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Abstract— This paper proposes the use of optical flow from
a moving robot to provide force feedback to an operator’s
joystick to facilitate collision free teleoperation. Optic flow is
measured by wide angle cameras on board the vehicle and
used to generate avirtual environmental force that is reflected
to the user through the joystick, as well as feeding back
into the control of the vehicle. The coupling between optical
flow (velocity) and force is modelled as an impedance – in
this case an optical impedance. We show that the proposed
control is dissipative and prevents the vehicle colliding with the
environment as well as providing the operator with a natural
feel for the remote environment.

The paper focuses on applications to aerial robotics vehicles,
however, the ideas apply directly to other force actuated vehicles
such as submersibles or space vehicles, and the authors believe
the approach has potential for control of terrestrial vehicles and
even teleoperation of manipulators. Experimental results are
provided for a simulated aerial robot in a virtual environment
controlled by a haptic joystick.

I. INTRODUCTION

Unmanned aerial and submersible vehicles have an impor-
tant role to play as remote surveillance platforms to remove
human operators from dangerous and difficult situations.
Commercial applications exist in inspection of infrastructure
such as piping, cabling, etc, for a range of industrial and civil
settings as well as the more publicised search and rescue and
crowd surveillance scenarios.

A key requirement of a vehicle functioning in such a
role is a capability to manoeuvre safely in cluttered three-
dimensional scenarios such as indoor or urban canyon envi-
ronments. Existing systems require the undivided attention of
highly skilled operators and normally require line of sightto
the actual vehicle. The application of teleoperated mini aerial
robots to these applications is gaining interest [9] with the
goal of developing systems that can be controlled intuitively
by someone with only minimal training.

Safe teleoperation of robotic vehicles in cluttered envi-
ronments requires an integrated obstacle avoidance capa-
bility based on exteroceptive sensor systems. One of the
most promising sensor modalities for obstacle avoidance in
robotics is the use of vision, and particularly optic flow [4],
[13], [16], [17]. Motivation for this approach in aerial robots
is drawn from the study of vision and flight in insects [24].
Recently there has been considerable interest in using optic
flow velocity cues for control of aerial vehicles [2], [8], [18],
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[20], [21], [26]. The authors know of no prior reference for
use of optic flow in teleoperation of robotic vehicles.

In this paper, we provide an integrated framework for
teleoperation of robotic vehicles that provides the operator
with a haptic feel for obstacles in the environment based on
optic flow measured by the vehicle. We treat optic flow, or
a derivative of optic flow such as optical divergence, as a
velocity variable induced by the motion of the robot in the
environment, and then implement a force that proportionally
opposes this motion both directly on the vehicle, and also
as a reflected force experienced by the operator through a
haptic user interface.

The key idea of the approach is the definition ofoptical
impedance, a mapping from the optical flow field to forces on
the vehicle. Modelling the system in this manner leads to an
energy flow model of the closed-loop vehicle dynamics. We
propose two optical impedances: Firstly spherical divergence
computed at the focus of expansion, a dissipative impedance
that acts to prevent collision with the environment, and
secondly a differential flow impedance, a passive impedance
that acts to centre the vehicle in corridor like environments
without opposing forward motion.

The paper is written in the context of aerial robotic
vehicles but the technique is directly applicable to other
thrust controlled vehicles such as submersibles and space
vehicles. However, we believe that the underlying concept
optical impedance has broader application and is relevant to
teleoperation of all robotic vehicles and even of robotic ma-
nipulators, although space limitations in this paper prevent us
from going into details. In particular, we mention recent work
[22] where some initial experimental results are presentedon
a holonomic robotic vehicle. In this paper, the performance
of the proposed control strategy is demonstrated in a 3-D
simulation environment. The experiments carried out in the
simulation are a precursor to an implementation on a quad-
rotor aerial robot with panoramic vision sensors

After this introduction, Section II introduces the dynamic
system models. Section III defines the concept of optical
impedance and uses a simple example to provide insight into
the proposed approach. Section IV introduces the two optical
impedances that we propose as ‘good’ choices. Section V
discusses the experiment setup developed and presents some
results.

II. P 

In this section we develop dynamic models of an aerial
robotic vehicle and the 3D-haptic user interface indepen-
dently and as an integrated system.



A. Dynamic Model for a hovering UAV

We consider the case of an aerial robotic vehicle capable
of quasi-stationary flight, that is hover and near-hover flight.
The system model considered is based on those introduced
in the literature to model the dynamics of helicopters [6],
[23] and helicopter like vehicles [11], [19].

Let {A} denote the inertial reference frame, fixed to the
earth surface, and let{B} denote the airframe, a body-fixed
frame attached to the vehicle. The position of the airframe
in the world frame is denotedx ∈ {A} and its attitude (or
orientation) is given by a rotation matrixR representing the
attitude of frame{B} with respect to{A}. Let v ∈ {A} denote
the translational velocity andΩ ∈ {B} denote the angular
velocity. LetM denote the total mass andI denote the inertia
of the body. The dynamics of a rigid body are [7]

ẋ = v (1)

Mv̇ = RF (2)

Ṙ= RΩ×, (3)

I Ω̇ = −Ω × IΩ + Γ, (4)

where Ω× denotes the skew-symmetric matrix such that
Ω×v = Ω × v. The exogenous force and torque inputs are
denotedF,Γ ∈ {B} respectively.

For a typical aerial robot capable of quasi-stationary flight
a vectored thrust model is adequate for the purposes of
control design and analysis [1], [6], [11], [19], [23]. The
net force is modelled by

F := −Te3 + MgR⊤e3 + Faero (5)

whereT ∈ R is a scalar input representing the thrust force
applied in directione3, the unit vector with a one in the
third entry, in this case representing thez-axis direction in
the body-fixed-frame. The termFaero denotes aerodynamic
forces due to induced drag, gusts, so called small-body forces
due to action of flaps for attitude control, etc, that are not
explicitly modelled. Such forces are typically second order
compared to the dominant thrust forces, at least in normal
flight conditions.

B. Dynamics of the haptic device

The haptic user interface considered is one capable of
motion in 3D-Euclidean space. A haptic device is typically
a parallel manipulator, usually cable driven, with high per-
formance torque controlled motors. The resulting dynamics
are highly complex and depend on the configuration of the
device. For a three degree of freedom haptic device the
position of the joystickξ ∈ R3 can be used as generalised
coordinates for an Euler-Lagrange model of the system
dynamics leading to a theoretical model of the system

m(ξ)ξ̈ = C(ξ, ξ̇)ξ̇ − D(ξ)ξ̇ +G(ξ) + f + u (6)

wherem(ξ) is the generalised mass matrix,C(ξ, ξ̇) is a Cori-
olis matrix, D(ξ) > 0 is a damping matrix,G(ξ) represents
the force on the device due to gravity,f is the exogenous
force applied to the joystick by the user, whileu represents
the force generated by the device actuators expressed with

respect to the frame of reference attached to the joystick. In
practice, the termsm(ξ), C(ξ, ξ̇), D(ξ), andG(ξ) are unknown
for commercial systems. Instead, commercial haptic devices
are provided with active control and a programming interface
that, at least approximately, transforms the dynamics into
those of a point mass moving in Euclidean space

mξ̈ = −D(ξ)ξ̇ +mge3 + f + u, (7)

with unknown damping termD(ξ) > 0. For high end haptic
devices the damping termD(ξ) can be ignored, however, for
low cost devices, such as the device used in the experimental
section, the damping can be quite significant.

C. Integrated system

We assume that the vehicle is equipped with an inertial
measurement unit and suitable filter algorithm to produce
robust high-bandwidth estimates of vehicle attitudeR and
angular velocityΩ. The most common (and simplest) ap-
proach to vehicle control is to design an inner-loop high-gain
control for the system attitude, (3) and (4), [15]. The inner-
loop regulates the torque inputs to track a desired orientation
R∗(t) while rejecting disturbances.

The haptic system is interfaced to the aerial robot by using
the displacement of the haptic joystick from a central position
to control translational force on the aerial robot

Fpilot := kpilotξ(t), kpilot > 0

Define the desired translational forceF∗ to be the sum of
two external forcesFpilot and Fenv

F∗(t) = Fpilot + Fenv (8)

whereFenv is the virtual force generated by the environment
(see Section III).

Substituting forF = F∗, R = R∗ and T = T∗ into Eq. 5
and rearranging we obtain

MgR∗
⊤

e3 − T∗e3 = F∗ − Faero (9)

whereR∗ and T∗ are the desired attitude and thrust for the
vehicle. Assuming thatF∗−Faero remains bounded and fixing
the desired yaw rotation around the axese3 as an exogenous
input that will be separately specified by the pilot, then
Eq. 9 can be uniquely solved forR∗ and T∗. The desired
orientation and thrust (R∗,T∗) are time-varying set-points
for the inner high-gain control-loop implemented on the
vehicle. We assume that the aerodynamic disturbancesFaero

are second order compared to the dominant thrust control
and are negligible in the attitude stabilised system. Thus,in
this paper, we will consider only control of the translational
dynamics, (1) and (2), with a direct control inputF ≈ F∗

provided by a suitable inner-loop high-gain controller.
The haptic system is far simpler to analyse. Define the

internal force control (see Eq. 7) on the haptic system to be

u := mge3 −Cξ + kenvFenv (10)

for kenv > 0 a positive constant. The first term is used to
cancel the gravitational effect on the joystick, the second



term creates a spring potential well around the centre pointof
the joystick, while the third term models the force feedback
from the environment to the pilot.

The dynamics of the integrated system can be modelled
by

ẋ = v (11a)

Mv̇ = R(kpilotξ(t) + Fenv) + ∆ (11b)

mξ̈ = −D(ξ)ξ̇ −Cξ + kenvFenv+ f , (11c)

where f is the force applied by the pilot to the haptic
joystick, Fenv is a virtual force that is generated by an optical
impedance and∆(t) is an unknown bounded load disturbance
that is generated by the tracking error ofF to F∗ combined
with the unknown aerodynamic disturbancesFaero.

The most important term in the model (11) is the en-
vironmental forceFenv. For a vehicle that has no physical
contact with its local environment, and hence has no direct
velocity constraints, the environmental force is best modelled
as an impedance. An impedance for the dual velocity/force
variables of a rigid-body moving in free space is a, possibly
time-varying, integro-differential mapping from velocity to
force. In this paper, we will only consider static impedances,
however, we will allow the impedance to depend non-linearly
on the environment (and state) of the vehicles. Thus, we write

Fenv := −κenv(v) ∈ R3 (12)

whereκenv(v) is the impedance mapping.
If κenv is a positive definite function ofv, in the sense that

〈v, κenv(v)〉 ≥ 0 then the impedance is termeddissipative1.
That is, the dual variables velocity and force will dissipate
the vehicle’s kinetic energy and slow the vehicle down.
Intuitively, the forceFenv will always ‘oppose’ motion of
the vehicle.

III. O I

Consider a continuous-time vision system. Assume that
the environment in which the vision system moves is static
and that the illumination is not varying with time. The optic
flow is defined as the instantaneous observed velocity of
image features in the image plane of the vision system.
Mathematically it is a time-varying vector fieldΦt(p), where
t is the time index andp is the pixel coordinates, defined on
the image plane. LetΦ[t1,t2] denote the optic flow for all time
instances in the interval [t1, t2].

Definition 3.1: Consider a continuous-time vision system
with its focal point at the origin of the airframe and moving
with the rigid-body dynamics given by (1)-(4). Anoptical
impedanceis a mapping

κ : (t,Φ[−∞,t]) 7→ R
6

to the force and torque ‘applied’ by the vision system to the
robot at timet

(F(t),Γ(t)) := κ
(

t,Φ[−∞,t]
)

1The angle-brackets denote inner-product.

An optical impedance is termedstatic if κ only depends on
the value ofΦ[−∞,t] at time t; that is

(F(t),Γ(t)) := κ (t,Φt) .

�

In this paper, we consider only the translational motion
of the vehicle and the optical impedances considered will
only act to produce environment forcesFenv as per (11b)
and (11c).

Definition 3.1 makes the dependence of optical impedance
on the optical flow field of the vision system explicit,
however, this is a very abstract construction and involves
the whole vector fieldΦ as an input argument in the
functional mapping. In practice, we propose an intermediary
step where we defineoptical motion cues, finite dimensional
features derived from the optic flow fieldΦ[−∞,t] (or Φt for a
static impedance) that will simplify the process of defining
the optical impedance. The approach is best illustrated by
example.

Consider a spherical camera, that is one in which the
image sequence is projected onto a sphere rather than
the more usual flat image plane, moving freely in a 3D-
environment. Denote coordinates on the spherical image
surface by vectorsp ∈ S2, the sphereS2 = {p ∈ R3 | |p| = 1}.
Let λ : S2 → R denote a scalar field on the sphere with
values denoting the distance from the focal point of the
camera to the environment. We assume that the environment
is rich in texture, that is that the optic flow is well defined
at every point on the sphere and that the vision system is
operating in continuous time. The optic flowΦ is a vector
field Φ : S2 → TS2 on the sphere (whereTS2 denotes the
tangent bundle of the sphere) given by [10]

Φ(p) := −Ω × p−
1
λ(p)

(

I3×3 − pp⊤
)

V (13)

whereI3×3 is the 3×3 identity matrix,V = Rv is the velocity
represented in the body-fixed frame. Note the dependence
of the optic flow on the inverse depth to the observed
environment.

Consider the optical motion cuewmean defined by the
integral

wmean=

∫

S2
Φ(p)dp ∈ R3 (14)

where the vectorΦ(p) ∈ TpS2 ⊂ R3 is thought of as
embedded inR3 and the resulting integration is just the vector
comprising the integrals of the vector entries ofΦ(p) ∈ R3.
The optical motion cuewmeancan be used to define an optical
impedanceκmean by

κmean(Φ) := cmeanwmean= cmean

∫

S2
Φ(p)dp ∈ R3

where cmean is a positive constant. The optical impedance
κmean is a static dissipative impedance. To see thatκmean is



dissipative we setFenv = κmean(Φ) and compute

〈V, Fenv〉 =V⊤
∫

s2
Φ(p)dp

= − V⊤
∫

S2
(Ω × p)dp− V⊤

∫

S2

(

I − pp⊤
)

λ(p)
Vdp

= − V⊤
∫

S2
+

(Ω × p+ Ω × (−p)) dp

− V⊤
(∫

S2

(

I − pp⊤
)

λ(p)
dp

)

V

where the integral over the full sphere for the first term is
rewritten overS2

+, the upper hemisphere of the sphere with
respect to an arbitrary choice of coordinates, and the lower
hemisphere contribution is provided by the additional−p
term in the integrand. Define

Qmean :=

(∫

S2

(

I − pp⊤
)

λ(p)
dp

)

> 0.

and note that this is a strictly positive definite for a generic
depth fieldλ. It follows that

〈V, Fenv〉 = −V⊤QmeanV ≤ 0

and the impedance is shown to be dissipative.
Unfortunately, the optical impedanceκmean does not lead

to desirable characteristics of the teleoperation system.In
particular, it has low sensitivity to a direct collision of
the vehicle with an obstacle since the optic flow in the
direction of motion is zero. Moreover, it is highly sensitive to
optic flow orthogonal to the direction of motion, leading to
high ‘drag’ force when manoeuvering along a wall but low
resistance when actually moving towards the wall. In the
next section we propose two optical impedances that lead to
more desirable behaviour.

IV. O      


In this section, a combination of two optical impedances
are discussed that, we believe, taken together provide a
good model for obstacle avoidance. The optical impedances
chosen are similar in concept to the visual cues used by
Coombset al. [4].

A. Optical impedance for collision avoidance

The spherical divergence of the optical flowΦ is given by

divΦ(p) =
2p⊤V
λ(p)

+
dλ(p) · Φ(p)
λ(p)

(15)

(see [5], [3]) The first term depends on the component of
the velocity in the directionp and is scaled by the inverse
distance to the environment. This is the primary information
encoded in the divergence that provides a cue when the
vehicle is moving towards or away from the obstacle. The
second term depends on the expression dλ(p) · V = d

dtλ(p)
where p is a fixed direction on the sphere. The first term is
highly desirable as an optical motion cue to avoid collisions.
The second term, however, is primarily associated with the

change in perspective of the environment and tends to be
highly sensitive in directions orthogonal to the motion of the
vehicle. Correspondingly, since the second term depends on
the value of the optic flowΦ, it is zero whenp = V/|V| is
taken in the direction of the velocity.

Define an optical motion cue

wfoe =

{

divΦ(V/|V|) for V , 0
0 for V = 0

where ‘foe’ stands for focus of expansion. In practice, it
is possible to extract the translational optic flow from the
full flow field by compensating the rotational component
Ω × p based on separate measurements of angular velocity.
The direction of motionV will correspond to the focus
of expansion of the translational flow that can easily be
computed [14]. Since the divergence of full flow does not
depend on the rotation, the optical motion cuewfoe is also the
the divergence at the focus of expansion of the translational
optic flow field.

Based on the optical motion cuewfoe we define an optical
impedance

κfoe(Φ) :=















−cfoe
divΦ

(

V
|V|

)

|V| V for V , 0
0 for V = 0

where cfoe > 0 is a constant. Note thatκfoe(Φ) ∈ R3 as
required and depends only on the value ofΦt(p) at time
t and is a static optical impedance.

A key mathematical property of the optical impedance
κfoe(Φ) is that it is dissipative. Defining Fenv = κfoe(Φ) and
(for non-zeroV) computing

〈V, Fenv〉 = −
divΦ

(

V
|V|

)

|V|
|V|2

= − 2
|V|2

λ(V/|V|)

where the second line follows by substituting the value of
divΦ from (15) for p = V/|V| and notingΦ(V/|V|) = 0.

The optical impedanceκfoe(Φ) is highly effective at pre-
venting collisions with the environment surrounding the
robot — creating a force feedback for the user that is intuitive
and effective.

B. Corridor centring

The translational optic flow field obtained by compensat-
ing for the angular velocity is

Φtrans := Φ + Ω × p

Assume that the direction of motionV/|V| is computed from
the focus of expansion ofΦtrans or some other method [14].
Define the equatorial circle

Ediff := {p ∈ S2 | 〈p,V〉 = 0}.

Note thatEdiff is well defined as a circle forV , 0 while for
V = 0 one hasEdiff = S2.
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Fig. 1. Block diagram of the simulation environment.

Define an optical motion cue by

wdiff :=

{ 1
2

∫

Ediff
〈Φtrans(pθ),V〉 pθdθ for V , 0

0 for V = 0

where (for V , 0) the circleEdiff is parameterised by the
angleθ and pθ denotes theS2 coordinates of the parameter.
The optical motion cuewdiff compares the component of
translational optic flow in the direction of motion at antipodal
points orthogonal to the direction of motion. Since all vectors
pθ are orthogonal toV then wdiff is also orthogonal toV.
Define the optical impedance to be

κdiff(Φ) := cdiffwdiff.

To understand the effect of the optical impedanceκdiff(Φ)
imagine a vehicle moving down a corridor. The translational
optical flow will be larger on the side of the vehicle that
is closest to the wall of the corridor. This will generate a
contribution toκdiff(Φ) that will act to push the vehicle away
from the closer wall towards the middle of the corridor.

A key mathematical property of the optical impedance
κdiff(Φ) is that it is passive. Defining Fenv = κdiff(Φ) one
has

〈V, Fenv〉 =
V⊤

2

∫

Ediff

〈Φtrans(pθ),V〉 pθdθ

=
1
2

∫

Ediff

〈Φtrans(pθ),V〉 〈V, pθ〉dθ

=0

sincepθ is orthogonal to the velocityV. As a consequence the
differential flow optical impedance does not add or remove
energy from the system. In practice, the operator will feel
that the vehicle slides effortlessly along corridors and walls
with the only forces applied helping steer the vehicle to the
middle of the corridor.

C. Combined optical impedance

The optical impedance proposed as a practical choice
combines the spherical divergence computed at the focus

Fig. 2. Screenshot from the 3D simulation environment. The sixsmall
images on the top show the six cameras together with extracted optic flow,
from left to right: left, front, right, back, up, down.

of expansion of the translational flow field along with the
passive optical impedance calculated from differential flow
of the translational flow field

κenv(Φ) := κfoe(Φ) + κdiff(Φ). (16)

The resulting closed loop system hasFenv = κenv(Φ)
and inherits the collision avoidance and corridor centring
properties of its constituents.

V. I  E R.

For this evaluation a virtual simulation environment was
implemented (Figure 1). The simplified vehicle dynamics
from (11) are used to simulate a force-actuated hovering
vehicle. A measurement of optical flow is extracted from
rendered real time images using OpenCV image processing
algorithms. Optical impedance as described in section IV is
computed and applied to the vehicle dynamics, and also to
the 3-D haptic controller. The preliminary experiments area
precursor to trials with a 4-rotor flying platform, and serve
as a proof of concept. Furthermore, the experiments provide
insights into the stability of the theoretical system in the
presence of un-modelled effects such as time lags, sparse
optical flow and calibration errors in the spherical camera
projection. The simulation and the haptic device can be seen
in the accompanying video.

A. Simulation environment

The 3-D game engineIrrlicht was used to create an artifi-
cial indoor world. A screenshot of the simulation can be seen
in Fig. 2. To obtain an approximation of spherical optical
flow, six virtual perspective cameras with 100 x 100 pixels
resolution are used (seen as thumbnails across the top of Fig.
2). We use the pyramidal implementation of Lucas-Kanade
optical flow algorithm (OpenCV) to calculate a sparse optical
flow vector field. Currently the spherical optical flow field
is approximated by only six points on the sphere (given by
the centre of each virtual camera). Divergence is calculated
for each camera by convolution with a 3x3 gradient operator
and summation. Although the image sequence is generated



Fig. 3. Forward velocityvz, distance to wallpz, joystick input jz and
haptic force fz while approaching a wall. The increase in repelling force
caused by divergence divΦ(p) can clearly be seen.

through a simulated environment there is still a significant
amount of noise in the optic flow computation due to poor
image texture, erroneous data correspondences, etc. We are
confident that the results obtained indicate a robustness of
the proposed approach to image noise.

To calculate the optical impedance forces on the vehicle
according to (16) the direction of motion is required. In a real
implementation this direction would be estimated from the
optic flow using a technique such as proposed in [14], [16].
This cannot be reliably done using the six views available
and we use the known velocity from the vehicle dynamics
simulation. The optical impedance is then computed using
(16), and by interpolating between the six cameras.

The computed haptic forces are sent to a 3-DOF haptic
device (NovInt Falcon). A centring (spring) force and a small
amount of damping is applied to the haptic device with an
update rate of 1 kHz. The control software samples camera
images from the 3-D engine at 40-50 frames per second for
calculation of optical impedance. As two frames are required
to compute flow, the total time lag of the vision system is
approximately 50 ms. The setup can be seen in the included
video submission.

B. Experimental results

The first experiment, Fig. 3, shows the behaviour of the
system as the operator accelerates the vehicle towards a
vertical wall. The haptic forcefz is proportional to the frontal
divergence (with some moderate low pass filtering). It can
be seen that the noise level of the divergence is sufficiently
low to provide a clean force signal. Divergence measured
from real image sequences in well-textured environments is
comparable, provided the images have a good exposure and
sufficient dynamic range. The sharp increase in force close to
the wall is clearly visible in the plot, and can be perceived
by the pilot. Due to the action ofFenv the vehicle slows
down even though the joystick is commanding full forward
acceleration. As the operator gives in to the increasing force,
the joystick moves backwards, and the vehicle stops. Letting

Fig. 4. Another approach towards a wall. The vehicle velocity drops to
zero in close proximity to the wall, and the haptic device is pushed back
against the operator’s hand. The vehicle-internal feedback loop reduces the
approach velocity despite multiple forward pushes of the joystick.

Fig. 5. Flying along a corridor with arches. The centring force fx fluctuates
caused by passing pillars on the right.

go of the control stick will always slow down the vehicle
before it hits an obstacle, and can be regarded as a safe
fall-back procedure. Theoretically the vehicle should also
stop before impact even if the operator keeps accelerating
forward. In practice divergence does not grow indefinitely —
the rendered texture has limited resolution in the simulation,
and in the real world the image will become blurred at close
range as the camera has a fixed focal length (usually set at
infinity). This is a practical limit to the amount of available
dissipative virtual force. In practice, it was observed that an
operator quickly learnt to read the force signals correctlyand
was able to fly close to the wall without colliding.

Fig. 4 shows a different test run, where the operator tries to
push the vehicle into the wall. Despite a full scale joystick
command, the velocity remains very low, and the distance
to the wall only decreases very slowly. At the same time
the haptic device applies large opposite forces against the
attempted action. This simulation shows an initial approach
and then two additional attempts to approach the wall.

Finally, Fig. 5 shows the centring forces while the vehicle
is flying along a corridor between the wall on the left hand
side and arches and pillars on the right (see Fig. 2). As the



Fig. 6. Optic flow extracted from on-board video camera of theHumming-
bird quad-rotor aerial robot.

vehicle passes a pillar, a centring force is applied to the haptic
device. The induced lateral motion of the control stick steers
the vehicle clear of the obstruction towards the center of the
corridor.

VI. CONCLUSIONS AND FUTURE WORK

We proposed the concept ofoptical impedanceto provide
haptic feedback and vehicle stabilisation in a teleoperation
context. The forces applied to the vehicle (by the vision
system’s control input to the propulsion of the vehicle) are
dissipative (frontal divergence) or passive (centring force),
and therefore stabilise the vehicle relative to its environment,
which is a safe fallback position if there is no active operator
input. The operator receives clear haptic repelling force
feedback prior to collisions with objects, and additional
centring forces when flying through narrow passageways.
Future research will investigate additional intuitive haptic
cues, and application-specific haptic guidance.

The described method is now being implemented on a 4-
rotor hovering vehicle, using “fish-eye” wide angle cameras
which provide a better approximation to a spherical camera.
An example frame from the vehicle’s video stream, with
overlaid optical flow, is shown in Fig. 6. The interested reader
can also find initial experimental results implemented on a
holonomic ground vehicle in [22].
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