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Abstract – 

 

Reliable wireless communication underwater is a
precondition for swarming technologies. This paper discusses
a time division multiple access (TDMA) algorithm suitable for
dynamic multi-hop wireless networks, which offers quick all-
to-all information exchange (Omnicast), dense local schedules
and predictable latencies. The algorithm is based on an earlier
algorithm published by the authors in [7]. This paper presents
an improved and simplified algorithm to calculate the local
schedules, and uses a new mapping  function for logical time
slots to actual time slots, which balances sending frequencies
between nodes. An extension of this algorithm is then presented
which employs a technique to reduce the average degree of the
connection graph as seen by the scheduling algorithm. It is ex-
plained how this reduction of degree can be achieved without
causing communication collisions. The results of experiments
performed in a real time simulation show the performance of
the algorithm, and the performance gain achieved by local re-
duction of the degree.

 

I. INTRODUCTION

The importance of distributed sensing and swarming vehi-
cles has been increasingly recognized by the underwater
community and ocean sciences. The Serafina submersible
robot (figure 1) has been developed as a platform for swarm-
ing and distributed sensing applications. The small size
(50cm), low weight (5kg) and low cost allows easy deploy-
ment of swarms of dozens of submersibles with affordable
effort. One of the most important problems that had to be
solved apart from the miniaturisation is the communication
between members of the swarm. For reasons of scalability to
large swarms and also to keep power consumptions low, a
digital longwave radio transceiver has been developed,
which can transmit data over up to 10m range with up to
8192bit/sec. The transmitter uses differential binary phase
shift keying on a fixed carrier frequency [8]. The use of elec-
tromagnetic channels instead of acoustics has now been
shown to be beneficial in [1]. This is especially so due to the
exponential attenuation of radio waves in water, which
keeps interference very localised. 
As opposed to the majority of other wireless networks, in
which communication is sporadic and usually point-to-
point, swarms require a communication system optimised
for continuous communication between all members, and
with quick local and global information exchange. The au-
thors published the Omnicast problem in a previous paper
[6] as well as a theoretical analysis based on a graph theoret-
ical network model.

Due to the severe bandwidth limitations and real-time re-
quirements in underwater swarms, time division multiple
access (TDMA) is a good choice. TDMA scheduling algo-
rithms are known in the literature [2, 4, 5], which are mostly
tailored for sensor networks or applications with sporadic
communication. A distributed algorithm adjusted to Omni-
cast communication in swarms is presented in [7]. 

Experiments with the phase-modulated longwave radio
modules revealed that the graph-theoretical network model
commonly assumed in the literature is too conservative [8].
In fact, if two or more transmitters send within the range of a
receiver then the receiver will only observe a collision if the
closest nodes have very similar incoming signal strength.
Otherwise the receiver will reliably receive the message
with the highest signal strength. This paper shows how this
fact can be used to speed up both local and global informa-
tion exchange by virtually decreasing the local degree of the
connection graph as seen by the scheduling algorithm. This
technique assumes that the signal strength can be measured
by the receiver. 

II. DISTRIBUTED DYNAMICAL 
OMNICAST ROUTING

The Distributed Dynamical Omnicast Routing (DDOR) al-
gorithm has been published previously. For details on the al-
gorithm refer to [7]. This paper describes a new, improved
version of the DDOR algorithm, which is slightly simpli-
fied. The second part of this paper presents a variant of the
algorithm in section III, which implements a form of spatial
reuse of the channel by pruning schedules. 

figure 1: Autonomous underwater platforms: Serafina
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A. The Basics

 

DDOR is a distributed algorithm for TDMA scheduling in
wireless multi-hop networks. It is computationally inexpen-
sive and can be implemented on a small microcontroller. It is
designed for continuous traffic and quick local and global
information dissemination.

Communication nodes maintain a logical clock  which
increments at the beginning of each time slot. The logical
clocks are synchronised during the startup of the network by
monitoring incoming messages. It can be assumed that the
logical clocks  are equal and in sync up to sufficient ac-
curacy on all participating nodes.

To allow for dense packing of schedules on one hand, but
reconfigurability on the other hand, time slots are divided
into packet slots, separated by short 2-byte request slots.
Figure 2 shows the packet and time slot structure. Each
packet contains the unique identifier of the sender, the send-
er's logical clock, and the current local schedule of the send-
er. A request packet contains the sender's ID and the number
of the requested schedule slot.

The following data structures are maintained by each node:

• The visible neighbourhood . This is a database of all
nodes that are within range of the node. The node data-
base is maintained according to received messages. It is
assumed that a node which message has been received is
within range. Nodes are removed from the list and the
schedule if no messages from them were received over a
certain amount of time. With every node in the list the
node's local schedule is stored as received in the last mes-
sage of this node.

• The local schedule . Nodes try to establish local colli-
sion-free schedules. The schedule of each node consists
of a number of schedule slots. A slot can be either empty,
blocked, or used by a node present in the visible neigh-
bourhood. The local schedule is recalculated with every
received message from the most recent schedules re-
ceived from all nodes in visible neighbourhood. 

A node can be in one of three states: 

 

Listening

 

, 

 

Requesting

 

,
and 

 

Running

 

. The default is 

 

Listening

 

. The node remains in
the 

 

Listening

 

 state for a random number of time slots, while
updating its local schedule and visible neighbourhood list
from received messages. If the visible neighbourhood list is
still empty after the time out (no messages received), the
node adds itself to the first slot of its local schedule and

transmits a message containing this schedule. Otherwise the
node sends out a request for the first empty slot in the current
schedule, and returns to 

 

Listening

 

 for a random time. 

 

B. The DDOR algorithm

 

All nodes keep track of their neighbourhood (all nodes from
which they recently received a message). Nodes also save
the most recent schedules which they received from their
neighbours. A neighboured node is marked as 

 

established

 

 if
a complete message with schedule has been received from
this node, and as 

 

not established

 

 if only a request has been
received up to now (respectively if the last message from
this node was a request).

If a messages from a neighboured node cannot be received
for an extended period of time (at least two schedule
rounds), the node is removed from the database of neigh-
boured nodes. Removal of a node from the database also in-
vokes the removal of that node from all locally stored sched-
ules (the locally stored copies of schedules received from
other neighboured nodes). 

The algorithm consists of two tasks, the transmitter task and
the receiver task. The two tasks communicate indirectly
through the node database, which has to be implemented as
a multi-tasking save entity (i.e. a protected object in Ada). 

 

Receiver task

 

The receiver task takes care of incoming messages. It only
becomes active if a message is received, and can therefore
also be implemented as an interrupt handler. This is espe-
cially useful for implementations on microcontrollers, on
which a distributed programming language might not be
available. This is the description of the receiver task in pseu-
do code:

 

loop:

Wait_For_New_Message;

Message := Retrieve_Message;

Synchronise_Clock (Message.Logical_Clock);

if type of Message is ‘Request’ then

if Message.Sender is in Node_Database, 

remove Message.Sender from Node_Database; 

end if;

Clear requested slot from all schedules in Node_Database;

Create new entry for Node_Database:

Node.ID := Message.Sender;

Node.Schedule := Empty_Schedule;

Mark requested slot in Node.Schedule 

as used by Message.Sender

Node.Established := false;

Store new Entry ‘Node’ in Node_Database.

else if type of Message is “Message” then

update Node_Database with 

(Message.Sender, Message.Schedule, Established := True;)

end if;

end loop;
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figure 2: Format of the data packet and the time slot
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Transmitter

 

The transmitter task is more complex. It is a periodic task,
which becomes active at every beginning of a time slot or a
request slot.

 

loop:

Wait_For_Next_Time_Slot;

Local_Schedule := Recalculate_Local_Schedule (Own_Slot);

Current_Time_Slot := Calculate_Active_Time_Slot;

if This_Node is in Local_Schedule, then

State := Run;

else if not State = Listen then 

State := Listen;

Set Listen_Time to random number of time slots

end if;

case State is

Run: 

if Local_Schedule (Current_Time_Slot) = This_Node then

if better slot with lower index available then

with Probability of 33%:

Prepare_Request for better slot;

State := Request;

end if;

with Probability of 95%: 

Transmit_Message (Local_Schedule);

end if;

Listen:

if Node_Database is empty, then initiate:

Own_Slot := first empty schedule slot;

Local_Schedule (Own_Slot) := This_Node;

Transmit_Message (Local_Schedule);

else

if Listen_Time = 0, then

Prepare Request for first empty slot in local schedule;

State := Request;

Set Listen_Time to random number of time slots

else

Decrement Listen_Time

end if;

end case;

Wait_For_Next_Request_Slot;

if State = Request then

Clear this node from local Node_Database 

and all locally stored schedules;

Send out Request for prepared slot;

Set Own_Slot to Requested slot

end if;

end loop;

 

The two crucial functions called in the transmitter task are

 

Recalculate_Local_Schedule

 

 and 

 

Calculate_Active_Time_
Slot

 

. The nodes in the local node database are denoted
; each node in the local database has a locally stored

schedule  (the most recently received schedule from each
neighbour) with schedule slots . Schedules of nodes
from which no schedule has been received yet are empty, i.e.
all slots of that schedule are marked as empty slots. The cal-

culation of the local schedule is described here by the func-
tion :

 

(1)

 

with

 

(2)

(3)

 

It can be seen from the definition of  that collisions be-
tween competing nodes are resolved by favouring the node
with the lowest index. This is an invariant which can be
equally computed by all affected nodes. The “own” slot (the
slot that a particular node requested last) is only assigned if
at least one node in the 1-hop neighbourhood confirms this,
and if the slot is otherwise unused.

The active time slot is calculated recursively from the cur-
rent logical time , and the current local schedule

. The schedule length  is assumed to be a power
of 2.

 

(4)

(5)

 

The initial call of the recursive function uses the maximal
schedule length (must be a power of 2) as a parameter. The
described mapping function has the advantage that it does
not return empty time slots if the first slot of the schedule is
filled, thus increasing utilisation especially in the case of
sparse schedules. Alternatively other time slot mapping
functions can be used. 

III. PRUNED DISTRIBUTED 
OMNICAST ROUTING (PDOR)

The algorithm described in the last section assumes a graph
topological collision model (a node receives a message if
and only if exactly one of its neighbours transmits). Howev-
er, some real radio links (notably frequency modulated or
phase modulated channels) have different characteristics
[8]. Typically a node receives the message from a transmit-
ting node, if the ratio of signal strength of that node over
noise and interfering messages in the local vicinity is greater
than a certain threshold. Due to the strong attenuation of ra-
dio waves over distance (especially for omnidirectional
links), there is only a small region where a collision occurs
(the receiving node cannot decode any of the received mes-
sages). 

A problem of the DDOR algorithm described in the previous
section is the increasing schedule length for networks with
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high connectivity (high graph degree). Longer schedules
have a negative impact on the performance. Roundtrip times
locally and globally grow. An additional problem is that
longer schedules take up large parts of the transmitted mes-
sages, wasting valuable bandwidth. If the geometric/radio-
metric collision model is applied, it is possible to make use
of the fact that collisions actually occur less frequent than
the graph topological model suggests. In principal it is pos-
sible to pack schedules more densely by re-issuing slots tak-
en by distant nodes to closer nodes. Messages sent by closer
nodes will ‘overwrite’ the messages by the more distant
nodes sending in the same time slot. The perceived connec-
tivity is quantitatively similar to a network of the same geo-
metric layout, but with reduced transmission ranges. This
technique is often referred to as 

 

spatial reuse

 

 [9].

The following algorithm implements spatial reuse on top of
the DDOR algorithm. It requires the following assumptions: 

• Symmetric links: If (in undisturbed conditions) node A
can receive messages from node B, then node B can also
receive messages from node A. 

• Monotonically decaying signal strength over distance.

• A node receives whichever message send out in its local
neighbourhood which is received with the strongest sig-
nal (a small ‘collision zone’ is acceptable, where no mes-
sage is received if the  strongest messages have
comparable signal strength. The collision zone is as-
sumed to be small compared to the maximum range, or
the distance between nodes). 

• The signal strength can be measured (directly or indirect-
ly).

The modified algorithm is largely identical to the original
DDOR algorithm. The two differences are in the collision
resolution in the scheduling function (1), and in the slot re-
quest mechanism during the 

 

listen

 

 state. The new scheduling
function is defined here:

 

(6)

 

with

 

(7)

(8)

 

and whereas  denotes the signal strength of the last
message received from node .

The main differences are that collisions are now resolved
based on signal strength instead of node index. Since every
node has different signal strengths for their neighbours, this
decision is not identical any more on different nodes. In
DDOR, the decision who occupies a slot is coherent within a
2-hop neighbourhood around that node. In PDOR, the deci-
sion is localised. Nodes geometrically close to a node 
will assign the slot to , while other nodes within range or
within a 2-hop neighbourhood may assign the same slot to

other nodes that are received stronger. This effectively
shrinks the virtual neighbourhood of nodes in dense areas. 

Derived modifications take into account that only nodes that
appear in the final local schedule are used to mark blocked
slots. Also, a slot is only marked ‘o’ (for own use) if at least
one neighbour that appears in the local schedule confirms
this slot. 

The second difference is in the request mechanism. As be-
fore, nodes apply for empty slots within the schedule. As an
extension, if there are no available empty slots, a node may
apply for a blocked slot (with a preference for blocked slots
at the end of the schedule). If no blocked slots are available,
a node requests the slot occupied by the node with the lowest
locally measured signal strength. 

IV. DISCUSSION

A theoretical analysis of the omnicast problem [6] revealed
an upper bound of  for networks with  nodes. Other
upper bounds have been presented in [2, 3]. An upper bound
for the DDOR algorithm can be given as , where

 is the maximum size of any 2-hop neighbourhood
( ): 

The diameter of a 2-hop neighbourhood is at most 4. In a
connected graph it is possible to find a chain of overlapping
2-hop neighbourhood subgraphs that minimally cover the
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diameter of the graph. This requires  subgraphs. DDOR
only considers nodes in a local schedule that are contained
in the 2-hop neighbourhood of a node. It follows that execut-
ing a schedule once completely takes  time slots. In
the worst case, after a local schedule has been executed
twice, all nodes within this 2-hop neighbourhood have local-
ly solved omnicast, including the nodes that overlap with
neighbouring subgraphs. This process has to be repeated at
most  times to spread all information along the diame-
ter. Since the diameter is the longest shortest path across the
graph, this implies that omnicast can be solved in at most

 time steps. This assumes that the maximum
schedule length of DDOR can accommodate at least 
nodes. If that is the case,  can be substituted by the maxi-
mum schedule length . 

Both  and  are linked to the graph degree . In the gener-
al case, an upper bound for  is . However, in network
graphs that are derived from a two- or three-dimensional
embedding, the size of a 2-hop neighbourhood is typically
lower. The schedule length  has to be chosen accordingly. It
is obvious that short schedules are preferable. This implies
that omnicast can be solved quicker in graphs of lower de-
gree. 

PDOR is able to deal with 2-hop neighbourhoods which are
larger than the schedule length, by virtually reducing the
neighbourhood according to signal strength. It is therefore
advisable to choose the schedule length as short as possible,
while still preserving good connectivity for the given swarm
configuration. PDOR requires the schedule length to be long
enough to accommodate all nodes in the closest proximity,
so that these nodes maintain good connectivity with the rest
of the graph. In the case of homogenous 3-D configurations,
nodes typically have 12 neighbours in close proximity, or 6
neighbours for 2-d configurations. A schedule length of 16
slots is therefore sufficient for most homogenous swarm
configurations. A short schedule length will enforce pruning
of schedules, which effectively lowers the upper bound for
omnicast. A further advantage of PDOR is that it continu-
ously updates the schedules according to the currently re-

ceived signal strength of a node's neighbours. If a node
moves throughout the network, the schedules are continu-
ously updated, and only rarely a node loses its slot and has to
re-apply. The next section goes into more detail of the actual
performance of both algorithms.

C. Performance in Simulations

A simulation has been implemented in Ada in order to verify
the theoretical findings. While it is not a complete physics
simulation, the measured collision behaviour of the tested
longwave radio modules has been included as accurately as
possible. The simulated submarines are created as independ-
ent, encapsulated tasks. Sending and receiving of messages
is performed by interaction with the simulation environment
at the lowest level. All higher level software parts (including
the scheduling algorithm) are not aware of the simulation,
and can be run identically on appropriate hardware. 

In order to test the communication system in varying scenar-
ios, the simulated submarines obey simple force-based
swarming rules, which have access to the measured distance
to all submarines within sensing / communication range
once a second. The swarming rules allow to change the aver-
age distance between submarines, which results in changing
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degrees of the network graph. During the simulation, the
current graph degree is measured. 

The measurement of the omnicast performance is achieved
by a distributed counting algorithm. Every node maintains a
counter. All counter values for all nodes are passed on with
every message. A node sets its own counter to the maximum
of all other counters, and increments its counter if all counter
values are greater or equal to its own. The average duration
between counter increments roughly corresponds to the du-
ration of a performed omnicast. This duration is referred to
as OC in the following plots.

The measurement protocol starts up the simulation and,
while monitoring degree, diameter and omnicast perform-
ance, changes the average distance between nodes dynami-
cally in various pattens. The scheduling algorithm and the
swarming behaviour are never stopped for the whole dura-
tion of the experiment. A sample run can be seen in figure 4.
The plot shows the changing degree and diameter of the
graph as measured over time, together with the measured

duration between omnicast counter increments. The simula-
tion run starts with a 2-D configuration, and then switches to
a 3-D configuration and repeats the changes in density (also
refer to the images in figure 3). The change to 3-D occurs at
approximately .

As expected, the collision-avoiding DDOR algorithm per-
forms well for low graph degrees, but loses performance for
high degrees (figure 5 and also figure 6). This is due to the
fact that for high connectivity only one node can send per
time slot, or otherwise messages would collide. The PDOR
algorithm performs equally well over the full range of net-
work densities, in both 2-D and 3-D. The average perform-
ance is around 40 time steps, which coincides with the
number of nodes. There is very little variation in the per-
formance, as the 10% and 90% quantiles indicate (80% of
all data points are between these lines). It should be noted
that the PDOR algorithm achieved this with a schedule
length of only 16, while the DDOR algorithm required 64
slots to be able to fit all nodes into the schedule during peri-
ods of high connectivity. This means that the message size
overhead in PDOR can be greatly reduced. 

Dynamic tests

Both algorithms have been subjected to dynamic changes in
the network topology and geometry. One test involves the
step response of the omnicast performance following a
sharp change in density.

The DDOR algorithm responds so quickly that the perform-
ance can be maintained during the adaptation of the sched-
ules to the new topology (figure 6). In the case of the net-
work thinning out, there is a short period of reduced
performance. This is because the schedule of the dense net-
work is still active after the transition (i.e. one node at a time
sends), but the network has a worse connectivity now. After
a brief period of time, the change is detected and the sched-
ule adapted, leading to a much shorter roundtrip time. The
first adaptation is then followed by further optimizations. 
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In the opposite case of the network becoming denser, the
change can be detected more quickly, because nodes now re-
ceive more messages from new neighbours, containing their
schedules. Changes can be immediately made, and the per-
formance immediately reaches the best possible perform-
ance for the new configuration. The variation in perform-
ance for fully connected networks can be explained by the
stochastic omission of transmissions by nodes. This is nec-
essary to detect messages that might be hidden by own
transmissions. 
Extended step response experiments have been carried out
with the PDOR algorithm (figure 7) As can be seen, the per-
formance of PDOR is largely unaffected by dramatic chang-
es in the network topology. The average performance is
around 50-60 time steps, which is below the number of
nodes in the network. The result is not surprising, since the
PDOR algorithm packs schedules more densely in the case
of high network degree, which means that the schedules re-
semble the schedules achieved during periods of low degree.
The geometry of the swarm mainly changes the scale, but
only slowly the neighbourhood relations, so that the already
established schedule only requires minor changes. A slight
effect can be seen that the performance profits from lower
graph diameters - the omnicast roundtrip time is slightly re-
duced for graphs of high degree and low diameter. 
A final experiment was conducted, where the graph density
is changed slowly. The results are shown in figure 8. Again,
the performance of PDOR is mostly unaffected by the
changes in the network. It is also again visible that the per-
formance is slightly better for low diameters. 

V. CONCLUSIONS

An efficient TDMA scheduling algorithm DDOR has been
presented and discussed. By taking advantage of the colli-
sion behaviour typically found in phase and frequency mod-
ulated radio systems, a modification to the original algo-
rithm (PDOR) has been furthermore presented and
discussed. Both algorithms are able to rapidly adjust to
changes in the network topology, and achieve a very good

performance well within the theoretical upper bounds.
While DDOR requires large schedules being sent with every
message, and suffers lower performance for dense network,
the modified PDOR algorithm maintains almost constant
performance, and only requires short schedule lengths down
to 16 slots. 
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