Category Theory Session 7: Questions

Olin Gao

May 19, 2022

Recall that the Yoneda Embedding is the functor $\mathbb{C} \to [\mathbb{C}.\mathsf{Set}^{\mathsf{op}}]$ given by $Y(X) = \mathsf{Hom}(-, C)$.

- 1. Show that Y, as a functor, is injective on objects.
- 2. Using the fact that Y is full and faithful, show that $A \cong B$ whenever $YA \cong YB$.
- 3. Using the Yoneda lemma, show that $Hom(A, B) \cong Hom(YA, YB)$.
- 4. What does it mean to say that the Yoneda embedding preserves exponentials? Show that Y does preserve exponentials under your definition.
- 5. Does the Yoneda embedding preserve products? Justify your answer.
- 1. Show that **Cat**, the category of all small categories, has coproducts.
- 2. Given an example of two categories \mathbb{C} and \mathbb{D} , two functors $F, G : \mathbb{C} \to \mathbb{D}$ and an indexed family $(\eta_X : FX \to GX_{X \in \mathsf{obj}(\mathbb{C})})$ that is *not* a natural transformation.
- 3. Let (X, \leq) be a poset. An upper set in (X, \leq) is a subset $U \subseteq X$ that is upwards closed, i.e. $x \in U$ and $x \leq y$ implies $y \in U$. The Alexandroff topology on a poset (X, \leq) consists of all upper sets in (X, \leq) .
 - Show that this defines a functor Pos → Top between the categories of posets (and monotone maps) and topological spaces (and continuous maps).
 - Is this functor full? faithful? Justify your answer.
 - How Would this change if we would take the open sets to be the downwards closed sets?