
Agile Development Spikes Applied to Computer
Science Education

Clinton J Woodward#, James Montgomery*, Rajesh Vasa# and Andrew Cain#
#Swinburne University of Technology,

Faculty of Information and Communication Technologies
Hawthorn, Victoria, Australia

Email: {cwoodward,rvasa,acain}@swin.edu.au

*Research School of Computer Science
Australian National University

Canberra, Australia
Email: james.montgomery@anu.edu.au

Abstract—Spikes are an agile software development technique
used by software teams to investigate, close gaps and reduce risk.
Computer science education can benefit from the application of
agile techniques. In this paper we document our definition of
spikes, adapted from agile software development practice, ap-
plied to computer science education across a number of different
units. Our view is that spikes align well with many educational
objectives. We also reflect on our educational experiences to pre-
sent guidance on how and why spikes might be applied, including
specific benefits, limitations and drawbacks.

Keywords—computer science; education; spikes; agile software
development

I. INTRODUCTION
Agile software development is a loose collection of soft-

ware engineering methodologies, the foundations of which
were first outlined in 2001 [1], which have transformed the
software development industry [2]. A central characteristic of
agile approaches is iterative development through cycles of
planning, implementation and testing [3].

One agile technique, used to structure small technical in-
vestigations or research, is known as a spike or spike solution
[4]. The key objective of a spike is to close a gap that a devel-
opment team has, in a way that can be shared among a devel-
opment team; if successful, the gap becomes closed for the
entire team through effective communication. Clearly, the be-
haviour involved in a spike predates agile software develop-
ment practice, and indeed nothing in its description limits it to
software development. Across a diverse range of fields, if a
practitioner does not know something or how to do something,
they can perform a small investigation to determine how to
proceed.

Key objectives within computer science education are to
help students construct meaningful knowledge and relevant
skills [5]. For some students, the educational environment and
expectations can appear too hard or trivial, and both can result
in disengagement. The technical nature of the field requires
incremental skill development, and hours of practical experi-
ence to attain professional levels. Strong constructive align-
ment and portfolio based assessment approaches have been
developed and utilised with success, by some of the authors of
this paper, for introductory programming units [6]. Communi-
cation is also vital as a way for students to demonstrate and
gain knowledge.

In this paper we document our definition of spikes, adapted
from agile software development practice, and applied to com-
puter science education across a number of different units. Our
view is that spikes align well with many educational objectives.
We also reflect on our educational experiences to present guid-
ance on how and why spikes might be applied, including spe-
cific benefits, limitations and drawbacks. It is the intent of this
work to enable other educators, from various fields, to benefit
from the technique.

II. APPROACH AND DEVELOPMENT

A. Spikes in Industry
Typically, each new software development project will

have novel elements, perhaps in the application domain or in
the skills required to complete it. These novel elements create
risks for the timely and successful completion of the project.
These risks can be considered twofold: a development team
cannot provide an accurate quote (nor allocate team resources)
if it does not know how some part of a project needs to be
done; and a project will likely fail, or be significantly delayed,
if a knowledge or skill gap is only recognised as it occurs. In
agile, the practice of spiking is thus a risk minimisation activi-
ty, where gaps in knowledge, skill and technology can be iden-
tified and dealt with at an early stage.

In practice, at each stage of a project the development team
can spike out the unknown aspects and determine what steps to
take to cover the associated gaps. Each spike may involve the
production of a working piece of software for the specific issue
being addressed: the spike metaphor thus represents an ‘end-to-
end’ or complete solution that is also very specific. Any soft-
ware produced in this way is then discarded and not intended
for use in the final product, in a manner similar to an artist
drawing preliminary sketches which are discarded before creat-
ing a final work with a “fresh” canvas.

Despite the widespread use of spiking in industry, the ap-
proach has been only vaguely or weakly defined, with little
structure to guide developers and an absence of convergence in
approaches taken by different development teams. Spikes are
also largely absent from software engineering literature.

In order to create a more structured and rigorous approach
to spike for industry use, one of the authors of this paper de-
fined the KoST model, which categorises gaps into three
groups:

978-1-4673-6354-9/13/$31.00 ©2013 IEEE 26-29 August 2013, Bali Dynasty Resort, Kuta, Indonesia
2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Page 699

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

• Knowledge gaps represent what a person does not
know about the domain for which they are developing.

• Skill gaps exist where a person knows what is required
and broadly how to do it, but requires more practice or
experience. A skill gap prevents accurate estimates of
how long a task will take.

• Technology gaps address the question of whether, giv-
en a budget and timeline, there exists the technology to
assemble the solution required.

Our experience suggests that the ‘knowledge’ category can
actually be viewed as relating to both knowledge and skill of
the domain, while the ‘skill’ category relates specifically to
technical (but general) knowledge and skill.

Educationally, knowledge and skills are more relevant or
important than technology, although both students and software
developers in industry are typically mindful of new technology
and its impact.

The industry-based approach to using spikes follows these
steps:

1) Create a plan for the next phase of the software project
2) Identify the gaps in knowledge, skills and technology
3) Devise spikes to cover those gaps (i.e. determine what

activities need to be performed)
4) Execute the spike over a short period of time (i.e. two

days)
5) Rework the plan in light of what was learned
6) Perform the phase development work (i.e. two to three

weeks) followed by a review to inform the next phase

This specific approach to spikes for industry use has been
taught to both students and companies by one of the authors.
Several companies have managed to dramatically reduce their
risk profile as a result, validating the approach.

B. Spikes for Computer Science Education
We have adapted and applied spikes to several different

university level computer science units, over a number of itera-
tions. Through a deliberate reflective practice by the staff in-
volved, observations and reflections on the use of spikes have
been captured and changes made to improve the academic ap-
plication in different context.

Fig. 1. Steps of an industry-based spike approach

Fig. 1 shows a representation of the spikes stages based on
the industry model described in the Section II-A.

The overall context or domain (a) for a spike in industry is
the product being developed for a client. In an education con-
text this becomes either a domain selected by staff, or by stu-
dents when appropriate, constrained within the objectives of
the unit of study. For example, staff may create a product spec-
ification which students are expected to develop. Similarly staff

may specify a domain type, such as a web application with
particular features, in which students are able to select content
related requirements.

Using a phase-based agile development model, such as
sprints in Scrum methodology [2], developers plan their next
iteration (b) of activity. The objective of this planning is to
select features to implement in the next time-boxed amount of
activity, which should result in working software. For this to
happen risks should be identified and reduced in a practical
manner. So, from the list and details of planned activity, KoST
gaps can be identified (c). Note that the gaps are very specific
to the teams’ unique experience and skill; another development
team given the same tasks would be expected to identify very
different gaps.

Placed within the educational context, the specific details or
features needed for the next iteration (b) can be specified by
staff (as a way of allowing students to focus on later spike
steps), or developed by students (allowing them to demonstrate
their understanding). Similarly gap identification can be per-
formed by staff or students, each creating different learning
opportunities that can be selected based on curriculum needs.

Once gaps are identified, a set of Spike Plans (d) can be
created to address each. We have created a Spike Plan template
with headings and descriptions shown in Fig. 2. In practice,
teaching staff have varied the descriptions and given additional
example text to help students understand what is needed, espe-
cially if they are creating their own spike plans for the first
time.

Fig. 2. Spike Plan Template

Spike plans can now be executed (e) in any order that suits.
In an educational environment, students often attempt spikes in
the order presented, particularly if they lack a deep understand-
ing of the domain. However in the context of industry usage
spikes can be done in any order that suits the team member
preferences or dependencies. It is possible that spikes may be
clustered or hierarchically dependent.

Students can borrow good associated practice of industry
with respect to task allocation and source code management.
Even for an independent student working with spikes it is use-
ful that the execution of a spike plan, and its initial definition

Name:
A meaningful and unique name for this spike plan

Context:
Outline the reason and context for the spike

Knowledge Gap:
Skill Gap:
Technology Gap:

State one or more specific gaps to be addressed
Goals/Deliverables:

List the specific goals and deliverables of this spike.
Describe a tangible and minimal end-to-end solution.

Start date:
Target date:

Good dates are needed for a controlled process.
Planning notes:

Outline a proposed plan of how this spike can be undertaken.
Capture as much team knowledge here as possible to make
the work as effective as possible.

978-1-4673-6354-9/13/$31.00 ©2013 IEEE 26-29 August 2013, Bali Dynasty Resort, Kuta, Indonesia
2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Page 700

and final outcomes, be documented and stored in a deliberate
and careful manner.

Once the goals of the spike plan have been achieved, and
any specific artefacts created, the results are shared with the
team (f). In this way, not only is the risk associated with the
original gap closed, but also the risk that only one person in the
team knows it; results must be in a form that the entire team
can take advantage of. Placed in a specific education context,
the outcomes should be in a format that would close the same
gap in another student of a similar background.

In the process defined and used here, a specific Spike Out-
come Report Template has been developed and provided to
students, shown in Fig. 3. Although not strictly needed, and
containing repeated details from the spike plan, there is a value
in having a single outcome document that captures not only the
expected results but also any new issues or recommendations.
There is also the value of productivity-by-convention where
having a standard format can make the process of creating out-
come reports, and understanding them, quicker and easier.

Fig. 3. Spike Outcome Template

In industry practice, once spike outcomes have been cap-
tured and communicated to the team, the results can be used to
inform or reform the planned development activities. For stu-
dents, the spike outcomes are often skill based, and so the new
skills can be applied to new domains and the activities of con-
structing new knowledge. This deliberate step of reflection is
key to both good agile practice and deep learning outcomes for
students.

The authors of this paper have utilised spikes in a number
of different curriculum approaches, including some cases
where spikes were a replacement for traditional assignments.
To support this the following criteria were developed for as-
sessment purposes. However they also provide a useful check-
list for students to validate their own activities.

• Has the spike context and problem been clearly identi-
fied?

• Have the risks (symptoms as well as possible causes)
been identified?

• Does the spike plan focus on the risks properly?
• Have the outcomes been captured at the end of the

spike?
• Did the spike achieve its intended result? i.e. risk mini-

misation?
• Has the knowledge gained in the spike been passed on

to other team members?

Although this list of criteria can be used as part of a
weighted grading scheme, the stronger value, in the current
opinion of the authors, is for spikes to be assessed qualitatively.

III. APPLICATION AND REFLECTION

A. Agile Development Project
Spikes for computer science education were first used by

one of the authors as part of a single semester (12 week) agile
development project unit. The student cohort had strong tech-
nical ability and maturity, and had performed well in other
technical units. A number of the students were also working in
industry at the time.

To begin, staff predefined a number of topics and students
required to identify gaps, develop spike plans and execute
them. A short time of two days was set for the execution stage,
which was appropriate given the narrow focus of spikes. The
short time frame also restricted students from expanding the
scope of the work. The final reporting stage initially consisted
of simple documentation and demonstration by students to
staff. This served the purpose of both demonstrating the stu-
dents’ achievements and providing an opportunity for forma-
tive feedback from staff.

After the initial predefined topics, students designed and
undertook 10-12 spikes as a group on topics determined by
their project requirements. The initial four spikes outcomes
contributed to the final student results, and were graded using
the criteria presented earlier.

The primary reason spikes were included in the unit was for
their important role in agile development in industry. A key
observation was that students tended to focus on skill gaps,
while industry largely focus on domain knowledge gaps. This
is to be expected as student are often yet to acquire the skills
they will use in industry, while those in industry are applying
those skills to new possibly unknown domains.

In the Agile Development Project unit the essential features
of spiking were:

• practical experience with a risk minimisation process;
• a structure for solving small, specific problems;
• enabling a transition for students from abstract concepts

to concrete experience; and
• a process that students could drive to identify gaps and

how they could be covered.

B. Database Programming
The second application of spikes was within a second year

programming unit where students developed software to inter-
act with databases. Again, the cohort of students was from a

Name:
Should match the original spike plan name

Goals:
Restate the original spike plan goals (outcomes)

Personnel:
State who the contact person is and any backup.

Technologies, Tools and Resources Used:
Provide a specific list of useful resources for other team
members to learn from this spike. Specific books, software
(versions) and URLs are common.

Tasks Undertaken:
List key tasks likely to be needed to help another developer

What We Found Out:
Concise evidence: graphs, screen shots, list of outcomes, data,
notes.

Open Issues / Risk (optional):
List any issues and risks that were not resolved. This may
include a new range of risks previously known.

Recommendations (optional):
This might include suggesting additional spikes are needed, or
that the gap has been completely solved and the team should
move on.

978-1-4673-6354-9/13/$31.00 ©2013 IEEE 26-29 August 2013, Bali Dynasty Resort, Kuta, Indonesia
2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Page 701

strong software development course. For each of the functional
concepts covered, two competing technologies were used by
students and compared.

Given that there were two distinct but related technologies
that students had to master, each spike was actually presented
as a pair of spikes, one for each technology. Students were as-
signed in pairs and each student responsible for one of the
technologies. The intention was that the outcome reports from
each spike could be shared with the team member.

Over the 12-week semester there were nine pairs of spikes.
Although the spikes were intended to be formative assessment,
in effect they represented a substantive portion of the students
final grade. Each spike outcome was marked by a tutor who
would (a) ask the student to demonstrate and explain what they
had learnt or achieved and (b) assign a mark out of 5. As un-
derstanding is valued more highly than completing all spike-
related tasks, marks were biased to reflect this.

In this application, students were given spike plans; gaps in
skills and knowledge were predefined by teaching staff, along
with the steps that should be taken to cover each gap. For this
unit, the alternative of providing open plans for students to
develop and define was not considered.

Spikes were used in this unit because they were relevant to
the topic and industry practice, and it was thought spikes would
encourage students to engage in the subject material more
deeply. Another perceived advantage was that, when used as
small specific assignments, spikes do not require students to
draw on a wide range of knowledge. Instead they can focus on
one concept without the overhead of a large assignment and
develop skills related to one topic at a time.

The essential features of spikes in the Database Program-
ming unit were:

• spikes can be used as a structure for solving small spe-
cific problems;

• students were given complete spike plans and did not
have the freedom or responsibility to identify gaps or
the main steps that should be taken to cover them;

• students were given the freedom to choose a domain in
which to perform each spike; although many needed
encouragement to choose something novel and interest-
ing; and

• spikes were effectively a form of summative assess-
ment, even thought the intent was as a formative activi-
ty.

C. Games Programming and AI for Games
Games Programming was an existing third-year technical

unit, redeveloped to simplify the curriculum and refocus on
practical game-related applications of data structures and pat-
terns. The unit structure was moved to an entirely criterion-
referenced, portfolio-based assessment scheme (in a manner
similar to [6]), which allowed students to develop a portfolio of
varied work in an environment more similar to that which they
will experience in the workforce.

A number of simple game design documents were created
as the context for spike work. Accompanying each design was

a set of spikes designed to cover the necessary knowledge and
skills to produce the game in question. In the later iterations of
the unit there were 13 core spikes. The details provided to stu-
dents in the planning notes of the spike plans were quite de-
tailed for the early spikes to help students. This level of detail
(help) was reduce and removed for the later spikes plans, so
that students would take on greater responsibility in completing
the spikes.

Spike plans often-included additional “Extension” ideas.
For any extension work students were encouraged to develop
their own spike plans, in which they would take full responsi-
bility for identifying gaps and developing the plan.

Unlike database programming there was a reduced flexibil-
ity in the domain, although students have more flexibility in the
distinction project. All spikes had the relevant gaps (and key
deliverable outcomes) specified to ensure that student did not
stray too widely from the core content; the remainder of the
portfolio allows students to examine other topics.

In the assessment, tutors were expected to be strict and
maintain a high standard, but also to offer constructive feed-
back and allow students to be reassessed multiple times. As-
sessment was based mostly on the report that students needed
to print. Tutors often requested students to demonstrate a work-
ing implementation as well. Although setting high-standards
and expectations of students can be daunting for them, the core
work was essential and basic, which all passing students would
master. The majority of students were proud of their achieve-
ment.

The curriculum of the AI for Games unit contained many
design and concept elements, with less emphasis on technical
development skills. The core of the unit involved a mixture of
lab and six spikes. A strong constructive alignment and portfo-
lio-based assessment approach was again used. The combina-
tion of portfolio assessment with lab and spike work was gen-
erally quite effective.

As used in Games Programming and AI for Games, the es-
sential features of spikes are that they:

• are a structure for solving small, specific problems;
• are assessed as pass/fail, but with the requirement that

core spikes must be passed to pass the unit;
• may be (frequently are) resubmitted in response to staff

feedback;
• have decreasing guidance (plan details) through the se-

mester;
• have ‘extensions’ where students are encouraged to

generate entire plans themselves;
• have limited freedom for students to choose the domain

of spikes; and
• are presented in the context of portfolio-based assess-

ment.

IV. DISCUSSION

A. Problems and Limitations
From our experiences applying spikes to a number of units

we encountered the following issues and limitations in various
forms:

978-1-4673-6354-9/13/$31.00 ©2013 IEEE 26-29 August 2013, Bali Dynasty Resort, Kuta, Indonesia
2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Page 702

• Students need clear definitions and expectations to per-
form the process well.

• If a sensible time window is not set, students will tend
to exceed the required outcomes.

• Students find it hard to create their own spike plans ini-
tially, but this improves with experience and guidance.

• Students tend to focus mainly on skill gaps, while in-
dustry gaps are typically knowledge related.

• Student need feedback in order to understand the pur-
pose, audience and level of detail needed in outcome
reports.

• The more staff constrained the spike process, the more
it can appear as simply another form of assignments to
students, which should be avoided.

• Summative grading or assessment of spike work drasti-
cally, if not completely, reduces the formative and deep
learning value.

• All teaching staff involved need to fully understand and
support the purpose of spikes in order for students to
adopt and apply them effectively.

One issue for incoming students is that spikes are relatively
unstructured compared to standard assignments with which
most students are more familiar. In the first application the lack
of strong definition and templates made it difficult to assess if
students had done the work and to provide feedback. Tutors
note that typically after two spikes have been approved, stu-
dents generally appear more comfortable with the approach.
Presumably this is because the feedback they receive from tu-
tors is sufficient to provide the structure that is initially miss-
ing.

Some students complain that spikes are ‘too much work’.
We speculate that those students who consider the workload
too onerous may be those with weak prerequisite skills, alt-
hough many such students ultimately achieve good learning
outcomes.

If there are no weekly deadlines for spikes, students do
have a tendency to delay their completion until too late in the
semester. In some cases students have submitted reports early,
received feedback and merely delayed submitting the reviewed
reports. In such a self-directed environment, there is typically
much variation in progress among students. Note that this does
not indicate that deadlines through the semester are necessarily
required only that some mechanism to encourage more timely
completion is needed..

B. Benefits
We have observed a number of benefits for both staff and

more importantly students in the use of spikes:

• Spikes are grounded in an industry practice, making it
relevant to students and easier for them to engage with
the approach.

• Students learn a process of what to do in order to learn.
• Spiking is relatively simple process, making it easy to

learn, with enough structure to enable productivity by
convention.

• As spikes are a structured approach to learning, which
enables life-long learning.

• By having narrow and well-defined activities, spikes
help to avoid scope creep and misdirected effort.

• When students identify and define their own spikes and
plans, they gain experience in valuable problem decom-
position skills.

• Spikes support different solutions to problems, reward-
ing creative and unique approaches by students.

• When spike outcome standards are set high, students
have a strong sense of achievement and are often very
proud of their work.

• Plagiarism issues are minimised by the encouragement
of unique and individual work, and the requirement for
direct face-to-face communication and demonstration of
their work.

Spikes are an analytical technique to solve problems, and
this allows students to translate problems that are abstract into
concrete solutions. A student may start by thinking that they do
not know what to do, but in reality they often have some idea
of what they want to achieve and how they might do it, which
can be made clearer through the spiking process.

Our view is that spikes can promote better engagement and
deep learning. It is certainly effective as a method for checking
that minimum standards have been reached, and from the staff
perspective, it is also good for identifying trends in class.

Students have voluntarily commented that they thoroughly
enjoy the spike approach, and would like to see it adopted in
other units instead of traditional lab work or assignment work.

In later units (particularly self-direct project units), as well
as industry employment, students have continued to use all or
some of the spiking process. For these reasons we contend that
spikes remain relevant and help with life-long learning.

C. Recommendations
Based on our collective experience we suggest the follow-

ing recommendations regarding spike use in computer science
education:

• Allocate time to clearly communicating the purpose,
format and structure of spikes. Repeat as needed. How-
ever, experience is the only effective way students be-
come proficient with the process.

• The self-directed nature of spikes works best for mature
and independent learners.

• The spike process works well for technical units. It is
unclear at this stage how it could or should be applied to
other educational domains.

• Sharing spike outcomes within the peer group of stu-
dents is difficult.

• If using spikes as a required core feature of a unit, target
low-level learning outcomes.

• Use a formative assessment process during a semester
to avoid reassessment of spike work later.

• Utilise face-to-face interviews for outcome reports and
assessment. This maximises the formative opportunity,
encourages good standards and avoids plagiarism is-
sues.

As noted earlier, many students struggle with independent
time management when confronted for the first time with the

978-1-4673-6354-9/13/$31.00 ©2013 IEEE 26-29 August 2013, Bali Dynasty Resort, Kuta, Indonesia
2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Page 703

“unstructured” nature of spikes. This is compounded when a
unit uses a highly formative process without “marks” as in-
ventive for timely completion of work. As part of our work to
address time management issues, we have also used the agile
practice of scrum “burn down” charts [2]. We created an online
burn down chart tool as way for students to be aware of, and to
better manage, tasks including spike work. The tool itself has
been reported in [7], and some analysis of student progress
(reported as burn down charts) in [8].

We suggest that spikes are not appropriate for first year
students. At such an early stage the overhead of a compound
skill such as software development process (the context in
which spikes exist) outweighs the possible benefits.

At one point staff trialled having each student use another’s
outcome report to see if they could follow it to achieve the
same outcome, but this was found to be ineffective for both
authors and readers. This suggested that spikes should be used
differently.

D. Spikes and Portfolio Assessment
In promoting the use of portfolio-based assessment, Biggs

and Tang [9](p82) state that “[m]uch learning at tertiary level,
particularly in professional courses, is about getting students to
behave differently in the sense of making theoretically in-
formed decisions; it is not so much about declaring who-said-
what and who-did-that.” In the context of computer science,
Plimmer [10] suggests that skills such as programming involve
the distinct aspects of programming language knowledge, the
ability to break problems into smaller parts, and creativity,
which portfolio-based assessment allows students to develop
and demonstrate better than traditional assessment approaches.
Others, such as Jones [11], consider portfolio-based assessment
as a mechanism to promote student engagement by giving stu-
dents greater responsibility for their own work.

Whether they are the subject of summative assessment, as
in Database Programming, or forming a body of required form-
ative assessment, as in AI for Games and Games Programming,
spike outcome reports implicitly represent a portfolio of work.
Indeed, one of the motivations for using spikes has been to
encourage student engagement with subject material. Further,
even though staff in these units determined the topic of each
spike, students are given some degree of autonomy in being
able to select the domain in which to apply the relevant skills
and knowledge and in pursuing extensions to the work through
the development of new spikes for which they are entirely re-
sponsible. As Ramsden [12] notes, students’ perceptions of
greater autonomy in a course are associated with deep ap-
proaches to learning.

Biggs and Tang [9] characterise portfolio tasks as assessing
either declarative knowledge (understanding of course content)
or functioning knowledge (the application of that knowledge),
and as relating to either a specific topic or the whole unit.
Spikes as they have been used mostly relate to functioning
knowledge about a specific topic, although there is nothing
implicit in the activity that prevents it from being applied to
declarative knowledge.

V. CONCLUSION
Spikes appear to represent a distinct model for problem

solving that either produces a de facto portfolio or may be in-
corporated into a wider assessment portfolio. Some of the dis-
tinctive features of the approach, including the underlying
KoST model and accompanying structured plan document, as
well as the narrowness of the problem each spike addresses,
may appear to restrict its applicability to technical subjects in
the software development area. Certainly the key concept of an
‘end-to-end’ solution seems tightly bound to subject areas
where students produce something that is recognisably com-
plete even if it does not solve an entire problem. The question
is how broadly a narrowly defined learning goal can produce a
‘complete’ product.

If an area of study can be broken down into highly specific
and relatively isolated topics then the spike approach may be
suitable, even if it is outside the software development domain.
Gaps in knowledge and skill exist in all educational domains.
Establishing a plan of actions to address the gaps identified is
also universally applicable, as is writing a brief report describ-
ing what was found. Future work can investigate these possibil-
ities by taking the characteristics of spikes described above and
applying them to curricula in new fields.

REFERENCES
[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al., “The
agile manifesto,” http://www.agilemanifesto.org/principles.html, 2001.

[2] J. Sutherland and K. Schwaber, The Scrum Papers: Nuts, Bolts, and
Origins of an Agile Process. Citeseer, 2007. [Online]. Available:
http://scrumfoundation.com/library

[3] K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, Reading, Ma, 2000.

[4] J. Shore and S. Warden, The Art of Agile Development. O’Reily, 2008.
[5] M. Ben-Ari, “Constructivism in computer science education,” in Pro-

ceedings of the twenty-ninth SIGCSE technical symposium on Comput-
er science education. New York, NY, USA: ACM, 1998, pp. 257–261.
[Online]. Available: http://doi.acm.org/10.1145/273133. 274308

[6] A. Cain and C. J. Woodward, “Toward constructive alignment with
portfolio assessment for introductory programming,” in Proceedings of
the first IEEE International Conference on Teaching, Assessment and
Learning for Engineering. IEEE, 2012, pp. 345–350.

[7] C. J. Woodward, A. Cain, S. Pace, A. Jones, and J. Funke Kupper,
“Helping students track learning progress using burn down charts,” in
Proceedings of the 2nd IEEE International Conference on Teaching, As-
sessment and Learning for Engineering. IEEE, 2013, in press.

[8] A. Cain, C. J. Woodward and S. Pace, “Examining student progress in
portfolio assessed introductory programming” in Proceedings of the 2nd
IEEE International Conference on Teaching, Assessment and Learning
for Engineering. IEEE, 2013, in press.

[9] J. Biggs and C. Tang, “Assessment by portfolio: Constructing learning
and designing teaching,” Research and Development in Higher Educa-
tion, pp. 79–87, 1997.

[10] B. Plimmer, “A case study of portfolio assessment in a computer pro-
gramming course,” in Proceedings of the 13th Annual Conference of the
National Advisory Committee on Computing Qualifications, 2000.

[11] M. Jones, “The redesign of the delivery of an introductory programming
unit.” 2007. [Online]. Available: www.ics.heacademy.ac.uk

[12] P. Ramsden, Learning to Teach in Higher Education. Psychology Press,
1992.

.

978-1-4673-6354-9/13/$31.00 ©2013 IEEE 26-29 August 2013, Bali Dynasty Resort, Kuta, Indonesia
2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Page 704

	Contribution323_b

