Generic Cut Elimination Applied to Conditional Logics

D. Pattinson, Imperial College London
(in collaboration with L. Schröder, DFKI Bremen)

Oslo, July 2009
Cut Elimination in Modal Logics

Modal Logics. Classical Propositional Logic + polyadic modal operators $\diamondsuit \in \Lambda$

$$\mathcal{L}(\Lambda) \ni A, B ::= p \mid \neg A \mid A \land B \mid \diamondsuit(A_1, \ldots, A_n) \quad (\diamondsuit \in \Lambda \text{ n-ary})$$

Interpretation. For example,

- (standard) modal logic: $\Box A \rightsquigarrow$ necessarily A
- graded modal logic: $(\exists \geq k) A \rightsquigarrow \geq k$ relational successors validate A
- probabilistic modal logic: $A \geq B \rightsquigarrow \mathbb{P}([A]) \geq \mathbb{P}([B])$
- later: conditional logic $A \Rightarrow B \rightsquigarrow A$ under condition B

Crucial.

- no fixed set of modal operators (yet)
- separation between modalities and propositional connectives
Sequent Calculi for Modal Logics

Sequents. Multisets of Λ-formulas, read disjunctively

$$A \equiv \{A\} \quad \Gamma, \Delta \equiv \Gamma \cup \Delta$$

$$\Gamma, A, \neg A \quad \Gamma, A \land B \quad \Gamma, \neg A, \neg B \quad \Gamma, A$$

plus Modal Rules of the form

$$\Gamma_1 \ldots \Gamma_n \quad \Gamma_0$$

where $\Gamma_0, \ldots, \Gamma_n$ are Λ-sequents (in examples: generated by schemas).

Idea.

- Propositional Part has cut-elimination \rightsquigarrow scrutinize modal rules!
- Similarly for structural rules (weakening, contraction, inversion)
Cut Elimination by (trivial) Example.

Modal Logic K. $\Lambda = \{ \Box \}$ with \Box unary

Rules. Hilbert-Axiomatisation taken from any textbook

\[(N) \frac{p}{\Box p} \quad (D) \Box(p \to q) \to \Box p \to \Box q\]

As Sequent Rules, i.e. applying inversion

\[
\frac{A}{\Box A} \quad \neg \Box(A \to B), \neg \Box A, \Box B
\]

Find Occurrences of Cut

\[
\frac{A \to B}{\Box(A \to B)} \quad \frac{\neg \Box(A \to B), \neg \Box A, \Box B}{\neg \Box A, \Box B}
\]

Idea. Add this as a new rule

\[
\frac{\neg A, B}{\neg \Box A, \Box B}
\]
More Cuts

New Rule Set.

\[
\begin{align*}
A & & \neg A, B \\
\Box A & & \neg \Box A, \Box B \\
\neg \Box (A \to B), \neg \Box A, \Box B
\end{align*}
\]

Find more cuts.

\[
\begin{align*}
\neg A, B \to C & & \neg \Box A, \Box (B \to C) \\
\neg \Box (B \to C), \neg \Box B, \Box C \\
\neg \Box A, \neg \Box B, \Box C
\end{align*}
\]

Add new Rule.

\[
\begin{align*}
\neg A, \neg B, \neg C & & \neg \Box A, \neg \Box B, \Box C
\end{align*}
\]

After finitely many steps . . .

\[
(K_n) \begin{align*}
\neg A_1, \ldots, \neg A_n, A_0 \\
\neg \Box A_1, \ldots, \neg \Box A_n, \Box A_0
\end{align*}
\]

General Idea. Add cuts between modal rules until this process terminates.
Formal Setup

Given modal similarity type \(\Lambda \) and rule set \(R \)

Hilbert-Provability. The predicate \(H_R \vdash \) is the least set of formulas that

- contains all propositional tautologies
- is closed under modus ponens and uniform substitution
- contains \(\bigvee \Gamma_0 \) whenever it contains \(\bigvee \Gamma_1, \ldots, \bigvee \Gamma_n \) and \(\Gamma_1 \ldots \Gamma_n/\Gamma_0 \in R \)

Gentzen-Provability. The predicate \(G_R \vdash \) is the least set of sequents that

- contains \(\Gamma_0 \) whenever it contains \(\Gamma_1, \ldots, \Gamma_n \)
- is closed under application of the rules

 \[
 \begin{align*}
 \Gamma, A, \neg A & \quad \Gamma, A \quad \Gamma, B & \quad \Gamma, \neg A, \neg B & \quad \Gamma, A
 \end{align*}
 \]

 \[
 \begin{align*}
 \Gamma, A \land B & \quad \Gamma, \neg (A \land B) & \quad \Gamma, \neg \neg A
 \end{align*}
 \]

Easy Theorem. \(H_R \vdash \bigvee \Gamma \) whenever \(G_R \vdash \Gamma \).
Absorption of Structural Rules

Goal. $\text{HR} \vdash \bigvee \Gamma \iff \text{GR} \vdash \Gamma$

Observation. The following rules of weakening, contraction and inversion:

\[
\begin{align*}
\frac{\Gamma}{\Gamma, A} & \\
\frac{\Gamma, A, A}{\Gamma, A} & \\
\frac{\Gamma, \neg\neg A}{\Gamma, A} & \\
\frac{\Gamma, \neg(A_1 \land A_2)}{\Gamma, \neg A_1, \neg A_2} & \\
\frac{\Gamma, A_1 \land A_2}{\Gamma, A_i} (i = 1, 2)
\end{align*}
\]

should be admissible, as they are in HR.

Idea. Isolate the “essence” of e.g. inversion lemma as a property of rule sets.

Defn. For a Λ-sequent Δ, let $A(\Delta)$ denote the closure of Δ under the above rules.

The rule set R absorbs structural rules if

\[
\text{GR} + A(\Gamma_1) \cup \cdots \cup A(\Gamma_n) \vdash \Gamma
\]

for all $\frac{\Gamma_1 \ldots \Gamma_n}{\Gamma_0} \in R$ and all $\Gamma \in A(\Gamma_0)$.

Propn. Admissibility of the structural rules follows from their absorption.
For the modal logic K:

Negative. Absorption of weakening fails for

\[
\frac{-A_1, \ldots, -A_n, A_0}{\neg \Box A_1, \ldots, \neg \Box A_n, \Box A_0}
\]

For $n = 0$, have $\Box A_0, p \in A(\Box A)$ but $GR + A(A) \not\vdash \Box A_0, p$.

Positive. Absorption holds if weakening is built in:

\[
\frac{-A_1, \ldots, -A_n, A_0}{\neg \Box A_1, \ldots, \neg \Box A_n, \Box A_0, \Delta}
\]

(Note that inversion is trivial)
More (Counter)Examples

For the modal logic $T = K + \Box A \rightarrow A = K + \neg \Box A, A$

Find Cuts between K and T

\[
\begin{align*}
\neg A, B & \quad \neg \Box A, \Box B \\
\quad & \quad \neg \Box B, B \\
\end{align*}
\]

\[
\neg \Box A, B
\]

Negative. Absorption of inversion fails if we adopt this as a new rule

\[
\begin{align*}
\neg A, B & \quad \neg \Box A, B \\
\end{align*}
\]

(take $B = \neg (B_0 \land B_1)$)

Negative. Inversion works, but contraction fails for

\[
\begin{align*}
\neg A, \Gamma \\
\neg \Box A, \Gamma \\
\end{align*}
\]

(take $\Gamma = \neg \Box A$)

Positive. Absorption of structural rules holds for

\[
\begin{align*}
\neg A, \neg \Box A, \Gamma \\
\neg \Box A, \Gamma \\
\end{align*}
\]

(which is the version of the T-rule that we know and like)
(Same) Idea. Distill the “essence” of cut-elimination proofs into rule properties

- think double induction on cut rank and proof size
- allow cuts on smaller proofs and smaller cut formulas

Defn. A ruleset R absorbs cut, if for all rules $(r_1) \frac{\Gamma_1, \ldots, \Gamma_n}{A, \Gamma_0}$, $(r_2) \frac{\Delta_1, \ldots, \Delta_k}{\neg A, \Delta_0} \in R$

$$GR + \text{Cut}(A, r_1, r_2) \vdash \Gamma_0, \Delta_0$$

where Cut(A, r_1, r_2) contains structural rules, cut on formulas $< A$, the premises $\Gamma_1, \ldots, \Gamma_n, \Delta_1, \ldots, \Delta_k$ and Γ, Δ where, for some formula B,

- Γ, B and $\Delta, \neg B \in \{\Gamma_1, \ldots, \Gamma_n, \Delta_1, \ldots, \Delta_k\}$ (cut premise/premise), or
- $\Gamma, B = \Gamma_0, A$ and $\Delta, \neg B \in \{\Delta_1, \ldots, \Delta_k\}$ (cut conclusion/premise), or
- $\Gamma, B = \Delta_0, \neg A$ and $\Delta, \neg B \in \{\Gamma_1, \ldots, \Gamma_n\}$ (cut premise/conclusion).

A rule set that absorbs structural rules and the cut rule is called absorbing.
Thm. If R absorbs structural rules and cut, then cut is admissible.

Proof. (Sketch) Double induction on cut rank and proof size, case modal / prop. rule:

$$
\begin{array}{c}
\Gamma, A \\
\hline
\Gamma, A \land B
\end{array}
\quad
\begin{array}{c}
\Delta_1 \\
\hline
\ldots
\hline
\Delta_n
\end{array}
\quad
\begin{array}{c}
\neg(A \land B), \Delta
\end{array}
\quad\begin{array}{c}
\Gamma, \Delta
\end{array}
$$

- closure under inversion gives proof of $\neg A, \neg B, \Delta$
- cut on (smaller) formulas A, B gives

$$
\begin{array}{c}
\Gamma, A \\
\hline
\Delta, \neg A, \neg B
\end{array}
\quad\begin{array}{c}
\Gamma, \Delta, \neg B \\
\hline
\Gamma, B
\end{array}
\quad\begin{array}{c}
\Gamma, \Gamma, \Delta
\end{array}
$$

- closure under contraction gives proof of Γ, Δ

Cor. If R is closed under uniform substitution and absorbs cut and structural rules, then $GR \vdash \Gamma \iff HR \vdash \bigvee \Gamma$.
Construction of Cut-Free Rule Sets

Conceptually. Absorption by addition of cuts + equivalence transformations

Admissibility. A rule \((r) \Gamma_1 \ldots \Gamma_n/\Gamma_0 \) is \textit{admissible} in HR if, for all formulas \(A \),
\[
HR \vdash A \iff H(R \cup \{r\}) \vdash A.
\]

Simple Lemma 1. (Propositional weakening / strengthening is sound in HR)

The rule \(\Delta_1 \ldots \Delta_k/\Delta_0 \) is admissible, if there is \(\Gamma_1, \ldots, \Gamma_n/\Gamma_0 \in R \) s.t.
\[
\{\bigvee \Delta_1, \ldots, \bigvee \Delta_k\} \vdash_{PL} \bigvee \Gamma_i (1 \leq i \leq n) \text{ and } \bigvee \Gamma_0 \vdash_{PL} \bigvee \Delta_0.
\]

Simple Lemma 2. (Cut is sound in HR)

If \(\Gamma_1 \ldots \Gamma_n/A, \Gamma_0 \) and \(\Delta_1 \ldots \Delta_k \neg A, \Delta_0 \in R \) then
\[
\frac{\Gamma_1 \ldots \Gamma_n \quad \Delta_1 \ldots \Delta_k}{\Gamma_0, \Delta_0}
\]
is admissible in HR.
Applications: Conditional Logics

Similarity Type. \(\Lambda = \{ \Rightarrow \} \) with \(\Rightarrow \) binary (nonmonotonic conditional)

Basic Rules.

(RCEA) \(\frac{A \leftrightarrow A'}{(A \Rightarrow B) \leftrightarrow (A' \Rightarrow B)} \) \hspace{1cm} (RCK) \(\frac{B_1 \land \cdots \land B_n \Rightarrow B}{(A \Rightarrow B_1) \land \cdots \land (A \Rightarrow B_n) \Rightarrow (A \Rightarrow B)} \)

Additional Axioms.

(ID) \(A \Rightarrow A \) \hspace{1cm} (MP) \((A \Rightarrow B) \Rightarrow (A \rightarrow B) \) \hspace{1cm} (CEM) \((A \Rightarrow B) \lor (A \Rightarrow \neg B) \)

Terminology. CK = (RCEA) + (RCK), additional axioms juxtaposed, e.g. CKCEMMP = CK + (CEM) + (MP).
Logics without \((\text{CEM})\)

Notation. \(A_0 = \cdots = A_n\) contains \(\neg A_i, A_0\) and \(A_i, \neg A_0\) for \(i = 1, \ldots, n\).

Basic Conditional Logic \(\text{CK}.\)

\[
(\text{CK}_g) \quad \frac{A_0 = \cdots = A_n \quad \neg B_1, \ldots, \neg B_n, B_0}{\neg(A_1 \Rightarrow B_1), \ldots, \neg(A_n \Rightarrow B_n), (A_0 \Rightarrow B_0), \Gamma}
\]

\(\text{CK} + (\text{ID}).\) Axiom schema \((\text{CK}_g)\) plus

\[
(\text{ID}_g) \quad \frac{A = B}{A \Rightarrow B, \Gamma}
\]

\(\text{CK} + (\text{MP}).\) Axiom schema \((\text{CK}_g)\) plus

\[
(\text{MP}_g) \quad \frac{A, \neg(A \Rightarrow B), \Gamma \quad \neg B, \neg(A \Rightarrow B), \Gamma}{\neg(A \Rightarrow B), \Gamma}
\]

In all cases. Cut elimination holds, and provability is unchanged.
Logics with (CEM)

CK + (CEM). New rule schema

\[
\frac{A_0 = \cdots = A_n \quad B_0, \ldots, B_j, \neg B_{j+1}, \neg B_n}{(A_0 \Rightarrow B_0), \ldots, (A_j \Rightarrow B_j), \neg (A_{j+1} \Rightarrow B_{j+1}), \ldots, \neg (A_n \Rightarrow B_n), \Gamma}
\]

for \(1 \leq j \leq n\).

CK + CEM + MP. Rule schemas \((\text{CKCEM}_g) + (\text{MP}_g)\) and new schema

\[
\frac{A, (A \Rightarrow B), \Gamma \quad B, (A \Rightarrow B), \Gamma}{(A \Rightarrow B), \Gamma}
\]

In all cases. Cut elimination holds, and provability is unchanged.
Complexity.

Conditional Logics without (CEM).

- Polynomial bound on height and branching of proof tree

Thm. Provability for CK, CKID, CKMP is in *PSPACE*.

Conditional Logics with (CEM).

- not (significantly) harder than propositional logic
- the rule

\[
(\text{CKCEM}_g) \quad \frac{A_0 = \cdots = A_n \quad B_0, \ldots, B_j, \neg B_{j+1}, \neg B_n}{(A_0 \Rightarrow B_0), \ldots, (A_j \Rightarrow B_j), \neg(A_{j+1} \Rightarrow B_{j+1}), \ldots, \neg(A_n \Rightarrow B_n), \Gamma}
\]

doesn’t create branching in the second argument

Thm. Provability for CKCEM and CKCEMMP is in *coNP*.

Summary and Conclusions

Generic Cut Elimination.

- absorbing rule sets: inductive steps for cut elimination
- construction of absorbing sets: add cuts until saturated

Conditional Logics.

- New (internalised, cut-free) sequent calcul for extensions of CK
- Cut-elimination for CKCEMMP.

Questions and Further Work.

- Fine tuning: preservation of proof height for structural rules
- Other base logics (e.g. FOL)
- Other flavours (e.g. intuitionistic)