns. As in previous experiments, the activity level of the most active receptor
and the quality measure P(t) are recorded and evaluated. The exploration module
is independent from the mapping system in these experiments, except that both
are using input data from the same laser sensor.

5.3 Real world experiments 55

Figure 5.6: SICK laser sensor

The Nomad XR4000 mobile robot

The Nomad XR4000 is a holonomic mobile platform. Cylindrical in shape, it
has a radius of approximately 30 cm, and the main body is about one meter
high. It is equipped with an internal SICK Laser Range Sensor, 48 infrared and
sonar proximity sensors, 48 collision sensors (bumpers), two identical on board
Pentium III computers with 633Mhz, and batteries allowing up to 6 hours of
operation without recharging.

The two internal computers are called “Jekyl” and “Hyde”. All built-in sensors
and the motor controllers are attached to “Hyde”. Both conputers are inter-
connected with ethernet, and with a radio ethernet adapter, enabling the robot
to communicate with the internet. The maximum speed of the platform is 1.5
m/sec in any direction, which is reached after one second at full acceleration. The
maximal angular velocity is 90 degrees per second.

On top of the platform, more sensors can be and have been mounted, such as a
second SICK laser sensor, a panoramic camera, or a stereo vision system. For the
experiments, only the two laser sensors and the sonar sensor have been used.

SICK LMS400 Laser Sensor

The SICK LMS400 measures the distance to the next obstacle, using the time of
flight of an infrared laser beam. The range is 180 degrees angular and up to 32
meters linear, at an angular resolution of 0.5 degrees. A full scan consists of 361
distance measures. The scan rate in the configuration used for the experiments is 5
scans per second. Measurements are very reliable for almost any kind of obstacle

56 Chapter 5: Experiments

Figure 5.7: Sonar sensors

surface, including glass. A quality information for every single measurement is
available.

Two SICK laser sensors have been used. One is mounted inside the robot, scanning
forward-looking parallel to the ground in a height of 50 cm. The second laser is
mounted on top of the platform, scanning backward-looking 1 meter above the
ground. The first sensor is connected to the primary computer, called “Hyde”.
The second laser is attached to “Jekyl”, the second computer onboard the robot.

Polaroid Sonar Sensor

The Nomad is equipped with 48 Polaroid sonar sensors, which are located at
the upper and lower rim of the main body. The sonar sensors are time-of-flight
distance sensors with a measuring range of 20cm to 5-6 meters. A single pulse is
emitted by an ultrasonic transmitter; the echo is received by the same transmitter.

Measurements are error-prone due to multiple reflections, interference, and poor
echo signal quality on many obstacle surfaces. To avoid interference between
the sensors, neighboured sensors emit pulses one after another, with delays long
enough that all echos of the previous pulse have disappeared. The overall scan
frequency is approximately 1 Hz.

Environmental setup

All experiments were carried out on corridors in an office environment. The
available space was limited to an L-shaped section. Observable features were
open doors, poles, and intersections. The uniform appearance of the environment
makes localisation more difficult, since different places may be hard to distinguish
in the sensor data. Different locations often resulted in the same cluster catego-
rization after the online clustering process. This emphasizes the importance of
the context of observations.

Since the experimental environment was an office area, interferences of the robot
with people walking around in the building weren’t always avoidable. A person

5.3 Real world experiments 57

in sensor range not only influences the observed data, but can also influence the
robot’s behaviour (collision avoidance, path fluctuations). While partial changes
in range scans caused by dynamical objects usually have a small or no impact,
a changed behaviour affects the spatio-temporal flow of events. This can affect
the performance of the temporal mapping system. The mapping system was
designed to ignore small changes and noise. Bigger variations of input data or
even different paths are learned during observation. Of course, such variations
can’t be known in advance, and some variations are not likely to happen again in
the same manner. In those cases, the mapping performance can decrease.

The floor of the office area is covered with carpet. Experiments proved odometry
to be useless due to drift effects. After two passes through the L-shaped section,
the internal coordinates already drifted between one and two meters. It was
not possible to use odometry for evaluation purposes. Instead, landmarks were
manually entered.

5.3.2 Exploration strategy

It is vital for the mapping technique that the robot moves around in a more or
less predictable and reproducible manner. That means that the robot behaves
similar in a similar situation. Of course, an exploration strategy should also avoid
collisions, and should be able to cope with dynamical objects.

An exploration strategy based on reflexive motion patterns has been implemented.
There is no connection to the mapping process; exploration is independent from
the mapping status.

For collision-avoiding exploration, the internal SICK laser sensor is used. A simu-
lated 360 degree map is calculated while moving, using odometrical information.
All measurements in this map are extended by the robot radius plus a safety
distance, so that the resulting 360 degree map represents the distances the robot
can go without a collision in the corresponding direction.

Now the robot simply turns into the direction with the maximal possible distance
to go. If this direction offers only a distance too small to be interesting (for the
experiments, 0.75 meters were found to be appropriate), the robot turns around
until a better direction can be seen. A forward movement is combined with the
rotational movement at the same time, where the forward speed is controlled by
the minimal distance to the next obstacle in sight.

This results in a smooth movement along the corridors of the laboratory. When
reaching a dead end, the robot turns around. The approach is stateless and
reflexive, nevertheless stable and reliable, even in dynamical environments. Since
the forward movement is controlled by the distance to the next obstacle, collisions
with static objects are not possible. The robot also choses a direction in which
it can go furthest, and thus is keeping away from potential obstacles. When an

58 Chapter 5: Experiments

obstacle is approached, the robot will slow down and try to find a way around it.
If there is not enough space to get around, it will turn around and chose another
direction. The paths through the environment will never be absolutely identical.
When visiting a place again, the robot behaves in a reproducible way, which is
sufficient to get similar temporal patterns in sensor data.

5.4 Software setup and constants

First of all, an interface to the robot’s controller software had to be created. For
the SICK Laser Sensor, a driver has been developed in Ada95. The sonar sensor,
the motor controller and all other sensors where accessed using the Nomad C-
library delivered with the robot. Therefore, an Ada interface to the C library
was developed, that made it possible to access all needed controller functions
by native Ada subroutines. The Ada interface also converts all measures into
metrical measures, and performs some basic range checks, to simplify access.

For every sensor, the raw data was preprocessed by the online clustering sys-
tem. The resulting event stream was the input for one partition of the temporal
mapping system. A partition was executed on the computer to which the cor-
responding sensor was connected to. In the experiments with sensor fusion,
the partitions communicated over UDP sockets. Every partition created verbose
logfiles, containing all relevant information including timestamps, for evaluation
purposes.

The clustering system was set up individually for each sensor type. The sensibility
was chosen, that about 50 clusters per sensor were created during the experiments.
The configurations of the mapping systems for each sensor were identical. The
following settings were used:

Parameter Value Description

αhigh 0.5 High activity recognition threshold
ca 5.0 Amplification factor

cdamp 0.3 Damping factor
ε 0.01 Self-activation term

cR 0.2 Firing energy recharging rate
λi 0.8 Initial learning rate
cλ 0.3 Learnrate reduction factor
cd 0.03 Inactive edge decay factor

σi/δi 0.5 Initial temporal precision
tpmax 0.1 maximal temporal precision (minimal σ/δ)

ct 0.4 time warp adaptation rate

The number of transmitted active receptors for sensor fusion was limited to 5. A
message sent to other partitions via UDP fitted into one UDP packet.

5.5 Results 59

The constants and parameters have been chosen according to the results of many
preliminary experiments. Some parameters are not critical, and would be appl-
icaple to many other situations. But especially the sensibility of the clustering
system, the amplification factor and the self-activation term should be adapted to
the target environment and the sensors used.

5.5 Results

Several experiments with the described robot were carried out. Using the ex-
ploration strategy described before, one complete pass through the L-shaped
environment took about 120 seconds.

5.5.1 Experiment 1: one internal laser sensor only

This experiment is to show the principal functionality of the system for one sensor
modality. As in all following experiments, the exploration strategy described
above is used. The calculated 360 degree map calculated by the exploration
module is used as input for the dynamical system.

As visible in fig. 5.8, the activity level of the system increases after the second or
third pass through the environment. This means the system already recognizes
sequences of the input data. After the fifth pass, the mapping system for the
forward looking internal sensor (“Hyde”) is able to reach a prediction success level
of about 40 percent. This value increases up to 50 percent, while the experiment
continues. The second mapping system for the backward looking laser (“Jekyl”)
needs a bit longer to stabilise, due to higher complexity of the input data, but after
10-12 passes, it stabilises with a prediction measure P(t) of 45-50 percent.

The prediction success of 50 percent appears to be low. In fact, it is a good success,
considering that temporal and causal information has to be guessed correctly.
Second, there are multiple parallel hypotheses in the system, which are roughly
equivalent and just represent variations of the input due to noise. Since only one
guess per incoming event can be given, it is not possible to predict everything.
The activity level soon reaches a level above 0.5, which means that the system
recognizes the input.

5.5.2 Experiment 2: two internal laser sensors and one sonar
sensor

This experiment investigates the improvement of recognition when using several
sensors instead of only one.

60 Chapter 5: Experiments

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

A
ct

iv
it

y
(%

)

Hyde

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

A
ct

iv
it

y
(%

)

Jekyl

Figure 5.8: Measurements for standalone laser sensors (no fusion). The blue curve
shows the receptor activity, the black curve is the percentage of correct predictions
P(t).

The second laser sensor, mounted on top of the platform looking backwards, has
been used for this experiment. Due to a different height above the ground (1
meter instead of 50 cm), this laser observes a different part of the environment.

One mapping system uses the 360 degree map as input, which is calculated using
data of the forward looking laser sensor, as in experiment 1. The second mapping
system uses raw data from the backward looking laser sensor. The third mapping
system is connected to the sonar sensor. All mapping systems communicate over
UDP/IP, to achieve sensor fusion as described in chapter 3.

The results (figure 5.10) show that the two laser sensors obviously cannot profit
from sensor fusion in this experiment. Only the sonar sensor can significantly
improve its (overall poor) performance. It is not absolutely clear why the results
for the laser sensors are not improved by sensor fusion. One explanation is that the
intrinsic noise in the experiment setup does not allow a higher prediction success
rate than already achieved in the single sensor case. All sensors provide data with
similar characteristics, and in consequence all could suffer from the same kind of
intrinsic noise. If the observed noise does not come from the measurements, but
is already present (and the same) in all measurands, sensor fusion can’t have the
desired effect. Further investigations on that topic in experiment 4 support this
theory.

The next experiments use a different sensor setup, where the different sensor
modalities should have different characteristics towards the measurand and the

5.5 Results 61

Figure 5.9: Established paths in the internal graph structure of the single laser
sensor experiment (unused receptors and edges have been removed for better
clarity)

kind of noise.

5.5.3 Experiment 3: internal laser sensor, external laser sensor

The robot is in the same configuration as in experiment 1. Again, the 360 degree
map is used for mapping. Additionally, a stationary laser sensor observes the
robot driving around. The measurements of this external sensor are used as input
for a second mapping system. Again, the two mapping systems communicate
over UDP/IP.

The external sensor cannot see the robot at all times, and thus doesn’t contribute
everywhere. It is expected, that the activity and the P(t) measurement are higher
when the robot is in sight of the external sensor. When the robot is out of sight
of the external sensor, results are expected to be comparable to the results of
experiment 1. This experiment also demonstrates the flexibility of the system.

The expected effect can clearly be seen in the plots in figure 5.11. The thick blue

62 Chapter 5: Experiments

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

P
(t

)
(%

)
L

a
se

r
1

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

P
(t

)
(%

)
L

a
se

r
2

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

P
(t

)
(%

)
S

o
n

a
r

Figure 5.10: Results of the experiment with all sensors. The black curve shows
the results without sensor fusion, the blue curve with sensor fusion.

5.5 Results 63

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

A
ct

iv
it

y
(%

)

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

co
rr

ec
t

p
re

d
ic

ti
o

n
s

(%
)

Figure 5.11: Experiment with an internal and an external laser sensor. The black
curve represents the internal sensor, the blue curve shows the external sensor
measurements.

plot (belonging to the stationary laser sensor) has gaps, whenever the robot is out
of sight. The activity level and the prediction measure of the internal sensor are
clearly higher at times when the external sensor observes the robot and delivers
data. The peaks in the thin black plot correlate well with the fragments of the
thick blue plot.

The same experiment has been carried out without sensor fusion, using exactly
the same input data. The results are compared in figure 5.12. It can be seen
that sensor fusion improves the results shortly after the startup phase. After
about ten passes, the systems not using sensor fusion can catch up and achieve
approximately the same performance. This indicates that the saturation of the
prediction measurement at about 50 percent has its foundations in the experiment
setup. Obviously there is a certain amount of noise, which is common in all sensor
modalities, and a prediction success rate of 50 percent is close to the possible
maximum in this special experiment setup. This noise probably comes from the
variations in paths chosen by the exploration strategy. Another source could be
clusters which are very similar. If the clustering system oscillates between two
similar clusters, the event chain is not absolutely predictable.

64 Chapter 5: Experiments

0 500 1000 1500 2000 2500
0

50

100
Internal sensor

Time (sec)

P
(t

)
(%

)

0 500 1000 1500 2000 2500
0

50

100
External sensor

Time (sec)

P
(t

)
(%

)

Figure 5.12: Experiment with an internal and an external laser sensor. The black
curve shows the results without sensor fusion, the blue curve with sensor fusion.

5.5 Results 65

0 500 1000 1500 2000 2500
0

50

100
Internal sensor

Time (sec)

P
(t

)
(%

)

0 500 1000 1500 2000 2500
0

50

100
Landmark sensor

Time (sec)

P
(t

)
(%

)

Figure 5.13: Experiment with an internal laser sensor and manual landmark
input. The black curve shows the results without sensor fusion, the blue curve
with sensor fusion.

5.5.4 Experiment 4: laser range finder and manual landmark
input

In this experiment, the robot again is in the same configuration as in experiment
1. A second (external) sensor modality is given by a human entering landmark
identifiers into a computer, when the robot reaches the corresponding position.

This experiments targets behaviour of the system when dealing with extremely
different timing behaviours of the sensors. The laser sensor delivers data 5 times
per second, and approximately every 1-2 seconds an event is detected. The
average time between two landmarks is 8-12 seconds.

The results of this experiments are shown in figure 5.13. Obviously the landmark
sensor modality is very reliable. There is only some noise in the time domain
(depending on the speed of the robot). The influence of this reliable modality
clearly improves recognition results for the internal laser modality. This again
shows the functionality and flexibility of the sensor fusion method, even when
dealing with extremely different data rates and sensor characteristics.

On the other hand, the laser sensor improves the results of the landmark sensor,

66 Chapter 5: Experiments

too. Without sensor fusion, the landmark sensor is sensible to temporal noise.
When using information of the laser sensor modality, the prediction success ratio
increases, since the extra information implicitely contains the speed of the robot
in the current section. This makes better predictions of the expected arrival of an
event possible.

The plots of this experiment clearly show the effects of sensor fusion. In the
first two passes through the environment, sensor fusion has no effect, since both
systems have to establish some structure first. But already in the third pass (after
about 250 seconds), slight improvements by sensor fusion are visible. After 5
passes, intermodal correlations have stabilised and clearly improve recognition
and system stability. The prediction success ratio of the laser sensor mapping
system still saturates at about 50 percent. The correct position is known by the
landmark modality, but this cannot improve the predictability of the laser sensor
modality. This indicates that 50 percent prediction success is close to the maximum
which can be reached using this sensor with the current clustering method.

5.5.5 Experiment 5: Attaching and comparing landmark
information

This last experiment investigates the correlation of internally recognized positions
(receptors) with locations in real space. Since the internal topological map is not
easily interpreted by human operators, it is important to introduce landmarks
defined by the operator into the internal world representation.

This time the manually entered landmark information is not a sensor modal-
ity in the system. Now, when a receptor is created, it stores the last landmark
identifier which was entered. As the experiment continues, the landmark infor-
mation stored in the currently most active receptor (the position which the system
recognized) is compared to the current true location (the last manually entered
landmark). The success rate is shown in figure 5.14.

After stabilisation, the system correctly identifies the current landmark for 70-80%
of all incoming events. This result is very good, considering that no informations
about the sensor characteristics have been used, and the system already stabilises
after 4-5 passes through the environment.

It can be observed that wrong identifications usually have significantly lower
activity levels, but this is not considered in the measurements. Another source of
identification errors is that receptors cannot change their allocation to a landmark,
even if the topological structure changes in the stabilisation phase. For a real
application, the results could be improved by weighting landmark identifications
with the corresponding activity level and prediction success, and adapting the
receptor-landmark relations.

This experiment impressively shows how landmark information can be intro-
duced into the system, and that the internal world representation correlates with

5.5 Results 67

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Time (sec)

M
a
tc

h
e
s

(%
)

Figure 5.14: Landmark identification success in percent.

real world locations. External landmark information is used in this experiment
when receptors are created. But landmark information could be introduced at
any time by modifying most active receptors. This is relevant for practical ap-
plications, where a human operator has to provide location identifiers to create
a communication basis to the navigation system. Once familiar with landmark
identifiers, the system can translate target specifications into the internal world
model, and vice versa. Only after this is possible, a human-machine communica-
tion is possible.

Chapter 6

Conclusion

A dynamical system for temporal event mapping has been developed. The system
has no rigid time base, and is able to deal with all kinds of input frequencies and
rhythm variations. The number of possible events is flexible and can change
during runtime. The map size grows dynamically as required, depending on
the input. The only limitations are given by the memory size and speed of the
computer executing the mapping system. The computational effort for input
recognition is low, the system is able to work online. It has been experimentally
shown that it is possible to use the presented temporal mapping method for
simulataneous localisation and mapping.

The aquisition of input sequences is immediate, and the adaptation process is very
fast. In simulation, a sequence is recognized already the second time it occurs. In
real world experiments with online clustering of raw sensor data, locations are
robustly recognized after 4-5 passes through the environment.

An extension has been presented to fuse information from sensors with different
characteristics and timing behaviours to improve recognition results. The dynam-
ical system was implemented as a symmetrical distributed application. Function-
ality and efficiency have been investigated in simulation and in real world exper-
iments. The presented approach overcomes some drawbacks of other methods
in terms of flexibility towards range, complexity and temporal characteristics of
input data.

The proposed mapping method can be applied to robots in environments which
cannot be easily modelled, and where movement in space cannot be measured di-
rectly by odometry, such as on submarines and flying or hovering robots. It offers
many possibilities to use sensors which could not provide any useful information
otherwise, since no explicit feature extraction or sensor data interpretation is re-
quired. Examples for a submarine are sensors for water temperature, pressure,
electric conductivity, or chemical properties and water quality. Those sensors
don’t provide great amounts of information about the position in a single mea-
surement. The temporal information in a sequence of those measurements is

70 Chapter 6: Conclusion

much greater, as well as the information in correlations of different sensor modal-
ities. There may be situations for a submersible robot, where no other information
is available. Using the proposed system, this information can be used for locali-
sation, and can provide essential clues about the robot’s position.

There are many other applications for temporal mapping methods like this, and
many situations in which temporal information and rhythms in input data are
important. This was not discussed in this work, but offers a huge range of further
investigations.

6.1 Future work

The basic features and properties of the presented system have been experimen-
tally investigated. Yet there are still many open questions which could not be
answered in the limited frame of this work.

There are many applications for the presented temporal mapping system, in
robotics but also in other areas. The temporal mapping system can be useful,
where an analysis and recognition of timing or rhythms is important. One ex-
ample is the learning of dynamical trajectories. After some demonstrations of a
motion pattern, the system would be able to recognise it, and could try to imitate
it. Activity waves could be fed back into the system, so that a short start se-
quence could trigger the execution of the whole trajectory. Other areas are speech
recognition or music analysis.

An important and very complex topic is the thorough theoretical analysis of the
presented analog model. This work has its emphasis on the discrete implemen-
tation for common digital computers, and experimental examinations. It is not
absolutely clear how to analyse a continous, dynamically growing and adapting
system of this complexity. A big problem is that the structure and structural
changes of the system depend on the input data, which depends on processes in
reality. The complexity of reality is infinite, so it is difficult to make valid assump-
tions and to completely understand the theoretical behaviour of the mapping
system in extreme situations.

Another big question is the amount of implicit information contained in temporal
patterns, and how it can be measured. Of course, this depends very much on the
characteristic of the input streams, the environment, and on the kind of informa-
tion which should be extracted from the input. Many topics emerge here, i.e. how
temporal information can be processed, used and stored, where it makes sense to
use it and where it doesn’t, and how to learn making this decision.

A practical question is how to use the topological map of the presented system
for navigation, and how the method can be combined with other approaches (i.e.
cartesian mapping). It is also interesting if and how the similarity measurement

6.1 Future work 71

of the data clustering method can be automatically adapted to the underlying
structure of the input data. This would result in a more appropriate clustering of
the input, and in less noise in the event stream.

The vision is an online system based on unsupervised learning, that automati-
cally identifies features in sensor data, finds correlations and temporal patterns
between multiple inputs, and is able to adapt to the current set of sensors and
the environment. Unsupervised learning usually means finding structures in un-
known input data. It always depends on the application, which structures turn
out to be useful. The big goal is to find a system, which is able to learn making
this decision itself, depending on the task to perform.

Chapter 7

Appendix A: Kurzfassung in deutscher
Sprache

7.1 Einleitung

In vielen Fällen ist es schwierig, Sensordaten geeignet zu modellieren. Zum
Beispiel werden Ultraschall-Entfernungssensoren auf einem Untersee-Roboter
durch unzählige Faktoren wie Wasserdruck, Temperatur oder Salzgehalt bee-
influsst. Der hier verfolgte Ansatz umgeht dieses Problem, indem mit uninter-
pretierten Sensordaten gearbeitet wird. Stattdessen sollen die entscheidenden
Merkmale und Muster unüberwacht gelernt und wiedererkannt werden. Eine
besondere Bedeutung soll dabei zeitlicher Information zugesprochen werden.
Zeitliche Muster oder Rhythmen enthalten eine große Menge an Information, die
genutzt werden sollte. Gerade bei der Lokalisation kann der zeitliche Ablauf eine
große Rolle spielen.

Es ist einleuchtend, dass der Kontext einer Messung oft aufschlussreich ist, wenn
es darum geht, Mehrdeutigkeiten auszuschließen. Beispielsweise passiert es oft,
dass zwei verschiedene Orte beinahe gleich aussehen. Die Unterscheidung kann
dann eventuell nur anhand unter Berücksichtung der näheren Umgebung getrof-
fen werden, insbesondere dem Weg dorthin. Bei landgebundenen Robotern ist
der Begriff des zurückgelegten Wegs relativ klar. Anders jedoch bei Untersee-
Robotern, Flugrobotern, oder anderen schwebenden, driftenden Maschinen. Hier
ist es oft nicht eindeutig festzustellen, ob eine Bewegung im Raum stattgefunden
hat, und wenn ja, in welche Richtung mit welcher Geschwindigkeit. Äußere
Einflüsse wie Strömungen und Turbulenzen können nicht vorhergesagt werden.
Hier ist der zeitliche Verlauf der Sensordaten der einzige Anhaltspunkt.

Das Ziel ist also, zeitliche Muster aus beliebigen Sensor-Eingabedatenströmen
unüberwacht einzulernen und wiederzuerkennen. Dabei sollen verschiedene
Sensoren unterschiedlicher Charakteristika miteinander kombiniert werden können.

74 Chapter 7: Appendix A: Kurzfassung in deutscher Sprache

7.2 Ereignissequenzen

Um die hochdimensionalen Sensordaten besser handhaben zu können, wurde der
Begriff “Ereignis” eingeführt. Ein Ereignis ist das Auftreten eines bestimmten,
unterscheidbaren Merkmals in den Sensordaten. Ein Ereignis ist fest verknüpft
mit dem Zeitpunkt, an dem es stattfindet.

Um aus den rohen Sensordaten einen Strom von Ereignissen zu gewinnen, wird
ein dynamisches Echtzeit-Clustering-System eingesetzt ([7]). Ein Ereignis ist eine
Clustertransition, und wird spezifiziert durch die Kennung des neuen Clusters,
und dem Zeitpunkt. Dies entspricht einer Abtastung der Sensordaten mit einer
variablen Abtastrate. Die Abtastrate richtet sich nach der Änderungsrate der
Daten.

7.3 Das dynamische System

Die zugrundeliegende Idee ist, zeitliche Abfolgen von Ereignissen durch einen
gerichteten Graph zu repräsentieren. Die Knoten stehen für Ereignisse, die Kanten
tragen die zeitliche Information, d.h. die Zeitspanne, die zwischen den Ereignis-
sen liegt. Im folgenden werden die Knoten als Rezeptoren bezeichnet.

Die Wiedererkennung von Sequenzen basiert auf Aktivitätswellen, die durch den
Graphen wandern. Die Rezeptoren sind Verstärkereinheiten, die durch das ihnen
entsprechende Ereignis aktiviert werden. Sind sie aktiv, verstärken sie das Signal
von den Eingangskanten, und leiten es an die Ausgänge weiter. Ansonsten wird
das Eingangssignal gedämpft. Weiterhin soll der Ausgang eines Rezeptors nie
ganz null sein, sondern einen geringen positiven Restpegel aufweisen.

Die Kanten funktionieren als einstellbare Verzögerungsleitungen. Ein Eingangssig-
nal wird zeitlich verzögert und aufgeweitet ausgegeben. Sowohl Verzögerungszeit
δ und Aufweitung σ sind frei einstellbar, und werden durch einen Adaption-
sprozess angepasst. Zusätzlich enthalten Kanten ein Gewicht ω, das durch den
später beschriebenen Lernprozess angepasst wird, und einen Flexibilitätsparam-
eter λ, der die Adaptionsfähigkeit der Kante beschreibt.

Die Kanten haben die folgende Übertragungsfunktion:

Definition 7.3.1 Verzögerungskantenfunktion dE(t)

dE :<+ → [0, 1]

dE(t) 7→ ωE · e

(

−(t−δE)

σE

)4

(7.1)

7.3 Das dynamische System 75

7.3.1 Die Erkennung von zeitlichen Sequenzen

Tritt eine Sequenz von Ereignissen auf, die bereits im Graphen repräsentiert ist,
entsteht eine Aktivitätswelle. Dazu kommt es folgendermaßen:

Angenommen, die Ausgangspegel aller Rezeptoren nehmen das Minimum des
positiven Restpegels an. Nun tritt eine bereits repräsentierte Ereignissequenz auf.
Das erste Ereignis aktiviert einen Rezeptor, der daraufhin, nach Verstärkung des
minimalen Eingangspegels, einen geringfügig höheren Ausgangspegel aufweist.
Dieser Ausgangspuls wandert entlang der Verzögerungskanten zu den Eingängen
anderer Rezeptoren. Einer dieser Rezeptoren wird exakt zu dem Zeitpunkt ak-
tiviert, wenn der Puls an seinem Eingang angekommen ist. Somit wird der Puls
weiter verstärkt. Der Vorgang wiederholt sich, der Puls wandert weiter und wird
bis zur Sättigungsgrenze verstärkt. Ein durch den Graphen wandernder Puls soll
als Aktivitätswelle bezeichnet werden.

Da das Signal auf den Verzögerungskanten aufgeweitet wird, muss die zeitliche
Abfolge nicht absolut präzise eingehalten werden. Abweichungen resultieren
aber in niedrigeren Amplituden der Aktivitätswelle. Offensichtlich können mehrere
Aktivitätswellen simultan im Graphen entstehen. Sie repräsentieren mehrere Hy-
pothesen bezüglich der aktuellen Eingabedaten. Da die Aktivität bei besserer
Übereinstimmung stärker wird, stellt die stärkste Welle die beste Hypothese
bezüglich der Eingabe dar. Weicht die Eingabe von den Repräsentationen im
Graphen ab, werden unpassende Aktivitätswellen gedämpft. Existiert keine
Welle einer gewissen Mindeststärke αhigh, wurde die Eingabe nicht erkannt.

7.3.2 Der Lernprozess

Der Lernprozess besteht aus Aquisition und Adaption. Aquisition findet nur statt,
wenn die Eingabe nicht erkannt wurde, also wenn keine starken Aktivitätswellen
existieren. Der Adaptionsprozess hingegen kommt bei erkannter Eingabe zum
Zuge. Dabei werden die erkannten internen Repräsentationen den aktuellen
Eingabedaten angepasst.

Aquisition

Sobald die stärkste Aktivitätswelle im System unter den Schwellwert αhigh absinkt,
beginnt sofort der Aquisitionsprozess. Für jedes auftretende Ereignis wird ein
passender Rezeptor erzeugt, und mit dem zuletzt aktiven oder erzeugten Rezep-
tor verbunden. Dabei wird die neu erzeugte Kante entsprechend der beobachteten
Zeitspanne eingestellt. Inzwischen können sich Wellen im System ausbilden.
Sobald eine Welle ausreichende Stärke aufweist, wird davon ausgegangen, dass
die Eingabe erkannt wurde. Der zuletzt erzeugte Rezeptor wird nun mit dem ak-
tiven Rezeptor der stärksten Welle verknüpft, und der Aquisitionsprozess endet.

76 Chapter 7: Appendix A: Kurzfassung in deutscher Sprache

Adaption

Bei hoher Aktivität werden die betroffenen Kanten adaptiert, um die interne
Repräsentation an die Eingabe anzupassen. Folgende Regeln werden angewandt:

Wenn ein Rezeptor R j aktiviert wird und ein ausreichendes Aktivitätslevel erre-
icht, wird die Eingangskante ERi,R j

=: Ei j mit höchster Aktivität ausgewält. Diese
Kante wird nach folgenden Regeln adaptiert (∆t = t − tRi

, tRi
ist der Zeitpunkt, zu

dem Ri zuletzt aktiviert wurde):

δ′E = δE + λE (τE∆t − δE) (7.2)

σ′E = σE + λE

(

|τE∆t − δE| + tpmax − σE

)

(7.3)

ω′E = ωE + λE (1 − ωE) (7.4)

λ′E = cλλE (7.5)

Das Gewicht ω aller Ausgangskanten wird prophylaktisch reduziert:

ω′E = ωE − λEcdωE (7.6)

Nur die Kanten, die danach erfolgreich einen Rezeptor aktivieren können, werden
wieder verstärkt.

7.4 Sensorfusion

Um eine Fusion der Daten von verschiedenen Sensoren zu erreichen, wird für
jeden Sensor eine lokaler Graph wie beschrieben aufgebaut und berechnet. Die
lokalen Graphen werden mit Querverbindungen verknüpft. Eine Querverbindung
entspricht weitgehend den internen Verzögerungskanten.

Wenn in zwei Graphen eine hohe Aktivität erreicht wird, werden Querverbindun-
gen zwischen den Rezeptoren mit der stärksten Aktivität eingefügt. Querverbindun-
gen werden immer von zuerst aktivierten zu einem später aktivierten Rezeptor
gezogen, aber nur innerhalb eines Fensters einer begrenzten Anzahl von eintref-
fenden Ereignissen.

Die Adaption von Querverbindungen unterscheidet sich etwas von der Adaption
der internen Kanten. Alle Eingangskanten werden gewichteterweise adaptiert,
und nicht nur die aktivste. Damit wird dem Unterschied Rechnung getragen, dass
Korrelationen zwischen verschiedenen Sensoren in Ihrer Wichtigkeit gewichtet
insgesamt berücksichtigt werden sollen. Innerhalb der Modalitäten interessiert
aus Gründen der Abstraktion die beste Repräsentation.

δ′E = δE + βE(t) · λE (τE∆t − δE) (7.7)

7.5 Berechnung der Rezeptor-Aktivität 77

σ′E = σE + βE(t) · λE

(

|τE∆t − δE| + tpmax − σE

)

(7.8)

ω′E = ωE + βE(t) · λE (1 −ωE) (7.9)

λ′E = βE(t) · cλλE (7.10)

mit

βE(t) = e













−((t−tRi)−δE)
σE













4

αRi
(tRi

) (7.11)

7.5 Berechnung der Rezeptor-Aktivität

Definition 7.5.1 Rezeptoraktivität Sei ESψ := {Ei j = E(Ri,R j) : Ri ∈ RSψ} die Menge aller
Eingangskanten des Rezeptors R j von der Sensormodalität Sψ ∈ S, und sei SI ∈ S die
Menge der involvierten Modalitäten:

SI :=
{

Sψ ∈ S : ESψ(Ri,R j) , ∅

}

.

Die Rezeptoraktivität αR j
(t) berechnet sich nach

αR j
(t) = φ

(

amp (s(t))

(

ε +max
Ei∈E

{

αEi
(t)

}

+ cI · tanh
(γ

cM

)

))

γ =
∑

Sψ∈SI

∑

Ei j∈ESψ

αEi j
(t) (7.12)

φ ist eine sättigende Funktion, z.B. φ(x) = 1 − e−x.

Die Funktion
fR(t) = 1 − ecR(E(t)−E(tR) (7.13)

beschreibt die zur Verfügung stehende Ausgangsenergie. E(t) ist die Anzahl der zum
Zeitpunkt t eingetroffenen Ereignisse, tR ist der Zeitpunkt, zu dem der Rezeptor R zuletzt
aktiviert wurde.

Die Konstanten cI und cM kontrollieren die Stärke des Einflusses der Querverbindun-
gen. Der Paramenter cI beschreibt die Obergrenze des Einflusses, und cM beschreibt
die Mindestanzahl von maximal ausgesteuerten Modalitäten, für die der Einfluss
gesättigt ist.

Die Verstärkungsfunktion amp(sR(t)) ∈ [1/cdamp, ca] hängt von den Eingangsdaten
ab. Sie ist verstärkend (ca) zu dem Zeitpunkt, an dem ein Ereignis passend zum
jeweiligen Rezeptor eintrifft. Ansonsten verhält sich die Funktion dämpfend
(cdamp).

Definition 7.5.2 Kantenaktivität: Sei Ei j eine Verzögerungskante von Rezeptor Ri nach
R j. Die Kantenaktivität αEi j

(t) berechnet sich wie folgt:

αEi j
(t) = dEi j

(

t − tRi

)

αRi
(tRi

) (7.14)

78 Chapter 7: Appendix A: Kurzfassung in deutscher Sprache

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time (sec)

A
ct

iv
it

y
, H

(t
)

(%
)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time (sec)

A
ct

iv
it

y
, H

(t
)

(%
)

Figure 7.1: Aktivitätslevel (blau, obere Kurve) und Vorhersagerichtigkeit P(t)
(schwarz) für das zeitlich frühere System (oben) und das zeitverzögerte System
(unten).

(tRi
ist der Zeitpunkt, zu dem Ri zuletzt aktiviert wurde)

7.6 Experimente

Es wurden diverse Experimente mit simulierten und realen Daten durchgeführt.
Eine ausführliche Beschreibung befindet sich in der englischen Version. Hier
sollen nur beispielhaft zwei Experimente herausgegriffen werden.

7.6.1 Sensorfusion in der Simulation

Dieses Experiment soll die prinzipielle Funktionalität des Systems untersuchen.
Es wurden zwei simulierte Ereignisströme erzeugt. Es handelt sich um eine iden-
tische Sequenz, die zeitversetzt in die beiden dynamischen Systeme eingegeben
wird. Die Sequenz besteht aus sich wiederholenden Teilsequenzen, wobei eine
zufällige Bifurkation auftritt. Als Messwert dient die Fähigkeit der Systeme,
vorherzusagen, welcher Rezeptor als nächstes die höchste Aktivität erreichen
wird. Das beinhaltet eine Vorhersage des nächsten Ereignisses samt Zeitpunkt
unter Berücksichtigung des Kontextes.

Das System, das die Sequenz früher beobachtet, kann die Bifurkation nicht vorher-
sagen. Somit wird der Prozentsatz richtiger Vorhersagen unter dem Maximum

7.7 Zusammenfassung der Ergebnisse 79

von 100% liegen. Das zweite System, welches die Sequenz zeitverzögert erhält,
kann von den Informationen profitieren, die es über die erzeugten Querverbindun-
gen erhält. Es ist somit in der Lage, absolut korrekte Vorhersagen zu treffen. Die
Ergebnisse sind in Abbildung 7.1 zu sehen.

Das Experiment zeigt sowohl, dass das Verfahren lokal funktioniert, als auch den
positiven Einfluss der Sensorfusion.

7.6.2 Experiment mit echten Sensordaten

Zu diesem Experiment wurde ein Nomad XR4000 Roboter eingesetzt. Es handelt
sich um eine holonomische Plattform, die mit einem SICK Laser-Entfernungssensor,
Sonar und diversen anderen Sensoren ausgestattet ist. Der Roboter fuhr autonom
einen L-förmigen Teil einer Büroumgebung wiederholt ab. Hierbei kam ein ein-
facher Explorationsalgorithmus zum Einsatz, der den eingebauten Lasersensor
nutzte. Die gewählten Pfade waren in den Wiederholungen ähnlich, jedoch nie
absolut gleich.

Für das Experiment wurden zwei dynamische Systeme eingesetzt, die ihren
Eingabestrom aus zwei identischen Lasersensoren erhielten. Aus den Laser-
Entfernungsdaten wurde mit der beschriebenen Cluster-Methode eine Ereignis-
Sequenz erzeugt.

Einer der verwendeten Lasersensoren war der im Roboter eingebaute. Der andere
Sensor war stationär auf am längeren Ende der L-förmigen Sektion aufgestellt.
Dieser Sensor konnte den Roboter zeitweise beobachten, wenn er sich nicht
ausserhalb des Sichtfeldes befand. Es kann somit nur zeitweise ein Effekt der
Sensorfusion entwickeln. Das Experiment wurde mit den identischen Daten aus
einem Durchlauf einmal mit und einmal ohne Verwendung von Sensorfusion
durchgeführt.

Wie deutlich in Abbildung 7.2 zu sehen ist, liefert der externe Sensor nur intervall-
weise Ereignisse. Erkennbar ist das an den regelmäßigen Unterbrechungen, die
auftraten wenn der Roboter außer Sichtweite war. Sehr auffällig ist der deutliche
Anstieg der Erkennungs- und Vorhersagequalität des internen Sensors, wenn
Daten vom externen Sensor vorliegen. Dieses Experiment belegt deutlich den
positiven Einfluss der Sensorfusion. Außerdem zeigt es, wie problemlos Sen-
sordatenströme unterschiedlicher Charakteristika und zeitlicher Verhalten kom-
biniert werden können. Korrelationen zwischen den unterschiedlichen Sensoren
werden identifiziert und genutzt, wo sie vorhanden sind.

7.7 Zusammenfassung der Ergebnisse
Es wurde ein Verfahren vorgestellt, das Ereignissequenzen unter Berücksichti-
gung der zeitlichen Eigenschaften lernen und wiedererkennen kann. Es verar-

80 Chapter 7: Appendix A: Kurzfassung in deutscher Sprache

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

A
ct

iv
it

y
(%

)

0 500 1000 1500 2000 2500
0

50

100

Time (sec)

co
rr

ec
t

p
re

d
ic

ti
o

n
s

(%
)

Figure 7.2: Experiment mit einem internen und einem stationären, externen
Lasersensor. Die dünne schwarze Kurve zeigt die Resultate des internen Sensors,
die dicke blaue Kurve beschreibt den externen Sensor.

beitet dabei Eingabedaten aus verschiedenen Quellen mit beliebigen Abtastfre-
quenzen und Charakteristika.

Das Verfahren wurde als dynamisches, verteiltes Echtzeitsystem implementiert.
Die Funktionalität wurde in zahlreichen Experimenten mit simulierten und realen
Sensordaten belegt. Es wurde gezeigt, dass das vorgestellte Verfahren zur topol-
ogischen simultanen Kartographierung und Positionsbestimmung auf mobilen
Roboterplattformen eingesetzt werden kann. Die geringe Berechnungskom-
plexität ermöglicht Echtzeitbetrieb, und die Auslegung als verteiltes System bietet
vielfältige Einsatzmöglichkeiten und große Flexibilität. Das System passt sich dy-
namisch an die spatio-temporale Komplexität der Eingabedaten an, und es gibt
keine festen Limitierungen der Anzahl an unterschiedlichen Ereignissen oder der
Größe der internen Repräsentation (abgesehen vom Arbeitsspeicher des verwen-
deten Computers). Diese Größen müssen nicht vorab festgelegt werden, sondern
wachsen dynamisch entsprechend der Eingabe.

Das System lernt neue Sequenzen unmittelbar und sehr schnell. Bei perfekter
Wiederholung wird eine Sequenz bereits bei der ersten Wiederholung erkannt.
Bei Versuchen mit realen Sensordaten reichten 3-4 Wiederholungen, damit auftre-
tende Variationen eingelernt, und die Sequenz mit großer Sicherheit erkannt wer-
den konnte.

Eingesetzt zur simultanen Kartographierung und Positionsbestimmung, eröffnet
es neue Möglichkeiten auf unkonventionellen Plattformen wie Untersee-Roboter.

7.7 Zusammenfassung der Ergebnisse 81

Gerade unter Wasser sind die Messergebnisse von Sonar- und Lasersensoren
schwer modellierbar und sehr abhängig von den Umgebungsbedingungen. In
diesen schwierig modellierbaren Umgebungen passt sich das System selbstständig
an die Gegebenheiten an. Es ist sogar möglich, beliebige unkonventionelle Sen-
soren einzusetzen und zu kombinieren, z.B. Sensoren für Wasserdruck, elek-
trische Leitfähigkeit, das einfallende Lichtspektrum oder die optische Qualität
des Wassers. Diese Sensoren können einen Beitrag zur Positionsbestimmung leis-
ten. In vielen anderen Verfahren wäre eine Nutzung dieser Sensoren nur schwer
möglich. Es sind zahlreiche Einsatzmöglichkeiten in anderen Bereichen ebenso
denkbar. Hier eröffnen sich zahlreiche Möglichkeiten für weitere Untersuchun-
gen.

Chapter 8

Appendix B: Selection of source codes

8.1 Specification of the generic protected list
-- This package implements a double-linked generic list --

-- List entries containing List Elements are created as needed --

-- and kept for recycling at removal --

--

-- This implementation provides transparent locking on writes by

-- counting references on the list entries.

-- If elements are removed, they remain in the list, until they are

-- not referenced any more. Then they are removed finally. Until then,

-- existing references are still valid, but no new references to this

-- element can be created.

-- This allows concurrent access to the same list by several tasks.

-- IMPORTANT: For proper functionality, the procedure

--

-- Release(ActualList:ListDescriptor)

--

-- MUST be used before disposing a ListDescriptor!

-- otherwise, the element specified by the enumerator of the

-- listdescriptor remains locked for ever.

with Ada.Unchecked_Deallocation;

generic

type ListType is private;

package GenericList is

type ListEntryType is private;

type ListEntryAccess is access ListEntryType;

type ListDescriptor is private;

type ListHandle is private;

protected Sec is

-- creates a new, empty list

function CreateList return ListDescriptor;

-- deletes a list and recycles the rest

procedure DisposeList(OldDescriptor:in out ListDescriptor);

-- creates a handle for the given list

-- the Enumerator is invalid

function CreateHandle(ActualList:in ListDescriptor) return ListHandle;

-- equivalent

function CreateHandle(ActualList:in ListHandle) return ListHandle;

-- duplicates a list handle; the enumerator has the same value

function DuplicateHandle(ActualList:ListHandle) return ListHandle;

-- Adds an element to the list; a new ListEntryType is allocated

-- the handle refers to the newly inserted element afterwards

procedure Add(Handle:in out ListHandle; Element: in ListType);

84 Chapter 8: Appendix B: Selection of source codes

-- Inserts an element at the position specified by the handle.

-- the new Element will be inserted before the current element.

-- if the handle is invalid, the element will be appended

-- the handle refers to the newly inserted element afterwards

procedure Insert(Handle:in out ListHandle; Element: in ListType);

-- removes current active entry (Entry given by handle)

-- The Enumerator is set to null

procedure Remove(Handle: in out ListHandle);

-- marks the current entry for deletion.

-- The entry is deleted, when the last reference leaves it,

-- and cannot be entered any more.

procedure MarkForDeletion(Handle:in out ListHandle);

-- Removes all Elements from the list

-- uses Remove

procedure RemoveAll(Handle:in out ListHandle);

-- This procedure overwrites the specified element

-- it is non-blocking; the change is visible to all others referring to

-- this element

procedure OverwriteElement(Handle:in ListHandle; Element:in ListType);

-- moves the handle to the specified element, if existent;

-- otherwise the Handle will be invalid

procedure GoToElement(Handle:in out ListHandle; Element:in ListType);

-- returns true if the Element specified by enumerator equals given Element

function EntryEquals(Handle:ListHandle; Element:ListType) return Boolean;

-- moves the handle to the first valid entry of the list

procedure JumpToHead(Handle:in out ListHandle);

-- moves the handle to the last valid entry of the list

procedure JumpToTail(Handle:in out ListHandle);

-- Releases the current Element by setting the enumerator to null

-- should be used after every transaction to free the List for other tasks

-- must be used before disposing a ListHandle!

procedure Release(Handle:in out ListHandle);

-- Delivers the element specified by the handle

-- If the handle is invalid, a Constraint_Error will be raised.

-- to avoid this, use IsValid or EndExceeded before.

function GetCurrent(Handle:ListHandle) return ListType;

-- Moves forward in the list.

-- If handle is invalid, JumpToHead is called

procedure StepForward(Handle:in out ListHandle);

-- Moves backwards in the list.

-- If handle is invalid, JumpToTail is called

procedure StepBack(Handle:in out ListHandle);

-- Returns true if list contains no entries

function IsEmpty(Handle:ListHandle) return Boolean;

-- Returns true if handle is pointing to the Head of the list

function IsFirstEntry(Handle:ListHandle) return Boolean;

-- Returns true if handle is pointing to the Tail of the list

function IsLastEntry(Handle:ListHandle) return Boolean;

-- Returns true, if handle is null - negation of IsValid

function EndExceeded(Handle:ListHandle) return Boolean;

-- Returns true, if handle is valid

function IsValid(Handle:ListHandle) return Boolean;

private

entry Wait;

end Sec;

function Size(Handle:ListHandle) return Long_Integer;

private

Recycle:ListEntryAccess; -- List of created, but unused ListEntry-Objects

SomethingChanged:Boolean;

type ListDescriptor is

record

Guardian:ListEntryAccess;

8.2 Specification of the communication module 85

end record;

type ListHandle is

record

Guardian:ListEntryAccess;

Enumerator:ListEntryAccess; -- points to current active entry

end record;

type ListEntryType is

record

Element:ListType;

Prev, Next:ListEntryAccess;

references:Integer range 0..Integer’Last; -- counts the number of references to this element

Deleted:Boolean:=False;

end record;

procedure DisposeEntry is

new Ada.Unchecked_Deallocation(ListEntryType, ListEntryAccess);

end GenericList;

8.2 Specification of the communication module

8.2.1 The communication package
with TCPIdentificationIntf; use TCPIdentificationIntf;

with TCPMonitor;

package TCPCommIntf is

subtype IDType is AbstractID;

InternalID, PartitionServer:IDType;

MyID: NumID:=0;

package PrivateMonitor is new TCPMonitor;

procedure SendEvent(Receiver:AbstractID; Content:in Message; Sender:in NumID:=MyID);

procedure SendEvent(Receiver: in NumID; Content:in Message; Sender:in NumID:=MyID);

-- Broadcast to all registered members

procedure LocalBroadCast(Content:Message; Sender:in NumID:=MyID);

procedure SetInternalAdress(LocalName:String; ListenPort:Integer);

procedure Register(PServerName:String; PServerPort:Integer);

procedure ShutDownCommunication;

ProgramActive:Boolean:=True;

end TCPCommIntf;

8.2.2 The message retrieval monitor
with TCPIdentificationIntf; use TCPIdentificationIntf;

generic

package TCPMonitor is

protected Monitor is

entry Listen(Sender: out NumID; Content:out Message);

entry WaitingQueue(Sender:out NumID; Content:out Message);

procedure SetEvent(Sender:in NumID; Content:in Message);

procedure Shutdown;

end Monitor;

end TCPMonitor;

86 Chapter 8: Appendix B: Selection of source codes

8.2.3 The identification specification
with MessageDef; use MessageDef;

with Ada.Real_Time; use Ada.Real_Time;

package TCPIdentificationIntf is

type MessageTags is (NormalMsg, NewMemberMsg, AckMsg, BroadcastMsg, IDMsg);

subtype NumId is Long_Integer;

subtype AdressString is String(1..40);

subtype TextString is String(1..10);

type AbstractID is record

ID:NumID:=-1;

Adress:AdressString:=" ";

Port:Integer:=-1;

end record;

type CompleteID is record

IDObj:AbstractID;

ID:NumID;

end record;

type Message is record

Content:GenMessage;

Text:TextString:=" ";

MsgType:MessageTags:=NormalMsg;

Sender:AbstractID;

TimeStamp:Duration:=0.0;

end record;

function StringImage(Input:in AbstractID) return String;

function StringImage(Input:in Message) return String;

function ToAbstractID(Input:in String)return AbstractID;

function ToMessage(Input:String) return Message;

AbstractIDWidth, MessageWidth:Integer;

end TCPIdentificationIntf;

8.3 Mapping constants
with GraphData; use GraphData;

package Constants is

INIT_TEMP_PRECISION: RealNumber:= 0.5 ; -- initial Factor Sigma/DeltaT

-- low factor: high temporal precision

INIT_CROSSEDGE_TEMP_PRECISION: RealNumber:= 1.0 ; -- initial Factor Sigma/DeltaT for Cross Edges

MAX_TEMP_PRECISION: NormRange := 0.1 ; -- absolute lower bound for sigma (in sec)

INITIAL_LAMBDA: NormRange := 0.5 ;

INITIAL_EDGE_WEIGHT: NormRange := 0.7 ;

INITIAL_CROSSEDGE_WEIGHT:NormRange:=0.1;

C_LAMBDA: NormRange := 0.1; -- Learn rate reduction factor

C_D: NormRange := 0.03; -- inactive edge decay factor (decay in percent)

C_T: NormRange := 0.4 ; -- time warp adaptation factor;

EPSILON: NormRange := 0.02; -- self activation term

C_A: RealNumber:= 4.5 ; -- Amplification factor - must be >1

-- (1 means original strength - no amplification)

C_DAMP: RealNumber:= 2.0 ; -- Damping factor for imaginated events - must be >1

-- (1 is no damping - do not use 1!)

CROSSEDGE_C_D: NormRange := 0.1; -- inactive cross edge decay factor (decay in percent)

CROSSEDGE_BUNDLESIZE:Integer := 3; -- number of steps back in time at crossedge creation

CROSSEDGE_INFLUENCE: RealNumber:= 1.3 ; -- maximal additive influence from cross edges

-- should be <C_DAMP

-- (internal edges are always 100%)

MODALITIES_TO_SATURATE:RealNumber:=2.0 ; -- Number of modalities necessary to saturate

-- cross edge influence

CROSSEDGE_ADAPTATION:Boolean := True; -- Switch for adaption of CrossEdges

RECHARGING_RATE: NormRange := 0.2 ; -- Speed of receptor recharging after firing

LOW_ACT: NormRange := 0.15; -- low activity threshold

8.4 Main module of the mapping system (graphmanager) 87

HIGH_ACT: NormRange := 0.5 ; -- recognition activity threshold

PM_HALFTIME: Long_Float:= 4.0 ; -- Prediction measure smoothing parameter

MaxConcHypotheses: constant Integer:=5;

PREDICTION_DEBUG_INFO:Boolean := False;

end Constants;

8.4 Main module of the mapping system
(graphmanager)

8.4.1 Specification file “graphmanager.ads”
with GenericList;

with GraphData; use GraphData;

with Ada.Real_Time; use Ada.Real_Time;

with TCPIdentificationIntf; use TCPIdentificationIntf;

with TCPCommIntf; use TCPCommIntf;

with Constants; use Constants;

generic

package GraphManager is

type Edge;

type EdgeAccess is access Edge;

type Receptor;

type ReceptorAccess is access Receptor;

type ActivityListType is array (1..MaxConcHypotheses) of ReceptorAccess;

package EdgeList is

new GenericList(ListType=>EdgeAccess);

type CrossEdgesDescriptor is record

ModID:Long_Integer;

Edges:EdgeList.ListDescriptor;

end record;

package CrossEdgeList is

new GenericList(ListType=>CrossEdgesDescriptor);

package ReceptorList is

new GenericList(ListType=>ReceptorAccess);

type Event is record

TimeStamp:GlobalTime;

EventClass:Long_Integer;

Similarity:NormRange;

PosX, PosY, Theta:Float;

end record;

type Edge is

record

Source, Target: ReceptorAccess:=null;

Weight: NormRange:=1.0;

Lambda: NormRange:=0.5;

Tau:RealNumber:=1.0;

DeltaT, Sigma:TimeInterval;

CrossEdge:Boolean:=False;

end record;

type Receptor is

record

InputEdges:EdgeList.ListDescriptor; -- incoming internal edges

InCrossEdges:CrossEdgeList.ListDescriptor; -- incoming crossedges

OutputEdges: EdgeList.ListDescriptor; -- outgoing internal edges

Activity, Stimulation:NormRange:=0.0;

InvSensors:Integer:=1;

TriggerEvent:Event; -- Event which last triggered this receptor

ID, SeqID:Long_Integer:=0;

EventCount:Long_Float:=0.0;

CrossMirror:Boolean:=False; -- true, if this receptor is just a mirror

88 Chapter 8: Appendix B: Selection of source codes

-- of a receptor from another modality

ModID:Long_Integer:=-1;

end record;

type EventDescriptor is record

EventClass:Long_Integer;

CorrReceptors:ReceptorList.ListDescriptor;

end record;

package EventList is

new GenericList(ListType=>EventDescriptor);

type ModalityDescriptor is record

ModID:Long_Integer;

Receptors:ReceptorList.ListDescriptor;

ClockSkew:Duration;

LastMostActive:ReceptorAccess;

end record;

package ModalityList is

new GenericList(ListType=>ModalityDescriptor);

ProgramActive:Boolean:=True;

HypothesisActivity:NormRange:=0.0;

-- the local input interface

protected InputHandler is

-- this is the entry for local sensor events

entry Notify(LastEvent:in Event);

entry GetEvent(LastEvent:out Event);

end InputHandler;

procedure Save;

-- (internal) processes local sensor input

task InputCalculations;

task DreamTask is

entry Suspend;

entry Notify;

end DreamTask;

task ConcurrentActivityHandler is

end ConcurrentActivityHandler;

end GraphManager;

8.4.2 Implementation file “graphmanager.adb”
with Ada.Numerics.Long_Elementary_Functions; use Ada.Numerics.Long_Elementary_Functions;

with GenericList;

with Text_IO; use Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

with Ada.Float_Text_IO; use Ada.Float_Text_IO;

with Ada.Long_Integer_Text_IO; use Ada.Long_Integer_Text_IO;

with Ada.Exceptions; use Ada.Exceptions;

with Ada.Task_Identification; use Ada.Task_Identification;

with TagSupport; use TagSupport;

with MessageDef; use MessageDef;

with Ada.Command_Line; use Ada.Command_Line;

package body GraphManager is

ActivityList, OldActivityList:ActivityListType;

MyEventList:EventList.ListDescriptor;

ConcurrentActivityList:ModalityList.ListDescriptor;

ConcurrentActivityTaskReady:Boolean:=False;

ReceptorGarbage:ReceptorList.ListDescriptor;

EdgeGarbage:EdgeList.ListDescriptor;

CurrentReceptorID, CurrentSeqID, EventCounter:Long_Integer:=0;

InternalLastEvent:Event;

EventArrived:Boolean;

8.4 Main module of the mapping system (graphmanager) 89

function GetGlobalTime return Time is

begin

return Clock;

end;

-- Monitor for input stream handling

protected body InputHandler is

-- non-blocking input entry

entry Notify(LastEvent:in Event) when True is

begin

if InternalLastEvent.EventClass/=LastEvent.EventClass then

InternalLastEvent:=LastEvent;

EventCounter:=EventCounter+1;

EventArrived:=True;

end if;

end Notify;

-- blocking event retrieval

entry GetEvent(LastEvent:out Event)

when (EventArrived and ConcurrentActivityTaskReady) or not ProgramActive is

begin

LastEvent:=InternalLastEvent;

EventArrived:=False;

end GetEvent;

end InputHandler;

function GetRecycledReceptor return ReceptorAccess is

Handle :ReceptorList.ListHandle;

EdgeHandle:EdgeList.ListHandle;

CrossHandle:CrossEdgeList.ListHandle;

NewRec:ReceptorAccess;

begin

Handle:=ReceptorList.Sec.CreateHandle(ReceptorGarbage);

ReceptorList.Sec.JumpToHead(Handle);

if ReceptorList.Sec.IsValid(Handle) then

NewRec:=ReceptorList.Sec.GetCurrent(Handle);

EdgeHandle:=EdgeList.Sec.CreateHandle(NewRec.InputEdges);

EdgeList.Sec.RemoveAll(EdgeHandle);

EdgeHandle:=EdgeList.Sec.CreateHandle(NewRec.OutputEdges);

EdgeList.Sec.RemoveAll(EdgeHandle);

CrossHandle:=CrossEdgeList.Sec.CreateHandle(NewRec.InCrossEdges);

CrossEdgeList.Sec.RemoveAll(CrossHandle);

ReceptorList.Sec.Remove(Handle);

else

NewRec:=new Receptor;

NewRec.InputEdges:=EdgeList.Sec.CreateList;

NewRec.OutputEdges:=EdgeList.Sec.CreateList;

NewRec.InCrossEdges:=CrossEdgeList.Sec.CreateList;

end if;

-- always release Handles!!

ReceptorList.Sec.Release(Handle);

NewRec.InvSensors:=1;

return NewRec;

end GetRecycledReceptor;

function CreateReceptor(RecType:EventDescriptor) return ReceptorAccess is

Handle :ReceptorList.ListHandle;

NewRec:ReceptorAccess;

begin

NewRec:=GetRecycledReceptor;

CurrentReceptorID:=CurrentReceptorID+1;

NewRec.ID:=CurrentReceptorID;

NewRec.TriggerEvent.EventClass:=RecType.EventClass;

NewRec.EventCount:=Long_Float(EventCounter);

-- register new receptor in corresponding event receptor table

Handle:=ReceptorList.Sec.CreateHandle(RecType.CorrReceptors);

ReceptorList.Sec.Add(Handle, NewRec);

ReceptorList.Sec.Release(Handle);

return NewRec;

end CreateReceptor;

function CreateEdge(From: ReceptorAccess; To:ReceptorAccess) return EdgeAccess is

Handle:EdgeList.ListHandle;

CrossHandle:CrossEdgeList.ListHandle;

ModDescr:CrossEdgesDescriptor;

NewEdge:EdgeAccess;

NewDeltaT, NewSigma:TimeInterval;

begin

90 Chapter 8: Appendix B: Selection of source codes

if From/=To and not To.CrossMirror then

NewDeltaT:=TimeInterval(To_Duration(To.TriggerEvent.TimeStamp-From.TriggerEvent.TimeStamp));

NewSigma:=INIT_TEMP_PRECISION*NewDeltaT;

-- check if edge already exists

Handle:=EdgeList.Sec.CreateHandle(From.OutputEdges);

EdgeList.Sec.JumpToHead(Handle);

while EdgeList.Sec.IsValid(Handle) loop

NewEdge:=EdgeList.Sec.GetCurrent(Handle);

if NewEdge.Target.ID=To.ID then

if NewEdge.DeltaT>NewDeltaT-NewSigma and

NewEdge.DeltaT<NewDeltaT+NewSigma then

-- do not create edge!

EdgeList.Sec.Release(Handle);

return null;

end if;

end if;

EdgeList.Sec.StepForward(Handle);

end loop;

EdgeList.Sec.Release(Handle);

Handle:=EdgeList.Sec.CreateHandle(EdgeGarbage);

EdgeList.Sec.JumpToHead(Handle);

if EdgeList.Sec.IsValid(Handle) then

NewEdge:=EdgeList.Sec.GetCurrent(Handle);

EdgeList.Sec.Remove(Handle);

else

NewEdge:=new Edge;

end if;

EdgeList.Sec.Release(Handle);

NewEdge.DeltaT:=NewDeltaT;

NewEdge.Sigma:=NewSigma;

NewEdge.Source:=From;

NewEdge.Target:=To;

NewEdge.Weight:=1.0;

NewEdge.Lambda:=INITIAL_LAMBDA;

NewEdge.Tau:=1.0;

NewEdge.CrossEdge:=From.CrossMirror;

-- connect edge to receptors

Handle:=EdgeList.Sec.CreateHandle(From.OutputEdges);

EdgeList.Sec.Add(Handle, NewEdge);

EdgeList.Sec.Release(Handle);

if NewEdge.CrossEdge then

-- this is a cross-edge

-- try to find corresponding modality

CrossHandle:=CrossEdgeList.Sec.CreateHandle(To.InCrossEdges);

CrossEdgeList.Sec.JumpToHead(CrossHandle);

while CrossEdgeList.Sec.IsValid(CrossHandle)

and then CrossEdgeList.Sec.GetCurrent(CrossHandle).ModID/=From.ModID

loop

CrossEdgeList.Sec.StepForward(CrossHandle);

end loop;

-- if not found, create new entry

if not CrossEdgeList.Sec.IsValid(CrossHandle) then

ModDescr.ModId:=From.ModID;

ModDescr.Edges:=EdgeList.Sec.CreateList;

CrossEdgeList.Sec.Add(CrossHandle, ModDescr);

else

ModDescr:=CrossEdgeList.Sec.GetCurrent(Crosshandle);

end if;

-- and add edge into corresponding modality entry.

Handle:=EdgeList.Sec.CreateHandle(ModDescr.Edges);

EdgeList.Sec.Add(Handle, NewEdge);

EdgeList.Sec.Release(Handle);

-- update counter for involved sensor modalities

To.InvSensors:=Integer(CrossEdgeList.Sec.Size(CrossHandle));

CrossEdgeList.Sec.Release(CrossHandle);

else

-- it’s an internal edge

Handle:=EdgeList.Sec.CreateHandle(To.InputEdges);

EdgeList.Sec.Add(Handle, NewEdge);

EdgeList.Sec.Release(Handle);

end if;

-- Put(" T:");

-- Put(Integer(NewEdge.DeltaT*10.0),3);

return NewEdge;

end if;

return null;

end CreateEdge;

procedure PrintActivityList is

begin

Put(" HC:");

Put(Integer(HypothesisActivity*100.0), 4);

8.4 Main module of the mapping system (graphmanager) 91

Put(" | ");

for I in 1..MaxConcHypotheses loop

if ActivityList(i)/=null then

Put("I");

Put(Integer(ActivityList(I).ID),3);

Put(Integer(ActivityList(I).Activity*100.0),4);

Put("%");

else

Put(" - ");

end if;

Put("|");

end loop;

end;

protected Sec is

procedure Add2ActivityList(ActReceptor:ReceptorAccess);

procedure RemoveFromList(I:Integer);

procedure ClearActivityList;

-- pure receptor activity calculation without adaption

procedure CalcReceptorActivity(Rec:access Receptor);

-- calc of Rec.Activity with adaption and learning

procedure DoReceptorCalculation(Rec:access Receptor);

procedure DoReceptorAdaptation(Rec:ReceptorAccess);

procedure SaveGraph(File: in File_Type);

procedure SaveAsFilterLayout(File:in File_Type);

end Sec;

protected body Sec is

procedure Add2ActivityList(ActReceptor:ReceptorAccess) is

Index:Integer;

begin

-- list contains the most active receptors sorted descending

Index:=MaxConcHypotheses;

if ActReceptor.Activity>LOW_ACT then

while Index>0 and then ((ActivityList(Index)=null

or else ActReceptor.Activity>ActivityList(Index).Activity))

loop

if Index<MaxConcHypotheses then

-- shift backwards to make room

ActivityList(Index+1):=ActivityList(Index);

end if;

Index:=Index-1;

end loop;

if Index<MaxConcHypotheses then

-- insert at found position

ActivityList(Index+1):=ActReceptor;

end if;

end if;

end Add2ActivityList;

procedure RemoveFromList(I:Integer) is

begin

for Index in I..MaxConcHypotheses-1 loop

ActivityList(Index):=ActivityList(Index+1);

end loop;

ActivityList(MaxConcHypotheses):=null;

end;

procedure ClearActivityList is

begin

OldActivityList:=ActivityList;

for I in 1..MaxConcHypotheses loop

ActivityList(I):=null;

end loop;

end ClearActivityList;

function CalcEdgeActivity(E:in Edge) return NormRange is

D:NormRange;

T:TimeInterval;

begin

T:=E.Tau*TimeInterval(To_Duration(E.Target.TriggerEvent.TimeStamp-

E.Source.TriggerEvent.TimeStamp));

D:=Exp(-((T-E.DeltaT)/E.Sigma)**4);

return (E.Weight*E.Source.Activity*D);

end CalcEdgeActivity;

procedure CalcReceptorActivity(Rec:access Receptor) is

EdgeActivity:NormRange;

EdgeSum, TmpActivity:RealNumber;

EdgeListHandle:EdgeList.ListHandle;

ActEdge:EdgeAccess;

begin

-- go through all input edges

EdgeListHandle:=EdgeList.Sec.CreateHandle(Rec.InputEdges);

92 Chapter 8: Appendix B: Selection of source codes

EdgeList.Sec.JumpToHead(EdgeListHandle);

EdgeSum:=0.0;

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

EdgeActivity:=CalcEdgeActivity(ActEdge.all);

EdgeSum:=EdgeSum+EdgeActivity;

EdgeList.Sec.StepForward(EdgeListHandle);

end loop;

TmpActivity:=Rec.Stimulation*(1.0+C_A)*(EPSILON+EdgeSum/RealNumber(Rec.InvSensors));

Rec.Activity:=1.0-Exp(-TmpActivity);

end;

-- here all the calculation, learning and adaptation for one receptor is done.

procedure DoReceptorCalculation (Rec:access Receptor) is

MaxActivity, EdgeActivity, FiringEnergy:NormRange;

EdgeSum, NewTau, TmpActivity:RealNumber;

EdgeListHandle:EdgeList.ListHandle;

CrossEdgeListHandle:CrossEdgeList.ListHandle;

ActEdge,MaxEdge:EdgeAccess;

begin

-- go through all cross edge lists

CrossEdgeListHandle:=CrossEdgeList.Sec.CreateHandle(Rec.InCrossEdges);

CrossEdgeList.Sec.JumpToHead(CrossEdgeListHandle);

MaxActivity:=0.0;

while CrossEdgeList.Sec.IsValid(CrossEdgeListHandle) loop

-- go through all cross edges

EdgeListHandle:=EdgeList.Sec.

CreateHandle(CrossEdgeList.Sec.GetCurrent(CrossEdgeListHandle).Edges);

EdgeList.Sec.JumpToHead(EdgeListHandle);

MaxActivity:=0.0;

EdgeSum:=0.0;

-- select maximum edge activity

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

EdgeActivity:=CalcEdgeActivity(ActEdge.all);

if EdgeActivity>MaxActivity then

MaxActivity:=EdgeActivity;

end if;

EdgeList.Sec.StepForward(EdgeListHandle);

end loop;

-- and add edge with maximum activity of this modality to EdgeSum

EdgeSum:=EdgeSum+MaxActivity;

EdgeList.Sec.Release(EdgeListHandle);

CrossEdgeList.Sec.StepForward(CrossEdgeListHandle);

end loop;

CrossEdgeList.Sec.Release(CrossEdgeListHandle);

-- go through all input edges

EdgeListHandle:=EdgeList.Sec.CreateHandle(Rec.InputEdges);

EdgeList.Sec.JumpToHead(EdgeListHandle);

MaxActivity:=0.0;

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

EdgeActivity:=CalcEdgeActivity(ActEdge.all);

if EdgeActivity>MaxActivity then

MaxActivity:=EdgeActivity;

MaxEdge:=ActEdge;

end if;

EdgeList.Sec.StepForward(EdgeListHandle);

end loop;

EdgeList.Sec.Release(EdgeListHandle);

-- and add maximum activity of internal edges

EdgeSum:=EdgeSum+MaxActivity;

FiringEnergy:=1.0-Exp(Long_Float(RECHARGING_RATE)*(Rec.EventCount-Long_Float(EventCounter)));

TmpActivity:=Rec.Stimulation*FiringEnergy*

(1.0+C_A)*(EPSILON+EdgeSum/RealNumber(Rec.InvSensors));

Rec.Activity:=1.0-Exp(-TmpActivity);

if Rec.Activity>HIGH_ACT then

Rec.EventCount:=Long_Float(EventCounter);

end if;

-- do time-warp adaptation for input edge with maximum activity

if MaxEdge/=null and Rec.Activity>LOW_ACT then

-- adapt time warping factor

NewTau:=MaxEdge.Tau+C_T*

(MaxEdge.DeltaT/

TimeInterval(To_Duration(MaxEdge.Target.TriggerEvent.TimeStamp-

MaxEdge.Source.TriggerEvent.TimeStamp))-

MaxEdge.Tau);

-- Put(" A:");

8.4 Main module of the mapping system (graphmanager) 93

-- Put(Integer(MaxEdge.DeltaT*100.0),3);

-- Put(Integer(MaxEdge.Sigma*100.0),3);

-- Put(Integer(MaxEdge.Weight*10.0),3);

end if;

-- NEVER forget to release a list handle!!

EdgeList.Sec.Release(EdgeListHandle);

-- go through all output edges (don’t panic, just some minor things...)

EdgeListHandle:=EdgeList.Sec.CreateHandle(Rec.OutputEdges);

EdgeList.Sec.JumpToHead(EdgeListHandle);

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

-- forward propagation of time warp factor

if Rec.Activity>LOW_ACT then

ActEdge.Tau:=NewTau;

else

ActEdge.Tau:=1.0;

end if;

-- prophylactic decrease of edge weight

ActEdge.Weight:=ActEdge.Weight-

Rec.Stimulation*ActEdge.Lambda*C_D*ActEdge.Weight;

-- and that’s it!

EdgeList.Sec.StepForward(EdgeListHandle);

end loop;

-- NEVER forget to release a list handle!!

EdgeList.Sec.Release(EdgeListHandle);

--Put("t: ");

--Put(Integer(NewTau*100.0),3);

exception

when E: others =>

Put_line("Error in DoReceptorCalculation!");

Put_Line (Current_Error,

"Task "

& Image (Current_Task)

& " reports: "

& Exception_Name (E)

& " - "

& Exception_Message (E));

end DoReceptorCalculation;

procedure DoReceptorAdaptation(Rec:ReceptorAccess) is

EdgeHandle:EdgeList.ListHandle;

CrossEdgeListHandle:CrossEdgeList.ListHandle;

ActEdge:EdgeAccess;

EdgeActivity:NormRange;

procedure DoAdaptation(EdgeListHandle:in out EdgeList.ListHandle) is

begin

-- go through all input edges

EdgeList.Sec.JumpToHead(EdgeListHandle);

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

EdgeActivity:=CalcEdgeActivity(ActEdge.all);

EdgeList.Sec.StepForward(EdgeListHandle);

ActEdge.Sigma:=ActEdge.Sigma+ActEdge.Lambda*Rec.Stimulation*EdgeActivity*

(abs(TimeInterval(To_Duration(ActEdge.Target.TriggerEvent.TimeStamp-

ActEdge.Source.TriggerEvent.TimeStamp))

-ActEdge.DeltaT)+ActEdge.DeltaT*MAX_TEMP_PRECISION-ActEdge.Sigma);

ActEdge.DeltaT:=ActEdge.DeltaT+ActEdge.Lambda*Rec.Stimulation*EdgeActivity*

(ActEdge.Tau*

TimeInterval(To_Duration(ActEdge.Target.TriggerEvent.TimeStamp-

ActEdge.Source.TriggerEvent.TimeStamp))

-ActEdge.DeltaT);

ActEdge.Weight:=ActEdge.Weight+ActEdge.Lambda*Rec.Stimulation*EdgeActivity*

(1.0-ActEdge.Weight);

ActEdge.Lambda:=ActEdge.Lambda-Rec.Stimulation*EdgeActivity*C_LAMBDA*ActEdge.Lambda;

end loop;

EdgeList.Sec.Release(EdgeListHandle);

end;

begin

EdgeHandle:=EdgeList.Sec.CreateHandle(Rec.InputEdges);

DoAdaptation(EdgeHandle);

-- go through all cross edge lists

CrossEdgeListHandle:=CrossEdgeList.Sec.CreateHandle(Rec.InCrossEdges);

CrossEdgeList.Sec.JumpToHead(CrossEdgeListHandle);

while CrossEdgeList.Sec.IsValid(CrossEdgeListHandle) loop

EdgeHandle:=EdgeList.Sec.

94 Chapter 8: Appendix B: Selection of source codes

CreateHandle(CrossEdgeList.Sec.GetCurrent(CrossEdgeListHandle).Edges);

DoAdaptation(EdgeHandle);

CrossEdgeList.Sec.StepForward(CrossEdgeListHandle);

end loop;

CrossEdgeList.Sec.Release(CrossEdgeListHandle);

end DoReceptorAdaptation;

procedure SaveGraph(File:in File_Type) is

EventListHandle:EventList.ListHandle;

RecListHandle:ReceptorList.ListHandle;

ActEventDescriptor:EventDescriptor;

ActReceptor:ReceptorAccess;

EdgeListHandle:EdgeList.ListHandle;

ActEdge:EdgeAccess;

begin

-- go through all events

EventListHandle:=EventList.Sec.CreateHandle(MyEventList);

EventList.Sec.JumpToHead(EventListHandle);

while EventList.Sec.IsValid(EventListHandle) loop

ActEventDescriptor:=EventList.Sec.GetCurrent(EventListHandle);

-- and save all receptors

RecListHandle:= ReceptorList.Sec.CreateHandle(ActEventDescriptor.CorrReceptors);

ReceptorList.Sec.JumpToHead(RecListHandle);

while ReceptorList.Sec.IsValid(RecListHandle) loop

ActReceptor:=ReceptorList.Sec.GetCurrent(RecListHandle);

Put_Line(File, "<Receptor>");

TagThat(File, "ID",ActReceptor.ID);

TagThat(File, "SeqID",ActReceptor.ID);

TagThat(File, "EventClass", ActEventDescriptor.EventClass);

TagThat(File, "PosX", ActReceptor.TriggerEvent.PosX);

TagThat(File, "PosY", ActReceptor.TriggerEvent.PosY);

-- go through all input edges

EdgeListHandle:=EdgeList.Sec.CreateHandle(ActReceptor.InputEdges);

EdgeList.Sec.JumpToHead(EdgeListHandle);

Put_Line(File,"");

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

Put(File,"<InEdge>");

TagThat(File, "Source",ActEdge.Source.ID);

TagThat(File, "Target",ActEdge.Target.ID);

TagThat(File, "Weight",Float(ActEdge.Weight), 1, 3);

TagThat(File, "Lambda",Float(ActEdge.Lambda), 1, 3);

TagThat(File, "DeltaT",Float(ActEdge.DeltaT), 4, 3);

TagThat(File, "Sigma", Float(ActEdge.Sigma), 4, 3);

Put_Line(File, "</InEdge>");

EdgeList.Sec.StepForward(EdgeListHandle);

end loop;

EdgeList.Sec.Release(EdgeListHandle);

Put_Line(File, "</Receptor>");

ReceptorList.Sec.StepForward(RecListHandle);

end loop;

ReceptorList.Sec.Release(RecListHandle);

EventList.Sec.StepForward(EventListHandle);

end loop;

EventList.Sec.Release(EventListHandle);

end SaveGraph;

procedure SaveAsFilterLayout(File:in File_Type) is

EventListHandle:EventList.ListHandle;

RecListHandle:ReceptorList.ListHandle;

ActEventDescriptor:EventDescriptor;

ActReceptor:ReceptorAccess;

EdgeListHandle:EdgeList.ListHandle;

ActEdge:EdgeAccess;

begin

-- go through all events

EventListHandle:=EventList.Sec.CreateHandle(MyEventList);

EventList.Sec.JumpToHead(EventListHandle);

while EventList.Sec.IsValid(EventListHandle) loop

ActEventDescriptor:=EventList.Sec.GetCurrent(EventListHandle);

-- and save all receptors

RecListHandle:= ReceptorList.Sec.CreateHandle(ActEventDescriptor.CorrReceptors);

ReceptorList.Sec.JumpToHead(RecListHandle);

while ReceptorList.Sec.IsValid(RecListHandle) loop

ActReceptor:=ReceptorList.Sec.GetCurrent(RecListHandle);

Put(File, "<filter>");

TagThat(File, "name","Receptor");

-- go through all input edges

EdgeListHandle:=EdgeList.Sec.CreateHandle(ActReceptor.OutputEdges);

Put_Line(File,"");

Put(File,ActReceptor.TriggerEvent.PosX,0,5,0);

Put_Line(File,"");

Put(File,ActReceptor.TriggerEvent.PosY,0,5,0);

Put_Line(File,"");

Put(File, "<ID>");

Put(File, ActReceptor.ID,0);

8.4 Main module of the mapping system (graphmanager) 95

Put_Line(File,"");

Put_Line(File,"<paramNo>4");

TagThat(File, "description", "No. of Outputs");TagThat(File,"type",0,0);

TagThat(File, "content", Long_Integer(EdgeList.Sec.Size(EdgeListHandle)),0);

Put_Line(File,"");

TagThat(File, "description", "ID");TagThat(File,"type",0,0);

TagThat(File, "content",ActReceptor.ID,0);

Put_Line(File,"");

TagThat(File, "description", "SeqID");TagThat(File,"type",0,0);

TagThat(File, "content",ActReceptor.SeqID,0);

Put_Line(File,"");

TagThat(File, "description", "EventClass");TagThat(File,"type",0,0);

TagThat(File, "content", ActEventDescriptor.EventClass,0);

EdgeList.Sec.Release(EdgeListHandle);

Put_Line(File,"");

Put_Line(File, "</filter>");

ReceptorList.Sec.StepForward(RecListHandle);

end loop;

ReceptorList.Sec.Release(RecListHandle);

EventList.Sec.StepForward(EventListHandle);

end loop;

Put_Line(File, "<connections>");

EventList.Sec.JumpToHead(EventListHandle);

while EventList.Sec.IsValid(EventListHandle) loop

ActEventDescriptor:=EventList.Sec.GetCurrent(EventListHandle);

-- and save all receptors

RecListHandle:= ReceptorList.Sec.CreateHandle(ActEventDescriptor.CorrReceptors);

ReceptorList.Sec.JumpToHead(RecListHandle);

while ReceptorList.Sec.IsValid(RecListHandle) loop

ActReceptor:=ReceptorList.Sec.GetCurrent(RecListHandle);

-- go through all output edges

EdgeListHandle:=EdgeList.Sec.CreateHandle(ActReceptor.OutputEdges);

EdgeList.Sec.JumpToHead(EdgeListHandle);

while EdgeList.Sec.IsValid(EdgeListHandle) loop

ActEdge:=EdgeList.Sec.GetCurrent(EdgeListHandle);

Put(File, ActEdge.Target.ID,0);

Put_Line(File, "");

Put(File, Integer(ActEdge.Weight*100.0),0);

Put_Line(File, "");

EdgeList.Sec.StepForward(EdgeListHandle);

end loop;

EdgeList.Sec.Release(EdgeListHandle);

ReceptorList.Sec.StepForward(RecListHandle);

end loop;

ReceptorList.Sec.Release(RecListHandle);

EventList.Sec.StepForward(EventListHandle);

end loop;

EventList.Sec.Release(EventListHandle);

end SaveAsFilterLayout;

end Sec;

procedure Save is

File:File_Type;

begin

-- open File

Create(File, Name=>"graph.top");

Sec.SaveGraph(File);

Close(File);

Create(File, Name=>"graph.sys");

Sec.SaveAsFilterLayout(File);

Close(File);

end;

task body InputCalculations is

LastCreatedReceptor, NewCreatedReceptor:ReceptorAccess;

function FindEventDescriptor(ForEvent:Event) return EventDescriptor is

EventListHandle:EventList.ListHandle;

Found:Boolean;

LastEventDescriptor:EventDescriptor;

begin

EventListHandle:=EventList.Sec.CreateHandle(MyEventList);

-- check if event is already known:

EventList.Sec.JumpToHead(EventListHandle);

Found:=False;

while EventList.Sec.IsValid(EventListHandle) and not found loop

96 Chapter 8: Appendix B: Selection of source codes

LastEventDescriptor:=EventList.Sec.GetCurrent(EventListHandle);

if LastEventDescriptor.EventClass=ForEvent.EventClass then

Found:=True;

end if;

EventList.Sec.StepForward(EventListHandle);

end loop;

EventList.Sec.Release(EventListHandle);

if not Found then

-- insert new event into list

LastEventDescriptor.EventClass:=ForEvent.EventClass;

LastEventDescriptor.CorrReceptors:=ReceptorList.Sec.CreateList;

EventList.Sec.Add(EventListHandle, LastEventDescriptor);

end if;

return LastEventDescriptor;

exception

when others => null;

return LastEventDescriptor;

end FindEventDescriptor;

-- calculate HypothesisActivity

-- it’s increased, when the most active receptor of the preceeding event

-- has a connection to the most active receptor of this event

-- (continuity is rewarded)

-- if there is no connection, an edge is created

procedure ProvideHypothesisContinuity is

EdgeHandle:EdgeList.ListHandle;

Continuity:Boolean:=false;

NewEdge:EdgeAccess;

begin

if OldActivityList(1)/=null and ActivityList(1)/=null then

EdgeHandle:=EdgeList.Sec.CreateHandle(OldActivityList(1).OutputEdges);

EdgeList.Sec.JumpToHead(EdgeHandle);

while EdgeList.Sec.IsValid(EdgeHandle) loop

-- if there is a connection...

if EdgeList.Sec.GetCurrent(EdgeHandle).Target.Id=ActivityList(1).ID then

Continuity:=True;

EdgeList.Sec.Release(EdgeHandle);

else

EdgeList.Sec.StepForward(EdgeHandle);

end if;

end loop;

EdgeList.Sec.Release(EdgeHandle);

if Continuity then

HypothesisActivity:=(1.0+HypothesisActivity)/2.0;

else

HypothesisActivity:=(0.0+HypothesisActivity)/2.0;

if OldActivityList(1)/=null and then ActivityList(1)/=null

and then OldActivityList(1).Activity>HIGH_ACT

and then ActivityList(1).Activity>HIGH_ACT

then

NewEdge:=CreateEdge(OldActivityList(1), ActivityList(1));

NewEdge.Weight:=ActivityList(1).Activity;

end if;

end if;

else

HypothesisActivity:=(0.0+HypothesisActivity)/2.0;

end if;

end;

-- local variables of InputCalculations

LastEvent:Event;

LastEventDescriptor:EventDescriptor;

RecListHandle:ReceptorList.ListHandle;

ActReceptor:ReceptorAccess;

Index:Integer;

ActEdge:EdgeAccess;

ConcHandle:ModalityList.ListHandle;

TransActList:TransportActivityList;

ActMessage:Message;

ModDescriptor:ModalityDescriptor;

begin -- of InputCalculations

Put_Line("Local mapping active.");

while ProgramActive loop

-- wait for new event

InputHandler.GetEvent(LastEvent);

DreamTask.Suspend;

if ProgramActive then

Put(" Event: ");

Put(Integer(LastEvent.EventClass),3);

LastEventDescriptor:=FindEventDescriptor(LastEvent);

8.4 Main module of the mapping system (graphmanager) 97

-- get list of corresponding receptors

RecListHandle:= ReceptorList.Sec.CreateHandle(LastEventDescriptor.CorrReceptors);

ReceptorList.Sec.JumpToHead(RecListHandle);

Sec.ClearActivityList;

-- and do calcs for every single one of them...

while ReceptorList.Sec.IsValid(RecListHandle) loop

ActReceptor:=ReceptorList.Sec.GetCurrent(RecListHandle);

ActReceptor.Stimulation:=LastEvent.Similarity;

ActReceptor.TriggerEvent.TimeStamp:=LastEvent.TimeStamp;

ActReceptor.TriggerEvent.Similarity:=LastEvent.Similarity;

Sec.DoReceptorCalculation(ActReceptor);

-- maintain activity list

Sec.Add2ActivityList(ActReceptor);

ReceptorList.Sec.StepForward(RecListHandle);

end loop;

-- adaptation of most active receptor

if ActivityList(1)/=null then

Sec.DoReceptorAdaptation(ActivityList(1));

end if;

ProvideHypothesisContinuity;

PrintActivityList;

if LastEvent.Similarity>HIGH_ACT then

-- go through ActivityList

-- for I in 1..MaxConcHypotheses loop

-- create edges from most recently inserted receptor to emerging waves

if LastCreatedReceptor/=null

and then ActivityList(1)/=null

and then ActivityList(1).Activity>=HIGH_ACT then

Put(" CL:");

Put(Integer(LastCreatedReceptor.TriggerEvent.EventClass),2);

Put(Integer(ActivityList(1).TriggerEvent.EventClass),2);

ActEdge:=CreateEdge(LastCreatedReceptor, ActivityList(1));

end if;

-- end loop;

-- do acquisition, if necessary

if ActivityList(1)=null or else ActivityList(1).Activity<HIGH_ACT then

--Put(" Create Receptor..");

if OldActivityList(1)/=null

and then OldActivityList(1).Activity>HIGH_ACT then

CurrentSeqID:=CurrentSeqID+1;

end if;

NewCreatedReceptor:=CreateReceptor(LastEventDescriptor);

NewCreatedReceptor.Stimulation:=LastEvent.Similarity;

NewCreatedReceptor.TriggerEvent:=LastEvent;

NewCreatedReceptor.SeqID:=CurrentSeqID;

Put(" NR");

Put(Integer(NewCreatedReceptor.ID),3);

if LastCreatedReceptor/=null then

ActEdge:=CreateEdge(LastCreatedReceptor, NewCreatedReceptor);

Put(" LN:");

Put(Integer(LastCreatedReceptor.TriggerEvent.EventClass),2);

Put(Integer(NewCreatedReceptor.TriggerEvent.EventClass),2);

end if;

-- for I in 1..MaxConcHypotheses loop

--if OldActivityList(I)/=null

if OldActivityList(1)/=null

and then OldActivityList(1).Activity>=HIGH_ACT

then

ActEdge:=CreateEdge(OldActivityList(1), NewCreatedReceptor);

Put(" LO:");

Put(Integer(OldActivityList(1).TriggerEvent.EventClass),2);

Put(Integer(NewCreatedReceptor.TriggerEvent.EventClass),2);

end if;

-- end loop;

LastCreatedReceptor:=NewCreatedReceptor;

else

LastCreatedReceptor:=null;

end if;

ReceptorList.Sec.Release(RecListHandle);

end if;

-- ***

-- sensor fusion part

-- creation of cross-edges

if ActivityList(1)/=null then

ConcHandle:=ModalityList.Sec.CreateHandle(ConcurrentActivityList);

ModalityList.Sec.JumpToHead(ConcHandle);

while Modalitylist.Sec.IsValid(ConcHandle) loop

ModDescriptor:=ModalityList.Sec.GetCurrent(ConcHandle);

98 Chapter 8: Appendix B: Selection of source codes

if ModDescriptor.LastMostActive/=null then

ActEdge:=CreateEdge(ModDescriptor.LastMostActive, ActivityList(1));

if ActEdge/=null then

Put("CE "&NumID’Image(ModDescriptor.LastMostActive.ID));

end if;

ModDescriptor.LastMostActive:=null;

ModalityList.Sec.OverwriteElement(ConcHandle, ModDescriptor);

end if;

ModalityList.Sec.StepForward(ConcHandle);

end loop;

ModalityList.Sec.Release(ConcHandle);

end if;

-- send activity to other receptors

for I in 1..MaxSubmitHypotheses loop

if ActivityList(I)/=null then

TransActList(I).Activity:=ActivityList(I).Activity;

TransActList(I).TimeStamp:=To_Duration(ActivityList(I).TriggerEvent.TimeStamp-Time_First);

TransActList(I).InvSensors:=ActivityList(I).InvSensors;

TransActList(I).ID:=ActivityList(I).ID;

TransActList(I).SeqID:=ActivityList(I).SeqID;

else

TransActList(I).Activity:=-1.0;

end if;

end loop;

ActMessage.Content.ActiveReceptors:=TransActList;

LocalBroadCast(ActMessage);

Put_Line("");

-- activate anticipation task

DreamTask.Notify;

end if;

end loop;

ShutDownCommunication;

Put_Line("Local mapping shut down.");

exception

when E: others =>

Put_Line("Error occurred in InputCalculations!");

Put_Line (Current_Error,

"Task "

& Image (Current_Task)

& " reports: "

& Exception_Name (E)

& " - "

& Exception_Message (E));

end InputCalculations;

task body DreamTask is

WakeUpTime:Time;

ActReceptor,MinReceptor:ReceptorAccess;

ActEdge, MinEdge:EdgeAccess;

EHandle:EdgeList.ListHandle;

ImaginatedEvent:Event;

Suspended, AlreadyHappened:Boolean:=True;

DreamList:ReceptorList.ListDescriptor;

procedure CalcWakeUp is

Now:Time;

DreamHandle, TmpHandle:ReceptorList.ListHandle;

Index:Integer;

begin

Now:=GetGlobalTime;

-- find next anticipated event

MinReceptor:=null;

MinEdge:=null;

DreamHandle:=ReceptorList.Sec.CreateHandle(DreamList);

ReceptorList.Sec.JumpToHead(DreamHandle);

Index:=1;

while Index<=MaxConcHypotheses or ReceptorList.Sec.IsValid(DreamHandle) loop

if Index<=MaxConcHypotheses then

ActReceptor:=ActivityList(Index);

Index:=Index+1;

else

ActReceptor:=ReceptorList.Sec.GetCurrent(DreamHandle);

TmpHandle:=ReceptorList.Sec.DuplicateHandle(DreamHandle);

ReceptorList.Sec.StepForward(DreamHandle);

end if;

if ActReceptor/=null then

EHandle:=EdgeList.Sec.CreateHandle(ActReceptor.OutputEdges);

EdgeList.Sec.JumpToHead(EHandle);

while EdgeList.Sec.IsValid(EHandle) loop

8.4 Main module of the mapping system (graphmanager) 99

ActEdge:=EdgeList.Sec.GetCurrent(EHandle);

if ActEdge/=null

and then ActReceptor.Activity>LOW_ACT

and then (ActReceptor.TriggerEvent.TimeStamp+

To_Time_Span(Duration(ActEdge.DeltaT)))>Now

and then

(MinReceptor=null or else

(MinReceptor/=null and then MinEdge/=null

and then (ActReceptor.TriggerEvent.TimeStamp+

To_Time_Span(Duration(ActEdge.DeltaT)))<

(MinReceptor.TriggerEvent.TimeStamp+

To_Time_Span(Duration(MinEdge.DeltaT)))

and then

(ActReceptor.TriggerEvent.TimeStamp+

To_Time_Span(Duration(ActEdge.DeltaT)))>

InternalLastEvent.TimeStamp))

then

AlreadyHappened:=False;

for I in 1..MaxConcHypotheses loop

if ActEdge.Target=ActivityList(I) then AlreadyHappened:=True; end if;

end loop;

if not AlreadyHappened then

MinReceptor:=ActReceptor;

MinEdge:=ActEdge;

end if;

end if;

EdgeList.Sec.StepForward(EHandle);

end loop;

-- if event expired, delete it from Activity list

if MinEdge=null then

ReceptorList.Sec.Remove(TmpHandle);

end if;

ReceptorList.Sec.Release(TmpHandle);

end if;

end loop;

if MinReceptor/=null and MinEdge/=null then

WakeUpTime:=MinReceptor.TriggerEvent.TimeStamp+To_Time_Span(Duration(MinEdge.DeltaT));

Suspended:=False;

else

WakeUpTime:=GetGlobalTime+To_Time_Span(Duration(10.0));

Suspended:=True;

end if;

ReceptorList.Sec.Release(DreamHandle);

end CalcWakeUp;

DreamHandle, TmpHandle:ReceptorList.ListHandle;

begin

DreamList:=ReceptorList.Sec.CreateList;

WakeUpTime:=GetGlobalTime+To_Time_Span(Duration(10.0));

MinEdge:=null;

MinReceptor:=null;

Suspended:=True;

while ProgramActive loop

select

accept Suspend do

Suspended:=True;

end Suspend;

or

accept Notify do

-- include current activity list

--DreamHandle:=ReceptorList.Sec.CreateHandle(DreamList);

--for I in 1..MaxConcHypotheses loop

-- if ActivityList(I)/=null then

-- ReceptorList.Sec.GoToElement(DreamHandle, OldActivityList(I));

-- if ReceptorList.Sec.IsValid(DreamHandle) then

-- TmpHandle:=ReceptorList.Sec.DuplicateHandle(DreamHandle);

-- ReceptorList.Sec.Remove(TmpHandle);

-- end if;

-- ReceptorList.Sec.GoToElement(DreamHandle, ActivityList(I));

-- if not ReceptorList.Sec.IsValid(DreamHandle) then

-- ReceptorList.Sec.Add(DreamHandle, ActivityList(I));

-- end if;

-- end if;

--end loop;

--ReceptorList.Sec.Release(DreamHandle);

-- and determine next wakeup time

CalcWakeUp;

Suspended:=False;

end Notify;

or

delay until WakeUpTime;

if not Suspended and MinEdge/=null then

ActReceptor:=MinEdge.Target;

-- only trigger if event has not already happened!

100 Chapter 8: Appendix B: Selection of source codes

if ActReceptor.TriggerEvent.TimeStamp<WakeUpTime then

ActReceptor.TriggerEvent.TimeStamp:=WakeUpTime;

ActReceptor.TriggerEvent.Similarity:=1.0/((1.0+C_DAMP)*(1.0+C_A));

ActReceptor.Stimulation:=ActReceptor.TriggerEvent.Similarity;

Sec.CalcReceptorActivity(ActReceptor);

-- Put(" Dream:");

-- Put(Integer(ActReceptor.TriggerEvent.EventClass),2);

-- Put(" Activity:");

-- Put(Integer(100.0*MinReceptor.Activity),3);

-- Put("%");

-- PrintActivityList;

if ActReceptor.Activity>LOW_ACT then

DreamHandle:=ReceptorList.Sec.CreateHandle(DreamList);

ReceptorList.Sec.Add(DreamHandle,ActReceptor);

ReceptorList.Sec.Release(DreamHandle);

end if;

CalcWakeUp;

-- Put_Line("");

end if;

else

WakeUpTime:=GetGlobalTime+To_Time_Span(Duration(10.0));

end if;

end select;

end loop;

exception

when E: others =>

Put_Line("Error occurred in DreamTask!");

Put_Line (Current_Error,

"Task "

& Image (Current_Task)

& " reports: "

& Exception_Name (E)

& " - "

& Exception_Message (E));

end DreamTask;

task body ConcurrentActivityHandler is

ActMsg:Message;

SenderID:NumID;

ModHandle:ModalityList.ListHandle;

RecHandle, ConcHandle:ReceptorList.ListHandle;

ModDescriptor:ModalityDescriptor;

ActReceptor:ReceptorAccess;

begin

ConcurrentActivityList:=ModalityList.Sec.CreateList;

ConcurrentActivityTaskReady:=True;

while ProgramActive loop

PrivateMonitor.Monitor.Listen(SenderID,ActMsg);

-- find corresponding descriptor

ModHandle:=ModalityList.Sec.CreateHandle(ConcurrentActivityList);

ModalityList.Sec.JumpToHead(ModHandle);

while ModalityList.Sec.IsValid(ModHandle)

and then ModalityList.Sec.GetCurrent(ModHandle).ModID/=SenderID loop

ModalityList.Sec.StepForward(ModHandle);

end loop;

if ModalityList.Sec.IsValid(ModHandle) then

ModDescriptor:=ModalityList.Sec.GetCurrent(ModHandle);

else

ModDescriptor.ModID:=SenderID;

ModDescriptor.Receptors:=ReceptorList.Sec.CreateList;

ModDescriptor.ClockSkew:=Duration(0.0);

ModalityList.Sec.Add(ModHandle, ModDescriptor);

end if;

-- update activity of existing cross edge sources

RecHandle:=ReceptorList.Sec.CreateHandle(ModDescriptor.Receptors);

for I in 1..MaxSubmitHypotheses loop

-- identify Receptor

if ActMsg.Content.ActiveReceptors(I).Activity>0.0 then

ReceptorList.Sec.JumpToHead(RecHandle);

while ReceptorList.Sec.IsValid(RecHandle)

and then ReceptorList.Sec.GetCurrent(RecHandle).ID/=ActMsg.Content.ActiveReceptors(I).ID loop

ReceptorList.Sec.StepForward(RecHandle);

end loop;

-- if receptor could be identified, update data

if ReceptorList.Sec.IsValid(RecHandle) then

ActReceptor:=ReceptorList.Sec.GetCurrent(RecHandle);

-- update parameters

ActReceptor.Activity:=ActMsg.Content.ActiveReceptors(I).Activity;

--ActReceptor.TriggerEvent.TimeStamp:=Time_First+

-- To_Time_Span(ModDescriptor.ClockSkew+ActMsg.Content.ActiveReceptors(I).TimeStamp);

ActReceptor.TriggerEvent.TimeStamp:=GetGlobalTime;

else

-- otherwise, create new CrossMirror receptor

8.4 Main module of the mapping system (graphmanager) 101

ActReceptor:=GetRecycledReceptor;

ActReceptor.CrossMirror:=True;

ActReceptor.ID:=ActMsg.Content.ActiveReceptors(I).ID;

ActReceptor.Activity:=ActMsg.Content.ActiveReceptors(I).Activity;

-- global time calculation!!!!

--ActReceptor.TriggerEvent.TimeStamp:=Time_First+

-- To_Time_Span(ModDescriptor.ClockSkew+ActMsg.Content.ActiveReceptors(I).TimeStamp);

ActReceptor.TriggerEvent.TimeStamp:=GetGlobalTime;

ReceptorList.Sec.Add(RecHandle, ActReceptor);

end if;

-- write receptor in concurrent activity cache, if it’s a new maximum...

if ModDescriptor.LastMostActive=null

or else ActReceptor.Activity>ModDescriptor.LastMostActive.Activity then

ModDescriptor.LastMostActive:=ActReceptor;

ModalityList.Sec.OverwriteElement(ModHandle, ModDescriptor);

end if;

end if;

end loop;

ModalityList.Sec.Release(ModHandle);

ReceptorList.Sec.Release(RecHandle);

end loop;

end ConcurrentActivityHandler;

begin

ReceptorGarbage:=ReceptorList.Sec.CreateList;

EdgeGarbage:=EdgeList.Sec.CreateList;

MyEventList:=EventList.Sec.CreateList;

Text_IO.Put_Line("StartUp...");

if Argument_Count>=2 then

SetInternalAdress(Argument(1), Integer’Value(Argument(2)));

if Argument_Count>=4 then

Register(Argument(3), Integer’Value(Argument(4)));

end if;

else

Put_Line("Arguments missing: <LocalIP> <ListenPort> [<PartitionServerIP> <PartitionServerPort>]");

end if;

end GraphManager;

Bibliography

[1] Valentin Braitenberg, Detlef Heck, and Fahad Sultan. The detection and gen-
eration of sequences as a key to cerebellar function: Experiments and theory.
Behavioral and Brain Sciences, 20:229–277, 1997.

[2] G. de A. Barreto and A. F. R. Araújo. Time in self-organizing maps: An
overview of models. International Journal of Computer Research, 10(2):139–179,
2001.

[3] G. de A. Barreto, A. F. R. Araújo, C. Dücker, and H. Ritter. Implementation
of a distributed robotic control system based on a temporal self-organizing
network. In Proc. of the IEEE Int. Conf. on Syst., Man, and Cybern. (SMC’01),
pages 335–340, Tucson, Arizona, 2001.

[4] N. R. Euliano and J. C. Principe. A spatio-temporal memory based on SOMs
with activity diffusion. In S. Oja, E. & Kaski, editor, Kohonen Maps, pages
253–266. Elsevier, Amsterdam, 1999.

[5] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit.
Fastslam: A factored solution to the simultaneous localization and mapping
problem.

[6] Stefan B. Williams, Gamini Dissanayake, and Hugh Durrant-Whyte. Towards
multi-vehicle simultaneous localisation and mapping. In Proceedings of the
2002 IEEE International Conference on Robotics and Automation Washington DC,
2002.

[7] Uwe R. Zimmer. Embedding local metrical map patches in a globally con-
sistent topological map. In Proceedings of Underwater Technologies 2000, Tokyo,
Japan, pages 23–26, 2000.

	Introduction
	The role of temporal information
	Time sequence analysis for localisation and topological mapping
	Overview: Existing works

	Multiple Hypotheses Temporal Mapping
	Continuous analog model
	The recognition process
	Learning
	Aquisition
	Adaptation

	Model characteristics
	Discrete model for digital computers
	General problems
	Clustering / data preprocessing
	Discrete events
	Calculation of receptor activity
	Damping of activity waves
	Learning
	Time warping
	Complexity and realtime constraints

	Sensor fusion and Distributed Temporal Event Mapping
	Extension to multiple sensor modalities
	Creation of cross edges
	Adaptation of cross edges
	Modification of Receptor activity calculation

	Interaction between sensor modalities
	Discrete model
	Handling of intermodal graph edges (cross edges)

	Implementation and design issues
	Programming language of choice
	Tasks and monitors
	Graph data structure of the topological map
	Receptors
	Edges

	Data layout of the system
	Protected list
	Event association table
	Activity table
	Concurrent activity table

	Communication layout for distributed computing
	Ada RPC and distributed object dispatching
	TCP/IP and UDP/IP communication

	Dependencies

	Experiments
	Measurements and criteria
	Simulated data experiments
	Clean and noisy input comparison
	Sensor fusion in simulation

	Real world experiments
	General experiment setup
	Exploration strategy

	Software setup and constants
	Results
	Experiment 1: one internal laser sensor only
	Experiment 2: two internal laser sensors and one sonar sensor
	Experiment 3: internal laser sensor, external laser sensor
	Experiment 4: laser range finder and manual landmark input
	Experiment 5: Attaching and comparing landmark information

	Conclusion
	Future work

	Appendix A: Kurzfassung in deutscher Sprache
	Einleitung
	Ereignissequenzen
	Das dynamische System
	Die Erkennung von zeitlichen Sequenzen
	Der Lernprozess

	Sensorfusion
	Berechnung der Rezeptor-Aktivität
	Experimente
	Sensorfusion in der Simulation
	Experiment mit echten Sensordaten

	Zusammenfassung der Ergebnisse

	Appendix B: Selection of source codes
	Specification of the generic protected list
	Specification of the communication module
	The communication package
	The message retrieval monitor
	The identification specification

	Mapping constants
	Main module of the mapping system (graphmanager)
	Specification file ``graphmanager.ads''
	Implementation file ``graphmanager.adb''

	Bibliography

