Category Theory Session 1: Questions

Dirk Pattinson

March 1, 2022

- 1. Consider the category **Met** of metric spaces and continuous functions. Let M be a metric space, and let $D \subseteq M$ be a dense subset (viewed as a metric space with the metric on M restricted to D). Show that the inclusion $D \to M$ is epi in **Met**.
- 2. Hence, or otherwise, give an example of a category and a morphism that is both epi and mono, but not iso.
- 3. Show that all is well in the category **Top** of topological spaces and continuous functions though. That is, show that epis (monos) in **Top** are surjective (injective) mappings.
- 4. Let C be a category and $A \in C$ be an object of C. Consider the category C/A of morphisms with codomain A given by:
 - *objects* are pairs (X, ϕ) where $X \in \mathcal{C}$ is an object and $\phi : X \to A$ is a morphism in \mathcal{C}
 - morphisms between (X, ϕ) and (Y, ψ) are morphisms $f : X \to Y$ for which $\phi = \psi \circ f$.

Let's think about initial and final objects in \mathcal{C}/A .

- When does \mathcal{C}/A have an initial object, and how can it be described?
- When does \mathcal{C}/A have a final object, and how can it be described?
- 5. Show that all monomorphisms in the category **Grp** of groups and group homomorphisms are injective. What structural property of groups have you used in the proof that could generalise to other settings?