## Category Theory Session 4: Questions

## Dirk Pattinson

March 29, 2022

1. Let C be a category with finite products. Call an object B in a category *exponentialble*, if the exponential  $C^B$  exists in the category, for all objects  $B \in C$ .

We have seen that this is equivalent to the existence of a functor  $E : C \to C$  and a family of maps  $\epsilon_C : E(C) \times B \to C$  with the following universal property:

For all  $f:A\times B\to C$  there exists a unique  $\tilde{f}:A\to E(C)$  such that the diagam



commutes.

Show that an object B is exponentiable if and only if there is a functor  $E: \mathcal{C} \to \mathcal{C}$  and a family of maps  $\eta_{AB}: A \to E(A \times B)$  with the following universal property:

For all  $f: A \to E(C)$  there exists a unique  $\hat{f}: A \times B \to C$  such that



commutes.

- 2. It is easy to see that the category of metric spaces (and continuous functions) has binary products. Is it cartesian closed?
- 3. Show that in a cartesian closed category,  $A^{(B^C)} \cong A^{B \times C}$ .

4. Let  $\mathcal{O}$  be the lattice of open sets of a topological space, ordered by inclusion. Show that  $\mathcal{O}$ , viewed as a category, is cartesian closed, and has finite coproducts. That is, show that  $\mathcal{O}$  carries the structure of a Heyting algebra.