Program Equivalence is Coinductive

Dirk Pattinson Lutz Schröder

The Australian National University
Friedrich-Alexander Universität Erlangen-Nürnberg

July 2016
Q. How do we understand programming languages?

A. PL = denotational + operational + axiomatic

Q. How do we understand models of computation? Turing / counter machines and the like?

- operational semantics – is a given
- denotational semantics – somewhat clear?
- axiomatic semantics – this paper
Example: Turing Machines

Question. What operations do we need to model Turing machines?
Operations for Turing Machines

Tape Movement. left (l), right (r)

Tape Manipulation. read (rd), write (wr)

Arities for a tape alphabet A
- left/right: unary
- writing: A unary operations wr_a
- reading: one A-ary operation

$$rd(P_1, \ldots, P_n) \triangleq \text{case symbol under tape head of}$$

\[
\begin{align*}
 a_1 & \mapsto P_1 \\
 a_2 & \mapsto P_2 \\
 \vdots & \\
 a_n & \mapsto P_n
\end{align*}
\]
Equations for Tape Operations

Left/Right Cancel Out

\[l \cdot r \cdot x = x \quad r \cdot l \cdot x = x \]

Pseudo-Branching has no Effect

\[\text{rd}(x, \ldots, x) = x \]

Read/Write Interaction

\[\text{wr}_{a_i} \cdot \text{rd}(x_1, \ldots, x_n) = \text{wr}_{a_i} \cdot x_i \]

Read/Write/Move Interaction

\[\text{wr}_{a_i} \cdot m^k \cdot \text{rd}(x_1, \ldots, x_n) = m^k \cdot \text{rd}(m^{-k} \cdot \text{wr}_{a_i} \cdot m^k \cdot x_1, \ldots, m^{-k} \cdot \text{wr}_{a_i} \cdot m^k \cdot x_n) \]

where \(k \in \mathbb{Z} \setminus \{0\} \), \(m^+i = l^i \), \(m^-i = r^i \) for \(i \geq 0 \).
Counter Machines a la Minsky

Operations.

- increment (inc), unary
- clear (clr), unary
- jump/decrement (jd), binary

\[
\text{jd}(P_1, P_2) \equiv \begin{cases} P_1 & \text{if the counter is zero} \\ P_2 & \text{otherwise} \end{cases}
\]

Equations.

\[
\text{clr.jd}(x, y) = \text{clr}.x \quad \text{inc.jd}(x, y) = y
\]
Question. What’s the “right” interpretation of these algebraic theories?
Comodels for Turing Machines

Comodel Interpretation of l, r, rd, wr_a:

- carrier set $T = \text{two-sided infinite tape}$
- operations $l, r, wr_a : T \to T$
- reading: $rd : T \to T + \cdots + T$ (for each letter of the alphabet)

Informal Interpretation.

- $T = \text{tapes together with head position}$
- l, r, wr_a manipulate the tape state
- rd gives new state plus tape symbol

Concrete Example for alphabet $A = \{a_1, \ldots, a_n\}$ and $\alpha \in T$:

- $T = \mathbb{Z} \to A = \text{two-way infinite tape with head at position 0}$
- $l(\alpha)(n) = \alpha(n - 1)$ \hspace{1cm} $rd(\alpha) = \text{inj}_i(\alpha)$ where $\alpha(0) = a_i$

- $wr_a(\alpha)(n) = \begin{cases} a & n = 0 \\ \alpha(n) & n \neq 0 \end{cases}$
Comodels in Universal Algebraic Terms

Defn. Given signature $\Sigma = \text{function symbols} + \text{arities}$:

Σ-comodels are pairs (A, \cdot) where

- A is a (carrier) set
- $\cdot f : A \to n \cdot A$ for n-ary $f \in \Sigma$

Term Interpretation $[t] : A \to V \cdot A$ for a set V of variables:

- $[v](c) = (v, c)$
- $[f(t_1, \ldots, t_n)] = [[t_1], \ldots [t_n]] \circ [f]$

- variables are coproduct injections
- terms interpreted “the other way around”

Trivial Theorem. The category of Σ, E-comodels is isomorphic to the category of comodels for the Lawvere theory generated by Σ and E.
Algebraic Machines

Computational Models.

\[(X, \xi : X \to T_\Sigma(X + 1))\]

- \(X\) is a (finite) state set
- \(\xi\) describes operational behaviour.
- \(* \in 1\) is termination.

Operational Semantics. given \(\Sigma\)-comodel \((C, \langle \cdot \rangle)\)

\[
(f(t_1, \ldots, t_n), c) \to (t_i, c') \iff \langle f \rangle(c) = \text{inj}_i(c')
\]

\[(x, c) \to (\xi(x), c)\]

Examples.

\[
(wr_a.t, c) \to (t, \langle wr_a \rangle(c))
\]

\[
(rd(t_1, t_2)) \to (t_i, c') \quad (\langle rd \rangle(c) = \text{inj}_i(c'))
\]

That is, \(t_i\) is chosen according to the symbol under the head, and \(c'\) is the post state after reading.
Comparision to Standard Model

Trivial Theorem. Standard Turing machines are equivalent to algebraic machines, for the comodel $\mathbb{Z} \to A$ of two-way infinite tapes. An analogous statement holds for counter machines.

Why comodels?
- Equational theory of computation
- Universal properties via final comodels
- Uniform treatment of more than one model
Final Comodels

Observation. For $E = \emptyset$, Σ-comodels are coalgebras for

$$FX = \prod_{f \in \Sigma} \text{arity}(f) \cdot X$$

and final comodels do exist.

Lemma. Final Σ, E-comodel exist, and are sub-comodels of the final Σ-comodel that satisfy all equations derivable from E.

Lemma. Final Σ, E-comodels are compact, with the subspace topology inherited from the final Σ-comodel.
Examples of Final Comodels

For Turing Machines over alphabet A.
- two-way infinite tapes, i.e. $\mathbb{Z} \to A$ are final.

For Counter machines
- Counters with infinity, i.e. $\mathbb{N} \cup \{\infty\}$ are final

(Both with respect to the “natural” equations.)
Observation. Equational Reasoning is incomplete over comodels. (E.g. nullary operations force comodels to be trivial.)

Soundness is trivial.
(And follows as Σ, E-comodels are comodels for a Lawvere theory.)
Completeness

Linear Terms are terms built from unary function symbols only.

Example.

\[l.l.wr_a.l.wr_a.x \quad \text{inc.clr.inc.inc.x} \]

Linear Normal Forms for \(\Sigma \) and \(E \):

- every linear term is provably equal to a normal form term
- for normal form terms, syntactic identity and semantic equality are equivalent.

Example. Both Turing and counter machines have linear normal forms, e.g. \(\text{clr.inc...inc.x} \) and \(\text{inc....inc.x} \)

Trivial Lemma. Completeness for linear terms follows from the existence of linear normal forms.
General Terms and Splittings

Splittings for a signature Σ and equations \mathcal{E} are finite sets S of linear terms such that

$$\{ s.t = s.u \mid s \in S \}$$

is an admissible rule.

A splitting S is **reductive** for a general term t if

$s.t$ is linear or has smaller branching than c

That is, we can successively reduce to linear terms.

Example for counter machines: $\{\text{inc}.x, \text{clr}.x\}$

Equational Completeness for a fixed comodel C holds provided

- we have linear normal forms
- every term has a reductive splitting.
Turing machines and counter machines

Summary. Both Turing and counter machines have

- linear normal forms
- reductive splittings

over the final comodel.

Corollary. Equational reasoning is complete over the final comodel (under above assumptions).

Remark.

- also gives completeness for counter machines with standard counters
- but this non-final comodel fails compactness.
Reasoning about Computation

Computational Simulation for an algebraic machine
\((X, \xi : X \to T_{\Sigma}(X + 1))\) and a comodel \(C\) and \(s, t \in T_{\Sigma}(X)\):

\[t \leq s \iff \forall c, c' \in C : (t, c) \xrightarrow{*} (\ast, c') \implies (s, c) \xrightarrow{*} (c', c) \]

That is, \(s\) terminates whenever \(t\) does, with the same value.
Calculus for Computational Simulation

Equational Reasoning.

\[
(\mu) \frac{t \leq t}{t \leq t} \quad (\mu) \frac{E \vdash s = s' \quad s' \leq t'}{t \leq t'}
\]

Split

\[
(\mu) \frac{s.t \leq s.t' \mid s \in S}{t \leq t'} \quad (S \text{ reductive splitting})
\]

Unfolding.

\[
(\mu) \frac{s \leq t_{\xi}}{s \leq t} \quad (s \in T_{\Sigma}(\{\ast\})) \quad (\nu) \frac{s_{\xi} \leq t}{s \leq t} \quad (s \in T_{\Sigma}(X))
\]

Entailment. Inductive / Coinductive calculus

\[
E \vdash \leq = \nu R. \mu S.
\]

\[
\{s \leq t \mid s \leq t \text{ conc of } \mu\text{-rule with prems in } S\}
\]

\[
\{s \leq t \mid s \leq t \text{ conc of } \nu\text{-rule with prems in } R\}
\]
Soundness and Completeness

Assumptions.
- C compact comodel and E complete over C
- every $t \in T_\Sigma$ has reductive splitting
- splittings are full: every $c \in C$ is of the form $\langle s \rangle (c')$ for some $c' \in C$
- linear terms have normal forms

Soundness. We have $C \vDash s \leq t$ whenever $E \vdash s \leq t$
- follows from splittings being full and completeness of equational reasoning

Completeness. We have $E \vdash s \leq t$ whenever $C \vDash s \leq t$
- follows from reductiveness of splittings
- and compactness of C
Summary

Comodels for Turing machines and counter machines
- final comodels have complete equational axiomatisation
- proof uses reductive splittings

Computational Simulation for Turing and counter machines
- is sound and complete over final comodel
- proof uses reductive splittings
- compactness is crucial: finite unfolding on the right.
And thus the Turing Machine was born.