
1School of Computer Science & IT,
University of Nottingham

Faculty of Information & Communication Technologies

Technical Report SUTICT-TR2006.05

Solution Representation for
Job Shop Scheduling Problems
in Ant Colony Optimisation

James Montgomery, Carole Fayad1 and Sanja Petrovic1

15 May 2006

Faculty of Information & Communication Technologies

Technical Report SUTICT-TR2006.05

Solution Representation for Job Shop Scheduling
Problems in Ant Colony Optimisation

Contents

1 Introduction 2

2 Job Shop Scheduling and Solution Construction 3

3 A Real-World JSP 4

4 ACO for a Fuzzy JSP 6

5 Computational Results 8
5.1 Solution quality compared within alternative measures 8
5.2 Solution quality compared between values of λ 9
5.3 CPU time . 11

6 Conclusions 11

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 1 of 13

Faculty of Information & Communication Technologies

Technical Report SUTICT-TR2006.05

Solution Representation for Job Shop Scheduling
Problems in Ant Colony Optimisation

Abstract

Ant colony optimisation, a constructive metaheuristic inspired by the foraging
behaviour of ants, has been applied to a wide range of problems since its inception.
Many of these are production scheduling problems such as the job shop, in which
a collection of operations (grouped into jobs) must be scheduled for processing on
different machines. In typical ACO applications, solutions are generated by con-
structing a permutation of the operations, from which a deterministic algorithm can
generate the actual schedule. This paper considers an alternative approach in which
each machine is assigned one of a number of alternative dispatching rules, which
heuristically determines the processing order for that machine. This representation
creates a substantially smaller search space that likely contains good solutions. The
performance of both approaches is compared on a real-world job shop scheduling
problem in which processing times and job due dates are modelled with fuzzy sets.
Results indicate that the new approach produces better solutions more quickly than
the traditional approach.

Keywords: Ant colony optimisation, fuzzy job shop scheduling, solution representa-
tion.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic, inspired by the foraging
behaviour of ant colonies, that produces a number of solutions over successive iterations
of solution construction. During each iteration, a number of artificial ants build solutions
by probabilistically selecting from problem-specific solution components, influenced by
a parameterised model of solutions (called a pheromone model in reference to ant trail
pheromones). The parameters of this model are updated at the end of each iteration using
the solutions produced so that, over time, the algorithm learns which solution components
should be combined to produce the best solutions. When adapting ACO to suit a problem
an algorithm designer must first decide how solutions are to be represented and built (i.e.,
what base components are to be combined to form solutions) and then what characteristics
of the chosen representation are to be modelled.

Production scheduling problems consist of a number of jobs, made up of a set of op-
erations, each of which must be scheduled for processing on one of a number of machines.
Precedence constraints are imposed on the operations of each job. The majority of ACO

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 2 of 13

algorithms for these problems represent solutions as permutations of the operations to
be scheduled (operations are the base components of solutions), which determines the
relative order of operations that require the same machine (see, e.g., [1, 3, 4, 14]). A
deterministic algorithm can then produce the best possible schedule given the precedence
constraints established by the permutation. This approach is more generally referred to
as the list scheduler algorithm [3]. An alternative approach is to assign different heuris-
tics to each machine which determine the relative processing order of operations, thereby
searching the reduced space of schedules that can be produced by different combinations
of the heuristics [5]. Building solutions in this manner may offer an advantage by concen-
trating the search on heuristically good solutions. This paper compares these two solution
representations by using a real-world job shop scheduling problem (JSP).

A formal description of the JSP is given in Section 2, including further details of the
two solution construction approaches. Section 3 describes the real-world JSP instance to
which both approaches are applied, in which processing times and due dates are modelled
by fuzzy sets to reflect the uncertain nature of these in industrial settings. Details of the
ACO algorithms developed for the fuzzy JSP are given in Section 4 followed by analyses
of their empirical performance in Section 5. Section 6 describes the implications of the
results for the future application of ACO to such problems.

2 Job Shop Scheduling and Solution Construction

The JSP examined in this study consists of a set of n jobs J1, . . . , Jn, with associated
release dates r1, . . . , rn and due dates d1, . . . , dn. Each job consists of a sequence of
operations (determined by the processing requirements of the job) that must each be
scheduled for processing on one of m machines M1, . . . ,Mm. Only one operation from
a job may be processed at any given time, only one operation may use a machine at
any given time and operations may not be preempted. Two objectives are minimised
simultaneously: the average tardiness of jobs CAT and the number of tardy jobs CNT .

CAT =
1

n

n∑
j=1

Tj (1)

where Tj = max{0, Cj − dj} is the tardiness of of job Jj and Cj is the completion time of
job Jj.

CNT =
n∑

j=1

uj (2)

where uj = 1 if Tj > 0, 0 otherwise. In many benchmark JSP instances, all jobs are
released at time zero and do not have due dates, so the objective becomes to minimise
the time required to complete all jobs, called the makespan. Many applications of ACO
to the JSP have been to this variant (e.g., [3, 4, 12, 16]).

Regardless of whether a JSP instance has release dates, due dates or neither, to gener-
ate a solution it is sufficient to determine the relative processing order of operations that

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 3 of 13

require the same machine. A deterministic algorithm can then produce the best possible
schedule given those constraints. Indeed, it is common in ACO applications for the JSP
and other related scheduling problems to generate a permutation of the operations, which
implicitly determines this relative order (e.g., [1, 3, 4, 14, 16]). These algorithms are re-
stricted to creating permutations that respect the required processing order of operations
within each job, which can consequently be called feasible permutations.

Different approaches to constructing solutions produce different search spaces. The
space of feasible permutations of operations for a JSP is very large (a weak upper bound
is O(k!), where k is the number of operations) and is certainly much larger than the space
of actual solutions. This space also has a slight bias towards good solutions, which can
be exploited by some pheromone models and proves disastrous for others [12]. Another
notable feature of this search space is that while all solutions can be reached, solutions
(schedules) are represented by differing numbers of permutations.

An alternative approach to building solutions is to assign different dispatching rules
(i.e., ordering heuristics) to each machine, which subsequently build the actual sched-
ule [5]. The search space then becomes the space of all possible combinations of rules
assigned to machines, which is O(|D|m) where D is the set of rules and m the number of
machines. Given a small number of dispatching rules (this study uses four, described in
Section 4) it is highly probable that this search space is a subset of the space of all feasible
schedules. However, assuming the dispatching rules are individually likely to perform well
it is expected that this reduced space largely consists of good quality schedules.

The performance of these two approaches is compared on a real-world JSP instance,
described in the next section.

3 A Real-World JSP

The data set used for validation of this research has been provided by a printing company,
Sherwood Press, in Nottingham, United Kingdom [7]. There are 18 machines in the
shop floor, grouped within seven work centres: printing, cutting, folding, card-inserting,
embossing and debossing, gathering, stitching and trimming, and packaging.

Jobs follow a pre-determined order. A ‘job bag’ is assigned to record the order of
machines a job is processed on, how long it is ‘expected’ to be processed on that machine
and what is the job’s ‘promised delivery date’. Due to both machine and human factors,
processing times of jobs are uncertain and due dates are not fixed but promised instead.
Therefore, fuzzy sets are used to model uncertain processing times of jobs and due dates
as well as the decision maker’s preference to the tardiness of each job.

A triangular membership function µp̃ij
(t) = (p1

ij, p
2
ij, p

3
ij) is used to model the fuzzy

processing time p̃ij of job Jj on machine Mi, i = 1, . . . ,m, j = 1, . . . , n, where p1
ij and

p3
ij are lower and upper bounds of the processing time, while p2

ij is the so-called modal
point [9]. An example of fuzzy processing time is shown in Fig. 1(a). A trapezoidal fuzzy
set (d1

j , d
2
j) is used to model the due date d̃j of each job, where d1

j is the crisp due date
and the upper bound d2

j of the trapezoid exceeds d1
j by 10%, following the policy of the

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 4 of 13

0

1

1
ijp 2

ijp 3
ijp

ijp~

t

)(~ t
ijpµ

(a)

0

1

1
jd 2

jd

jd
~

t

)(~ t
jd

µ

(b)

Figure 1: Fuzzy (a) processing time and (b) due date

company. An example of a fuzzy due date is given in Fig. 1(b).
The objective function takes into account both the average tardiness of jobs and the

number of tardy jobs. Clearly, the two objectives are measured in different units but
have to be used simultaneously to assess the quality of schedules. Values of objectives are
mapped onto satisfaction grades, which take values in [0, 1] and can be combined in an
overall satisfaction grade. Each satisfaction grade is calculated taking into consideration
the completion times of the jobs, which is fuzzy as a result of dealing with fuzzy processing
times.

Two approaches used to measure tardiness in [7] (i.e., to compare fuzzy completion
times with fuzzy due dates) are investigated: (1) based on the possibility measure intro-
duced by Dubois and Prade [6], used by Itoh and Ishii [8] to handle tardy jobs in a JSP;
and (2) based on the area of intersection measure introduced by Sakawa and Kubota [13].

1. The possibility measure πC̃j
(d̃j) measures the satisfaction grade of a fuzzy com-

pletion time SGT (C̃j) of job Jj by evaluating the possibility of a fuzzy event C̃j

occurring within the fuzzy set d̃j [8] (illustrated in Fig. 2(a)):

SGT (C̃j) = πC̃j
(d̃j) = sup min{µC̃j

(t), µd̃j
(t)} j = 1, . . . , n (3)

where µC̃j
(t) and µd̃j

(t) are the membership functions of fuzzy sets C̃j and d̃j re-
spectively. This measure is referred to as poss hereafter.

2. The area of intersection (denoted area hereafter) measures the portion of C̃j that
is completed by the due date d̃j (illustrated in Fig. 2(b)):

SGT (C̃j) = (area C̃j ∩ d̃j)/(area C̃j) (4)

The satisfaction grades of tardiness defined in (3) and (4) are used in two objectives:

1. To maximise the satisfaction grade of average tardiness SAT :

SAT =
1

n

n∑
j=1

SGT (C̃j) (5)

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 5 of 13

0

1
µ(t)

1
jd 2

jd

jd
~

jC
~

t

()jC
d

j

~
~π

(a)

jj dC
~~

I
0

1
µ(t)

1
jd 2

jd

jd
~

jC
~

t

(b)

Figure 2: Satisfaction grade of tardiness using (a) possibility measure and (b) area of
intersection

2. To maximise the satisfaction grade of number of tardy jobs SNT : A parameter λ is
introduced such that a job Jj, j = 1, . . . , n, is considered to be tardy if SGT (C̃j) ≤
λ, λ ∈ [0, 1]. After calculating the number of tardy jobs nTardy, the satisfaction
grade SNT is evaluated as:

SNT =


1 if nTardy = 0
(n′′ − nTardy)/n′′ if 0 < nTardy < n′′

0 if nTardy > n′′
(6)

where n′′ = 15% of n, where n is the number of jobs.

Two different aggregation operators, which combine the satisfaction grades of the
objectives, were investigated:

1. Average of the satisfaction grades: F1 = 1
2
(SAT + SNT)

2. Minimum of the satisfaction grades: F2 = min{SAT , SNT}

These two aggregation operators are referred to as average and min respectively
hereafter.

4 ACO for a Fuzzy JSP

Two ACO algorithms were developed based on MAX −MIN Ant System (MMAS),
which has been found to work well in practice [15]. The first, denoted MMASperm,
constructs solutions as permutations of the operations, while the second, MMASrules,
assigns dispatching rules to machines. The set of dispatching rules D consists of the
following four rules: Early Due Date First, Shortest Processing Time First, Longest
Processing Time First and Longest Remaining Processing Time First. Note that the
rules are not followed blindly: the earliest available operation is always chosen except
when there are two or more such operations, in which case the rule determines which is
given preference.

The two solution representations require different pheromone models. The models
chosen have been found to produce the best performance for their respective solution

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 6 of 13

representations [10]. For MMASperm, a pheromone value, denoted τ(oi, oj),
1 exists for

each directed pair of operations that use the same machine, and represents the learned
utility of operation oi preceding operation oj [2]. There may be several such precedence
relations affected by the selection of a single operation. During solution construction, the
set of unscheduled operations that require the same machine as a candidate operation o is
denoted by Orel

o . Blum and Sampels [2] recommend taking the minimum of the relevant
pheromone values. Thus, at each step of solution construction, the probability of selecting
an operation o to add to the partial permutation p is given by

P (o, p) =


minor∈Orel

o
τ(o, or)∑

o′ 6∈p minor∈Orel
o′
τ(o′, or)

if o 6∈ p and |Orel
o | > 0

1 if o 6∈ p and |Orel
o | = 0

0 otherwise.

(7)

Note that the second branch is required so that the last operation on each machine is
scheduled immediately, as there is no meaningful pheromone value that can be used.

For MMASrules, a pheromone value τ(Mk, d) is associated with each combination of
machine and dispatching rule (Mk, d) ∈M ×D, where M is the set of machines. At each
step of solution construction, a machine is assigned a dispatching rule. Although the order
in which assignments are made is significant in problems where certain items may only
be assigned a limited number of times (e.g., in the generalised assignment problem [11]),
here there is no limit to the number of times a rule can be used, so the assignment order
is immaterial. This was confirmed during initial testing. The probability of assigning a
dispatching rule d ∈ D to machine Mk is given by

P (Mk, d) =
τ(Mk, d)∑

d′∈D\{d} τ(Mk, d′)
. (8)

Pheromone values are updated the same way in both algorithms, with each value τ
(corresponding to some value from either model) updated according to

τ ← (ρ− 1)τ + ρ ·∆τ (9)

where ρ is the pheromone evaporation rate and ∆τ is the amount of reinforcement given
to a particular pheromone value determined by

∆τ =

{
F (s) if τ is part of iteration best solution
0 otherwise

(10)

where F (s) is the objective value of the solution s. Pheromone values are bounded by
[τmin, τmax], the values of which are given in the next section.

1τ is historically used in ACO due to the pheromone model’s inspiration in ant trail pheromones.

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 7 of 13

Table 1: MMAS parameters

Parameter Value
number of ants 10
iterations 3000
ρ 0.1
τmax 1
τmin in MMASrules 1× 10−3

τmin in MMASperm 1× 10−4

5 Computational Results

The performance of the algorithms was compared on one month’s data collected from
Sherwood Press (the March set used by Fayad and Petrovic [7]). The resulting JSP
instance consists of 549 operations partitioned into 159 jobs.

The algorithms were implemented in the C language and executed under Linux on a
2.6GHz Pentium 4 with 512Mb of RAM. TheMMAS control parameters are summarised
in Table 1. Note that the values of τmin and τmax were chosen to approximate those
suggested by Stützle and Hoos [15] based on the size of the solution representation and
pheromone update.

Both algorithms were executed with each combination of parameter values for evalu-
ating solutions: poss and area tardiness measures, λ ∈ {0.3, 0.7}, and average and min
aggregation operators. Each combination was run across 10 random seeds.

5.1 Solution quality compared within alternative measures

The results revealed that when using the min aggregation operator,MMASperm is unable
to find a solution with a non-zero objective value. This is because the algorithm, in the
absence of any heuristic bias, searches randomly until a subset of pheromone values is
updated. Further testing confirmed that a random search of permutations is unlikely to
produce solutions with SNT > 0. Consequently, a second version of the algorithm, named
MMASmin

perm, was developed in which the pheromone update was modified such that, if all
solutions in an iteration have an objective value of zero, the best solution in terms of SAT

is used to update pheromone values using the average aggregation operator. A similar
modification was not necessary for MMASrules as random assignments of dispatching
rules to machines typically produced solutions with SNT > 0.

Tables 2 and 3 summarise the results for λ = 0.3 and λ = 0.7 respectively, split
according to the algorithm, tardiness measure and aggregation operator used. Included
in the table are results for the genetic algorithm (GA) developed by Fayad and Petrovic [7],
denoted GArules, which represents solutions in the same manner as MMASrules.

It is evident in both tables thatMMASmin
perm is much more successful than its original

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 8 of 13

Table 2: Algorithm performance across solution evaluation measures (with λ = 0.3). The
best result for each measure is given with the mean value in parentheses. Bold items are
best within each solution quality measure

Algorithm F SAT SNT CNT

Using poss and average
MMASperm 0.81 (0.74) 0.91 (0.90) 0.71 (0.58) 7 (10)
MMASrules 0.76 (0.76) 0.93 (0.93) 0.58 (0.58) 10 (10)
GArules 0.77 (0.76) 0.93 (0.92) 0.62 (0.59) 9 (10)
Using poss and min
MMASperm 0 0.72 (0.71) 0 35 (38.9)
MMASmin

perm 0.67 (0.57) 0.86 (0.83) 0.67 (0.57) 8 (10.2)
MMASrules 0.58 (0.58) 0.93 (0.92) 0.58 (0.58) 10 (10)
GArules 0.62 (0.57) 0.92 (0.92) 0.62 (0.57) 9 (10)
Using area and average
MMASperm 0.74 (0.68) 0.90 (0.89) 0.58 (0.47) 10 (12.7)
MMASrules 0.75 (0.75) 0.93 (0.93) 0.58 (0.58) 10 (10)
GArules 0.73 (0.69) 0.92 (0.9) 0.54 (0.49) 11 (12)
Using area and min
MMASperm 0 0.70 (0.69) 0 42 (43.9)
MMASmin

perm 0.54 (0.50) 0.85 (0.84) 0.54 (0.50) 11 (12)
MMASrules 0.58 (0.58) 0.93 (0.92) 0.58 (0.58) 10 (10)
GArules 0.54 (0.47) 0.91 (0.9) 0.54 (0.47) 11 (13)

form when using the min aggregation operator. Further investigation revealed that it
required the use of the average aggregation operator in 6–33% of iterations, with the
lower value being with λ = 0.3 and poss, and the upper value being with λ = 0.7 and
area.

When using λ = 0.3 and the poss aggregation operator MMASperm performs better
than MMASrules in terms of the number of tardy jobs. However, when using the typi-
cally more pessimistic area measure, its performance is slightly worse. Both algorithms
compare favourably with GArules. When λ = 0.7, MMASrules consistently outperforms
MMASperm. MMASrules also performs better than GArules.

5.2 Solution quality compared between values of λ

Examination of the satisfaction grades of solutions produced by the algorithms using
higher values of λ (e.g., Table 3, with λ = 0.7) may appear to indicate that they are of
poorer quality than those obtained at lower values of λ (e.g., Table 2, with λ = 0.3). To
investigate this further, solutions produced at the two values of λ were compared by re-
evaluating them using the same tardiness measure and aggregation operator as used when
they were produced, but with the other value of λ. This revealed that, for MMASperm,

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 9 of 13

Table 3: Algorithm performance across solution evaluation measures (with λ = 0.7). The
best result for each measure is given with the mean value in parentheses. Bold items are
best within each solution quality measure

Algorithm F SAT SNT CNT

Using poss and average
MMASperm 0.69 (0.62) 0.91 (0.91) 0.46 (0.34) 13 (15.9)
MMASrules 0.73 (0.73) 0.93 (0.93) 0.54 (0.53) 11 (11.2)
GArules 0.69 (0.66) 0.92 (0.91) 0.46 (0.41) 12 (13)
Using poss and min
MMASperm 0 0.72 (0.71) 0 48 (51.2)
MMASmin

perm 0.42 (0.35) 0.89 (0.88) 0.42 (0.35) 14 (15.5)
MMASrules 0.54 (0.53) 0.93 (0.93) 0.54 (0.53) 11 (11.3)
GArules 0.46 (0.34) 0.91 (0.90) 0.46 (0.34) 12 (15)
Using area and average
MMASperm 0.62 (0.59) 0.90 (0.90) 0.33 (0.28) 16 (17.3)
MMASrules 0.71 (0.70) 0.93 (0.93) 0.50 (0.48) 12 (12.5)
GArules 0.64 (0.62) 0.91 (0.91) 0.37 (0.33) 14 (15)
Using area and min
MMASperm 0 0.70 (0.69) 0 49 (52.1)
MMASmin

perm 0.42 (0.32) 0.88 (0.87) 0.42 (0.32) 14 (16.4)
MMASrules 0.50 (0.48) 0.93 (0.92) 0.50 (0.48) 12 (12.5)
GArules 0.37 (0.26) 0.90 (0.89) 0.37 (0.26) 14 (17)

solutions produced using λ = 0.3 have twice as many or more tardy jobs when re-evaluated
using λ = 0.7, while forMMASrules, solutions produced using λ = 0.3 typically have 1–5
more tardy jobs when re-evaluated. The same applies for results generated using GArules.

Thus, the differences observed between the original satisfaction grades of solutions
produced using different values of λ are not an indication of better or poorer results;
the setting of λ is merely an indication of the level of tolerance the decision maker is
willing to show. The results of re-evaluating solutions show that each algorithm will
find those solutions which are “good enough” according to the chosen value of λ, and
without the pressure of a higher value will not search for solutions that would meet stricter
requirements. Therefore, in the case of a scheduling problem of sufficient complexity, the
decision maker might choose a lower value of λ to help increase the region of the search
space that contains “good” solutions. On the other hand, if a problem is not considered
complex enough by the scheduler, he/she might decide to increase the value of λ, thereby
increasing the difficulty of finding better solutions.

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 10 of 13

Table 4: Mean CPU time in seconds used in total and until best solution found. Results
are divided based on the tardiness measure (poss or area) and aggregation operator
(average and min) used. Note that MMASmin

perm behaves identically to MMASperm

when using average

total best solution
poss area poss area

Algorithm average min average min average min average min

MMASmin
perm 1466.3 1428.6 1509.5 1504.8 1303.3 1025.8 1432.8 396.1

MMASrules 91.0 91.1 108.8 108.3 0.7 0.5 1.2 0.3

5.3 CPU time

Table 4 summarises the mean computation time required to complete 3000 iterations and
until the best solution was found, broken down according to the solution evaluation mea-
sure used. The most notable feature of these results is the order of magnitude difference
between the two ACO algorithms. This result is to be expected given the respective num-
ber of components each must consider at each constructive step; MMASperm considers
approximately 40 operations on average, while MMASrules considers only four. More-
over, MMASrules finds its best solutions very early in each run (often within 1 second)
while MMASperm does not converge until quite late.

A less significant difference was observed between the poss and area measures, with
the latter requiring longer computation time. This is most noticeable in MMASrules,
where solution evaluation represents a larger proportion of computation time than it does
in MMASperm.

6 Conclusions

Typical ACO algorithms for production scheduling problems such as the JSP build so-
lutions as permutations of the operations to be scheduled, from which actual schedules
are generated deterministically. An alternative approach when the problem in question
has multiple machines and various criteria upon which to judge the urgency of competing
operations is to assign different dispatching rules to each machine. The chosen dispatch-
ing rules are then responsible for determining the relative processing order of operations
on each machine. This paper compared both approaches on a multi-objective real-world
JSP, modelled with fuzzy operation processing times and job due dates. The results
show that assigning dispatching rules to machines produces higher quality solutions in far
less time than building a permutation of the operations. This supports the claim that
the assignment of dispatching rules restricts the search space to an area of good quality
solutions.

As this study focused on a single, real-world JSP instance (albeit using a variety

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 11 of 13

of solution quality measures) future work is required to determine if these results hold
for other production scheduling instances. Additionally, it is now common practice in
most ACO algorithms to use a local search procedure to improve the solutions produced,
something not done in this study so that differences between the two solution construction
approaches could be observed. While the addition of local search to a permutation-based
ACO algorithm for these problems may allow it to perform better, it is potentially more
useful in the new approach, where it can explore solutions that combinations of dispatching
rules would otherwise never produce.

References

[1] A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss. Minimizing total tardiness on
a single machine using ant colony optimization. Cent. Eur. J. Oper. Res., 8(2):125–
141, 2000.

[2] C. Blum and M. Sampels. Ant colony optimization for FOP shop scheduling: A case
study on different pheromone representations. In 2002 Congress on Evolutionary
Computation, pages 1558–1563, 2002.

[3] C. Blum and M. Sampels. An ant colony optimization algorithm for shop scheduling
problems. J. Math. Model. Algorithms, 3(3):285–308, 2004.

[4] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-shop
scheduling. JORBEL, 34(1):39–53, 1994.

[5] U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling envi-
ronment. Comput. Oper. Res., 22:25–44, 1995.

[6] D. Dubois and P. H. Possibility Theory: An Approach to Computerized Processing
of Uncertainty. Kluwer Academic, New York, 1988.

[7] C. Fayad and S. Petrovic. A fuzzy genetic algorithm for real-world job shop schedul-
ing. In M. Ali and F. Esposito, editors, 18th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE
2005), volume 3533 of Lecture Notes in Artificial Intelligence, pages 524–533, Bari,
Italy, 2005. Springer-Verlag.

[8] T. Itoh and H. Ishii. Fuzzy due-date scheduling problem with fuzzy processing time.
Int. Trans. Oper. Res., 6:639–647, 1999.

[9] G. Klir and T. Folger. Fuzzy Sets, Uncertainty and Information. Prentice Hall, New
Jersey, 1988.

[10] E. J. Montgomery. Solution Biases and Pheromone Representation Selection in Ant
Colony Optimisation. PhD thesis, Bond University, 2005.

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 12 of 13

[11] J. Montgomery, M. Randall, and T. Hendtlass. Search bias in constructive meta-
heuristics and implications for ant colony optimisation. In M. Dorigo et al., edi-
tors, 4th Int’l Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS
2004, volume 3172 of Lecture Notes in Computer Science, pages 390–397, Brussels,
Belgium, 2004. Springer-Verlag.

[12] J. Montgomery, M. Randall, and T. Hendtlass. Structural advantages for ant colony
optimisation inherent in permutation scheduling problems. In M. Ali and F. Esposito,
editors, 18th International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems (IEA/AIE 2005), volume 3533 of Lecture
Notes in Artificial Intelligence, pages 218–228, Bari, Italy, 2005. Springer-Verlag.

[13] M. Sakawa and R. Kubota. Fuzzy programming for multiobjective job shop schedul-
ing with fuzzy processing time and fuzzy duedate through genetic algorithms. Eur.
J. Oper. Res., 120(2):393–407, 2000.

[14] T. Stützle. An ant approach to the flow shop problem. In 6th European Congress
on Intelligent Techniques & Soft Computing (EUFIT ’98), pages 1560–1564, Aachen,
Germany, 1998. Verlag Mainz.

[15] T. Stützle and H. Hoos. MAX −MIN ant system. Future Gen. Comp. Sys.,
16:889–914, 2000.

[16] S. van der Zwaan and C. Marques. Ant colony optimisation for job shop scheduling.
In 3rd Workshop on Genetic Algorithms and Artificial Life (GAAL 99), 1999.

Solution Representation for Job Shop Scheduling Problems in ACO
Technical Report SUTICT-TR2006.05
15 May 2006

Page 13 of 13

	Introduction
	Job Shop Scheduling and Solution Construction
	A Real-World JSP
	ACO for a Fuzzy JSP
	Computational Results
	Solution quality compared within alternative measures
	Solution quality compared between values of
	CPU time

	Conclusions

