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Abstract—Particle Swarm Optimization (PSO) is a popular
algorithm used extensively in continuous optimization. One
of its well-known drawbacks is its propensity for premature
convergence. Many techniques have been proposed for alleviating
this problem. One of the alternative approaches is hybridization.
Genetic Algorithms (GA) are one of the possible techniques used
for hybridization. Most often, a mutation scheme is added to the
PSO, but some applications of crossover have been added more
recently. Some of these schemes use adaptive parameterization
when applying the GA operators. In this work, adaptively
parameterized mutation and crossover operators are combined
with a PSO implementation individually and in combination to
test the effectiveness of these additions. The results indicate that
an adaptive approach with position factor is more effective for the
proposed PSO hybrids. Compared to single PSO with adaptive
inertia weight, all the PSO hybrids with adaptive probability
have shown satisfactory performance in generating near-optimal
solutions for all tested functions.

Keywords-Hybridization; Particle Swarm Optimization; Ge-
netic Algorithm;Adaptive;Crossover;Mutation;

I. INTRODUCTION

Hybridizing Particle Swarm Optimization (PSO) [1] with
Genetic Algorithms (GA) [2] has been shown to be an effective
method for solving many kinds of optimization problems [3].
The motivation of the hybridization is to alleviate the limita-
tions of PSO with the diversification aspects of GA. Although
PSO is very effective in providing results quickly, its ability
to find optimal solutions especially for real life problems is
still insufficient [4]. Most practical problems are multi-modal
and, due to its fast convergence to a single point, PSO tends
to converge to a local optimum. This premature convergence
problem has been acknowledged many times, and the earliest
approach to counteract it is the introduction of the inertia
weight factor that influences particle velocity [5]. Even after
this measure, many researchers agree that PSO does not have
a sufficient exploration ability [6], [7]. Many more methods
were introduced to remove or alleviate swarm stagnation [8].

GAs, while still susceptible to premature convergence, are
generally found to have better exploration properties than
PSO [9], [4]. GAs have several operators that can control
the exploration and exploitation search projection: mutation,
crossover and selection. Mutation is generally thought to
enable exploration, whereas both exploratory and exploitative
aspects are ascribed to crossover.

The selection operator enhances exploitation through a re-
duction of the population. A good balance between exploration
and exploitation is considered critical for the success of the
search in a multi-modal environment [10]. Explorative aspects
introduce diversity into the search direction such that vast areas
of the search space can be covered, while exploitation provides
the necessary search intensity to optimise the discovered
solutions locally.

Apart from the hybridization of algorithms, adaptive pa-
rameter control has shown promising results with many al-
gorithms, PSO and GA among them. Whereas on the PSO
side, the inertia weight parameter has been widely controlled
adaptively [11], on the GA side, adaptive crossover and muta-
tion rates have been demonstrated to produce improved results
for many kinds of optimization problem [12]. In this paper,
our intention is to explore the strengths of both hybridization
and adaptive strategies in improving PSO performance. The
research focuses on combining inertia weight PSO with adap-
tive crossover and mutation rates in an attempt to identify the
most effective adaptive approach for PSO hybrid.

The remaining content of this paper is organized as follows.
In Section II, brief literature on adaptive PSO and PSO-GA
hybridization are given. The proposed PSO hybrid algorithms
are described in Section III. Section IV discusses the results
before the concluding remarks in Section V.



II. BACKGROUND

A. Adaptive PSO
Considerable research efforts have been invested in improv-

ing the original PSO algorithm. Among other enhancements,
adaptive parameterizations of PSO have received much at-
tention from many researchers [13], [7]. Adaptive parameter-
ization periodically adjusts PSO parameters such as inertia
weight[13], [7], [14], [15], [11], acceleration coefficients [14],
[16] and population size [17], [18] accordingly to the perfor-
mance of the search. The vast majority of these approaches
adjusts the inertia weight parameter. We only report the most
relevant papers with 30-200 citations published 2006 and later
to capture the most relevant progress on the topic made to
date. The most promising of these approaches are applied in
the experiments reported later in the paper.

Qin et al. [15] proposed the Individual Search Ability (ISA)
scheme, which is a ratio of the distance between the current
position and the personal best and the distance between the
personal and global bests as shown in Eq. 1.

ISAi(d) =

∣∣xi(d) − pbesti(t)∣∣∣∣pbesti(t) − gbestt∣∣+ ε
(1)

where xi(d) is the position of the ith particle in the dth
dimension. pbesti(t) is the personal best position of the ith
particle in the tth iteration while gbestt is the current global
best position of the whole swarm. ε is a positive constant close
to zero.

A small ISA value indicates that the particle has a weak
exploration ability and the inertia weight value ought to be
increased, while a larger ISA suggests the particle is searching
widely and the weight should be decreased. Eq. 2 implements
these principles.

wi(d) = 1− α
(

1

1 + e−ISAi(d)

)
(2)

Yang et al. [19] introduced the speed and aggregation
measures to monitor the performance of the swarm.The speed
measure is calculated according to the personal best fitnesses
of the ith particle for the over the last two iterations t and
t− 1 as defined in Eq. 3.

speedi(t) =

∣∣∣∣min(pbestfiti(t−1), pbestfiti(t))

max(pbestfiti(t−1), pbestfiti(t))

∣∣∣∣ (3)

The aggregation speed is measured according to the
personal and best fitnesses as defined in Eq. 4, where
bestfitnesst is the current best fitness found by the particles
in the tth iteration and

−−−−−−−−−−→
Avg(pbestfit)t is the average personal

fitness of all particles at the tth iteration.

aggregationi(t) =

∣∣∣∣∣min(bestfitnesst,
−−−−−−−−−−→
Avg(pbestfit)t)

max(bestfitnesst,
−−−−−−−−−−−→
Avg(pbestfit)t)

∣∣∣∣∣
(4)

Both the speed and aggregation measures are used to deter-
mine the inertia weight as expressed in Eq. (9):

wi(t) = winitial −α×
(
1− speedi(t)

)
× β × aggregationi(t)

(5)

where α and β are numbers in the range of [0,1].
Arumugam, Senthil and Rao [9] proposed to adjust the

inertia weight according to the ratio of global best fitness and
mean of personal best fitness to the tth iteration (Eq. 6).

wi(t) = 1− gbestfitt
−−−−−−−−−−→
Avg(pbestfit)t

(6)

Panigrahi, Ravikumar and Das [16] used the best fitness rank
of the particle to adapt its inertia weight. The fitnesses are
ranked by dimension for the entire population and the resulting
rank determines the inertia weight wi(t) of particle i at time
t.

wi(t) = wmin + (wmax − wmin)×
Rank

(
pbestfiti(t)

)
n

(7)

where n is the number of particles and Ranki(t) is the
sequence position of particle i based on its personal fitness
at the tth iteration.

B. Hybridization of PSO and GA

Acknowledging the advantages of GAs in terms of diversity
maintenance, many hybridization methods in the literature
have combined GA operators with PSO. A comprehensive
survey was provided by Masrom et al. [20]. The majority of
these approaches incorporate a version of the mutation oper-
ator into a PSO algorithm. The ensuing increase in diversity
has been found beneficial by many authors, see for example
Achtnig [21] or Esmin et al. [22]. The latter added a uniform
random number in the range of 1

10 of the valid range to the di-
mensions of a randomly chosen particle. Higashi and Iba [23]
incorporated Gaussian mutation into the ‘canonical’ PSO by
Kennedy and Eberhart [1]. Stacey, Jancic and Grundy [24]
added Cauchy mutation to the ‘canonical’ PSO as well as a
constriction PSO by Clerc [25]. A comprehensive study by An-
drews [26] compared the performance when using Cauchy and
Gaussian mutations in PSO implementations with the results
when using a special mutation conceived by Michalewicz [27].
The mutation operator chooses a vector randomly, then decides
uniformly randomly whether to increase or decrease a dimen-
sion’s value. If the value is to be increased, a number chosen
from the range between the current value and an upper bound
is added. The upper bound depends on the limit of the feasible
range but is moderated by the current iteration such that the
range decreases with increasing iterations and the changes to
the variables approach zero over time. Analogously, if the
variable is to be decreased, the number to be added is chosen
in the range between the current value and the lower bound.
The mutation operator introduced by Gao and Xu [4] applies
the Henon map distribution. Ting el al. [28] experimented
with eight mutation functions, based on differences between
numbers, exponents, logarithms and means. All mutations
were applied to the pbest individuals only. The results appear
to be mixed, with different formulations providing best results
for different functions. In general, all authors observe that
using mutation, regardless of implementation, improves the
performance of PSO.



While Michalewicz’s approach [27] decreases the impact of
mutation over time, the method does not adjust the mutation
effect based on algorithm performance. Adaptive mutation
uses particle fitness or diversity as a basis for adjusting the
effect of mutation. Alireza [29] used Gaussian mutation with
a variable step size that depends on the current best fitness.
Zhou and Tan [30] extended the Standard PSO (SPSO) by
Bratton and Kennedy [31] where each particle has only two
neighbours, by introducing a mutation scheme where uniform
mutation is triggered when a swarm becomes ‘unhealthy’,
which is defined as less than P% of the particles updating their
personal best in an iteration. Similarly, Andrews [26] applied
mutation only when the swarm was observed to be stagnant,
with the gbest of the population remaining unchanged for a
number of iterations. All experiments in these studies showed
that the adaptive mutation greatly strengthened the global
exploration in PSO. Andrews [26] also found that the mutation
rate and its dynamic value have a relatively large influence on
the performance of the PSO hybrid.

PSO hybrids with a crossover operator have also been
shown to outperform ‘pure’ PSO implementations. Pant and
Thangaraj [32] as well as Wang et al. [33] used quadratic
crossover but proposed different techniques for selecting and
replacing particles. Pant and Thangaraj only chose a particle
with the worst position for crossover while Wang et al.
performed a conditional replacement of the current particle.
In Hao, Wang and Huang’s work [34], a simple random
crossover with the globally best particle was carried out on
each new particle after an update. Only one of the dimensions
was swapped between the current particle and the global
best. Chen [35], on the other hand, updates all dimensions
with aspects of pbest and lbest after a predefined number of
iterations in order to include a form of elitism in the algorithm.
Park et al. [36] applied a uniformly random probability of
swapping values of the particle vector with the pbest at
predefined iterations.

Compared to the number of hybrid PSO implementations
with adaptive mutation operator, relatively few approaches
have incorporated adaptive crossover. Yang et al. [37] in-
troduced several formulations for adaptive crossover which
depend on the iteration number. Pant and Thangaraj [32]
used particle position and swarm size for measuring the
swarm diversity before applying the crossover and PSO update
operations. None of the approaches we are currently aware
of have used an adaptive probability for crossover. Some
studies have included both crossover and mutation in PSO
[38], [39], [40], [41], [42], but none of them used adaptive
parameterization.

III. THE PROPOSED PSO HYBRIDS

In this study, the PSO hybrids are divided into three
algorithms. The first algorithm combines both adaptive pa-
rameterizations to the crossover and mutation as illustrated in
Fig. 1. The second and third algorithms use only one of the
operation.
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Fig. 1: PSO hybrid with adaptive parameterizations

The algorithm performs crossover between two particles
which are chosen probabilistically in proportion to their fit-
nesses. Each position between the first and the maximum are
then swapped according to the adaptive crossover probability
Cp. This crossover operator was originally inspired by the
pbest crossover introduced by Chen [35] which attempts
to increase explorative search in PSO. When the distance
between particles and their pbest approaches zero, the particles
stop moving and convergence sets in. Therefore, the pbest
crossover tends to reduce PSO convergence by moving the
position of a particle away from its pbest [35].

Unlike the original pbest crossover by Chen [35], which
uses periodic crossover, the current implementation applies
crossover according to an adaptive crossover probability.

The threshold value r is set to a random number in the
interval [0, 1]. It is compared to each particle’s probability
Cp of crossover to decide whether this particle’s randomly
chosen position d should be altered using pbest crossover. As
proposed in Chen [35], the adjustment to dimension d is made
using an average of two particles’ relevant pbest values.

In the algorithmic listing 1, the crossover probability Cp of
all particles is adapted in line 2 using one of the approaches
Qin et al. [15], Yang et al. [19], Arumugam, Senthil and Rao
[9] and Panigrahi, Ravikumar and Das [16] as described in
Section II-A.

The mutation operation uses the adaptive mutation probabil-
ity Mp similar to the crossover probability Cp. Eq. 8 defines
the mutation operation.

Xi(d) = Xi(d) +Gaussian(α) (8)

where the Gaussian(α) is a Gaussian function that returns a
random value from the range of the particle dimension. The α



Algorithm 1: Adaptive Crossover

1 foreach particle xi ∈ population do
2 calculate adaptive crossover probability Cp

3 set r to a uniform random number [0, 1];
4 set d to a uniform random integer [0, dim];
5 choose pbest1, pbest2 uniformly randomly among all n

particles;
6 foreach particle xi ∈ population do
7 if r < Cp then
8 xid = xid +

pbest1d+pbest2d
2 ;

value is bounded within 0.1 times of the particle dimension.

IV. EXPERIMENTS

The objective of the experiments serves two purposes.
The first is to identify the most effective of four state-of-
the-art adaptive approaches for PSO hybrids. The second is
to compare the performance of adaptive PSO hybrids and
adaptive inertia weight PSOs. The experiments are divided into
four sets which are adaptive crossover rate (ACR), adaptive
mutation rate (AMR), adaptive crossover and mutation rate
(ACMR) and adaptive inertia weight without hybridization
(AIW). Initially, each set is combined with each of the four
adaptive interia weights. The most successful combination is
subsequently used for a comparison between ACR, AMR and
ACMR.

Each set of experiments was repeated 30 times with 2000
iterations. Therefore, regardless of algorithm, each of the
30 trials was allowed an equal number of 80000 function
evaluations. The general experiment setting that relates to all
algorithms is given in Table I.

TABLE I: General experiment setting

Attribute Value
Number of particles, n 40
Particle dimension, dim 30
Personal learning rate, c1 0.9
Social learning rate, c2 0.9

A. Adaptive Approach

In order to identify the most suitable adaptive approach
for the different PSO hybrids, we have tested the adaptive
approaches for inertia weight described in Section II-A. The
approaches have several adaptive factors relating to current
PSO performance as given in Table II.

In terms of the adaptive approaches, the best and global
fitnesses are two measures of achievement in PSO. The best
fitness is the current best fitness found by the particles in
a particular iteration while the global fitness presents the
optimal value that the swarm has found up to a certain number
of iterations. Based on preliminary experiments, the α and
β parameters were set to 0.4 and 0.8 respectively for the

TABLE II: Adaptive approaches

Approach Adaptive factor Researcher.
Adaptive 1 Personal fitness Yang et al.[19]

Best fitness
Adaptive 2 Global fitness Arumugam and Rao[9]

Personal fitness
Adaptive 3 Personal fitness Panigrahi, Ravikumar

and Das [16]
Adaptive 4 Particle position Qin et al.[15]

first approach while in the fourth approach, the ε and α
are configured as 0.9 and 0.3 respectively. Besides, the third
approach has minimum and maximum attributes specifically
for each adaptive parameter. The minimum value is used as
initial configuration for each adaptive parameter of the second
approach. The configuration of these attributes are listed in
Table III.

TABLE III: Parameter configuration for third approach

Adaptive parameter Attribute Value
Crossover rate Minimum, cmin 0.1

Maximum,cmax 1.0
Mutation rate Minimum,mmin 0.4

Maximum,mmax 0.9
Inertia weight Minimum,wmin 0.4

Maximum,wmax 0.9

B. Benchmark Functions

To illustrate the effectiveness of the PSO hybrids, a set of
six well-known benchmark functions are employed, with the
Sphere function denoted as f1, the Rosenbrock function as f2,
the Rastrigin function as f3, the Levy function as f4, Griewank
as f5 and Ackley’s functions as f6. These benchmark functions
have optimal values of zero.

V. RESULTS AND DISCUSSION

The results are divided into two parts. Firstly, the most
suitable adaptive approach for PSO hybrids ( ACR, AMR and
ACMR) is determined. Then, the performance of PSO with
the selected adaptive approach is compared among different
PSO algorithms (ACR, AMR, ACMR and AIW).

A. Comparison of Adaptive Approaches

Fig. 2 shows the comparative performances of ACR, AMR
and ACMR using each of the four adaptive approaches on
the six test functions. Across all adaptive algorithms, the
adaptive approach by Qin et al. [15] is the most effective.
The approach uses the ratio between the particle’s distance
to its pbest and the distance of its pbest to gbest instead
of fitness-based factors. Especially in the case of adapting
crossover (encompassing both the ACR and ACMR settings),
adaptive approach 4 outperforms the others on all objective
functions. The results when adapting the mutation rate in the
AMR setting are not as clearly in favour of method 4, but
it outperforms the others on three in six functions. Based
on these results, we conclude that a particle’s position in
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Fig. 2: PSO hybrids with four different adaptive approaches tested on all functions (f1-f6)

relation to its personal best position is highly relevant when
determining the stage of the search, at least in the search space
of the six functions optimised here.

The results regarding the other three adaptation methods
are mixed. Method 1 performs better than the other two in 10
cases of a total of 16. While methods 2 and 3 are based on the
current best fitness values or their ranks, method 1 includes
an aspect of fitness development over the last iteration which
seems to be beneficial for the performance of the algorithm.
However, it cannot compare with method 4 on the functions
used for these experiments.

B. Comparison of PSO Hybrids

The performance of PSO with the fourth adaptive approach
is compared among the PSO hybrids (AMR, ACR, ACMR)
and single PSO with inertia weight (AIW). Table IV shows
the mean best fitness, standard deviation and mean number of
iterations until the best solution was found of all experiments.
Mean best fitness indicates the accuracy of results while
number of iterations is used to measure the efficiency of each
algorithm to converge and achieve near-optimal solutions.

In general, all PSO algorithms with adaptive approach have
achieved good results for all tested functions with very low
values for the mean best fitness. The results in Table IV show
that all adaptively parameterized hybrids mostly outperform
inertia weight PSO. However, hybridizing PSO with adaptive
crossover does not appear to have the expected benefit. Al-
though ACR mostly outperforms inertia weight PSO, except
in the case of f2, it never performs as well as the mutation-
based hybrid AMR. Including both mutation and crossover
(ACMR) improves on the performance of the hybrid with
crossover (ACR) in four of the six experiments. The number
of iterations used indicates when the algorithm has stagnated.
Usually producing worse results takes fewer iterations, but in
some cases AMR produces better results faster than the other
variations take to produce lower quality results.

VI. CONCLUSIONS

According to our knowledge on the state of the art of PSO,
adaptive parameterization and hybridization can make signif-
icant improvements regarding the algorithm’s performance.

TABLE IV: The mean best fitness (standard deviation) and
mean number of iterations to achieve the best solutions over
30 runs for each setting.

f ACR AMR ACMR AIW
f1 2.34E-07 6.06E-52 1.54E-10 6.88E-08

(1.65E-05) (4.76E-48) (2.63E-05) (7.66E-06)
1702 1997 1865 956

f2 4.35E-04 3.68E-05 6.47E-05 2.58E-04
(3.20E-02) (8.40E-04) (1.93E-05) (5.94E-01)

833 1903 1074 1630
f3 8.08E-04 4.93E-07 1.14E-02 1.07E-02

(2.15E-05) (1.15E-09) (1.40E-02) (2.56E-01)
1502 1397 1660 1020

f4 1.46E-03 1.05E-06 1.66E-05 3.88E-05
(5.53E+00) (1.44E+01) (2.85E+01) (7.83E+00)

1644 1388 1396 794
f5 1.64E-02 1.02E-03 2.80E-03 2.96E-02

(3.15E-01) (2.21E-01) (2.73E-04) (1.88E-01)
1862 1918 1825 812

f6 2.40E-09 3.91E-11 2.20E-09 6.99E-09
(7.66E-11) (5.74E-17) (2.88E-07) (5.87E-05)

1517 1528 1533 947

Most approaches, however, separate the two approaches. In
this study we have introduced a number of PSO hybrids
combined with adaptive parameterization.

In comparison to PSO with adaptive inertia weight, most
variations of PSO hybrids with adaptive parameterization have
produced better results. However, among the PSO hybrids,
the best optimal results have been achieved by the inclusion
of adaptive mutation. A combination of both crossover and
mutation in PSO has consistently led to better results than
the inclusion of crossover on its own, whereas it performs
consistently worse than including mutation on its own. The
mutation aspect therefore appears to be the driving force
behind the improvement.

Regardless of the type of hybridization, the most effective
adaptive parameterization method is based on differences in
positions between the current, pbest and gbest solutions rather
than their fitnesses. Therefore, further investigations into the
exploitation of position information appear to be a promising
research area in adaptive parameterization.
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