
Schulze Voting as Evidence Carrying
Computation

Dirk Pattinson1 and Mukesh Tiwari1

The Australian National University

Abstract. The correctness of vote counting in electronic election is one
of the main pillars that engenders trust in electronic elections. However,
the present state of the art in vote counting leaves much to be desired:
while some jurisdictions publish the source code of vote counting code,
others treat the code as commercial in confidence. None of the systems
in use today applies any formal verification. In this paper, we formally
specify the so-called Schulze method, a vote counting scheme that is
gaining popularity on the open source community. The cornerstone of
our formalisation is a (dependent, inductive) type that represents all
correct executions of the vote counting scheme. Every inhabitant of this
type not only gives a final result, but also all intermediate steps that
lead to this result, and can so be externally verified. As a consequence,
we do not even need trust the execution of the (verified) algorithm: the
correctness of a particular run of the vote counting code can be verified
on the basis of the evidence for correctness that is produced along with
determination of election winners.

1 Introduction

The Schulze Method [15] is a vote counting scheme that elects a single winner,
based on preferential votes. While no preferential voting scheme can guarantee all
desirable properties that one would like to impose due to Arrow’s theorem [2], the
Schulze method offers a good compromise, with a number of important properties
already established in Schulze’s original paper. A quantitative comparison of
voting methods [14] also shows that Schulze voting is better (in a game theoretic
sense) than other, more established, systems, and the Schulze Method is rapidly
gaining popularity in the open software community. The method itself rests on
the relative margins between two candidates, i.e. the number of voters that
prefer one candidate over another. The margin induces an ordering between
candidates, where a candidate c is more preferred than d, if more voters prefer c
over d than vice versa. One can construct simple examples (see e.g. [14]) where
this order does not have a maximal element (a so-called Condorcet Winner).
Schulze’s observation is that this ordering can be made transitive by considering
sequences of candidates (called paths). Given candidates c and d, a path between
c and d is a sequence of candidates p = (c, c1, . . . , cn, d) that joins c and d, and
the strength of a path is the minimal margin between adjacent nodes. This
induces the generalised margin between candidates c and d as the strength of

the strongest path that joins c and d. A candidate c then wins a Schulze count if
the generalised margin between c and any other candidate d is at least as large
as the generalised margin between d and c.

This paper presents a formal specification of the Schulze method, together
with the proof that winners can always be determined which we extract to obtain
a provably correct implementation of the Schulze method. The crucial aspect of
our formalisation is that the vote counting protocol itself is represented as a
dependent inductive type that represents all (correct) partial executions of the
protocol. A complete execution is can then be understood as a state of vote
counting where election winners have been determined. Our main theorem then
asserts that an inhabitant of this type exists, for all possible sets of incoming
ballots. Crucially, every such inhabitant contains enough information to (inde-
pendently) verify the correctness of the election result, and can be thought of as
a certificate for the count.

From a computational perspective, we view tallying not merely as a function
that delivers a result, but instead as a function that delivers a result, together
with evidence that allows us to verify correctness. In other words, we augment
verified correctness of an algorithm with the means to verify each particular
execution.

From the perspective of electronic voting, this means that we no longer need
to trust the hardware and software that was employed to obtain the election
result, as the generated certificate can be verified independently. In the literature
on electronic voting, this is known as verifiability and has been recognised as one
of the cornerstones for building trust in election outcomes [7], and is the only
answer to key questions such as the possibility of hardware malfunctions, or
indeed running the very software that has been claimed to count votes correctly.

The certificate that is produced by each run of our extracted Schulze vote
tallying algorithm consists of two parts. The first part details the individual
steps of constructing the margin function, based on the set of all ballots cast.
The second part presents evidence for the determination of winners, based on
generalised margins. For the construction of the margin function, every ballot
is processed in turn, with the margin between each pair of votes updated ac-
cordingly. The heart of our work lies in this second part of the certificate. To
demonstrate that candidate c is an election winner, we have to demonstrate that
the generalised margin between c and every other candidate d is at least as large
than the generalised margin between d and c. Given that the generalised margin
between two candidates c and d is determined in terms of paths c, c1, . . . , cn, d
that join c and d, we need to exhibit

– evidence for the existence of a path p from c to d
– evidence for the fact that no path q from d to c is stronger than p

where the strength of a path p = (c0, . . . , cn+1) is the minimum min{m(ci, ci+1) |
0 ≤ i ≤ n} of the margins between adjacent nodes. While evidently a path itself
is evidence for its existence, the non-existence of paths with certain properties
is more difficult to establish. Here, we use a coinductive approach. As existence
of a path with a given strength between two candidates can be easily phrased

2

as an inductive definition, the complement of this predicate arises as a greatest
fixpoint, or equivalently as a coinductively defined predicate (see e.g. [10]). This
allows us to witness the non-existence of paths by exhibiting co-closed sets.

Our formalisation takes place inside the Coq proof assistant [5] that we chose
mainly because its well-developed extraction mechanism and because it allows us
to represent the Schulze voting scheme very concisely as a dependent inductive
type. Interestingly, we make no use of Coq’s mechanism of defining coinductive
types [4]: as we are dealing with decidable predicates (formulated as boolean val-
ued functions) only, it is simpler to directly introduce co-closed sets and establish
their respective properties.

We take a propositions-as-types approach to synthesising a programme that
computes election winners, together with accompanying evidence. In other words,
our main theorem states that that winners (and certificates) can be computed
for any set of initial ballots. We then use Coq’s program extraction facility [12] to
generate Haskell code from which we can then generate an executable. We report
on experimental result and conclude with further work and a general reflection
on our method.

Related Work. The idea of requiring that computations provide not only results,
but also proofs attesting to the correctness of the computation is not new, and
has been put forward in [1] for computations in general, and in [16] in the
context of electronic voting. The general difficulty here is the precise nature
of certificates, as different computations require a different type of evidence,
and our conceptual contribution is to harness coinduction, more precisely co-
closed sets as evidence for membership in the complement of inductively defined
sets. Our approach is orthogonal to Necula’s proof carrying code, where every
executable (not every execution) is equipped with formal guarantees. Formal
specification and verification of vote counting schemes has been done e.g. in [3,
8] but none of the methods produce independently verifiable results. The idea
of formalising a voting protocol as a type has been put forward in [13] where a
variant of single transferable vote has been analysed. While the Schulze method
has been analysed e.g. from the point of manipulation [9], this paper appears to
be the first to present a formal specification (and a certificate-producing, verified
implementation) of the Schulze method in a theorem prover.

Coq Sources. All Coq sources and the benchmarks used in the preparation of
this paper are at http://users.cecs.anu.edu.au/~dpattinson/Sofware/.

2 Formal Specification of Schulze Voting

We begin with an informal description of Schulze voting. Schulze voting is pref-
erential in the sense that every voter gets to express their preference about can-
didates in the form of a rank ordered list. Here, we allow voters to be indifferent
about candidates but require voters to express preferences over all candidates.
This requirement can be relaxed and we can consider e.g. unranked candidates
as tied for the last position.

3

Given a set s of ballots, one constructs the margin function m : C ×C → Z.
Given two candidates c, d ∈ C, the margin of c over d is the number of voters
that prefer c over d, minus the number of voters that prefer d over c. In symbols

m(c, d) =]{b ∈ s | c >b d} −]{b ∈ s | d >b c}

where] denotes cardinality and <b is the strict ordering given by the ballot b ∈ s.
A (directed) path from candidate c to candidate d is a sequence c0, . . . , cn+1 of
candidates with c0 = c and cn+1 = d (n ≥ 0), and the strength of this path is
the minimum margin of adjacent nodes, i.e.

st(c0, . . . , cn+1) = min{m(ci, ci+1) | 0 ≤ i ≤ n}.

Note that the strength of a path may be negative. The Schulze method stipulates
that a candidate c ∈ C is a winner of the election with margin function m if,
for all other candidates d ∈ C, there exists a number k ∈ Z such that

– there is a path p from c to d with strength st(p) ≥ k
– all paths q from d to c have strength st(q) ≤ k.

Informally speaking, we can say that candidate c beats candidate d if there’s
a path p from c to d which stronger than any path from d to c. Using this
terminology, a candidate c is a winner if c cannot be beaten by any (other)
candidate.

Remark 1. There are multiple formulations of the Schulze method in the litera-
ture. Schulze’s original paper [15] only considers paths where adjacent nodes have
to be distinct, and [9] only considers simple paths, i.e. paths without repeated
nodes. Here, we consider all paths. It is easy to see that all three definitions are
equivalent, i.e. they produce the same set of winners.

Our (Coq) formalisation takes a finite and non-empty type of candidates as
given which we assume has decidable equality. For our purposes, the easiest way
of stipulating that a type be finite is to require existence of a list containing all
inhabitants of this type.

Parameter cand : Type.

Parameter cand_all : list cand.

Hypothesis cand_fin : forall c: cand, In c cand_all.

Hypothesis dec_cand : forall n m : cand, {n = m} + {n <> m}.

Hypothesis cand_inh : cand_all <> nil.

For the specification of winners of Schulze elections, we take the margin function
as given for the moment (and later construct it from the incoming ballots). In
Coq, this is conveniently expressed as a variable:

Variable marg : cand -> cand -> Z.

4

We formalise the notion of path and strength of a path by means of a single (but
ternary) inductive proposition that asserts the existence of a path of strength
≥ k between two candidates, for k ∈ Z.

Inductive Path (k: Z) : cand -> cand -> Prop :=

| unit c d : marg c d >= k -> Path k c d

| cons c d e : marg c d >= k -> Path k d e -> Path k c e.

Using these definitions, we obtain the following notion of winning (and dually,
losing) a Schulze election:

Definition wins_prop (c: cand) := forall d : cand, exists k : Z,

Path k c d /\ (forall l, Path l d c -> l <= k).

Definition loses_prop (c : cand) := exists k: Z, exists d: cand,

Path k d c /\ (forall l, Path l c d -> l < k).

We reflect the fact that the above are propositions in the name of the definitions,
in anticipation of type-level definitions of these notions later. The main reason
for having equivalent type-level versions of the above is that purely proposi-
tional information is discarded during program extraction, unlike the type-level
notions of winning and losing that represent evidence of the correctness of the
determination of winners.

That is, our goal is to not only compute winners and losers according to
the definition above, but also to provide independently verifiable evidence of the
correctness of our computation. The propositional definitions of winning and
losing above serve as a reference to calibrate their type level counterparts, and
we demonstrate the equivalence between propositional and type-level conditions
in the next section.

3 A Scrutiny Sheet for the Schulze Method

How can we know that, say, a candidate c in fact wins a Schulze election, and
that, say, d is not a winner? One way would be to simply re-run an independent
implementation of the method (usually hoping that results would be confirmed).
But what happens if results diverge?

One major aspect of this paper is that we can answer this question by not
only computing the set of winners, but in fact presenting evidence for the fact
that a particular candidate does or does not win. In the context of electronic vote
counting, this is known as a scrutiny sheet : a tabulation of all relevant data that
allows us to verify the election outcome. Again drawing on an already computed
margin function, to demonstrate that a candidate c wins, we need to exhibit an
integer k for all competitors d, together with

– evidence for the existence of a path from c to d with strength ≥ k
– evidence for the non-existence of a path from d to c that is stronger than k

5

The first item is straight forward, as a path itself is evidence for the existence
of a path, and the notion of path is inductively defined. For the second item, we
need to produce evidence of membership in the complement of an inductively
defined set.

Mathematically, given k ∈ Z and a margin function m : C × C → Z, the
pairs (c, d) ∈ C × C for which there exists a path of strength ≥ k that joins
both are precisely the elements of the least fixpoint LFP(Vk) of the monotone
operator Vk : Pow(C × C)→ Pow(C × C), defined by

Vk(R) = {(c, e) ∈ C | m(c, e) ≥ k or (m(c, d) ≥ k and (d, e) ∈ R for some d ∈ C)}

It is easy to see that this operator is indeed monotone, and that the least fixpoint
exists, e.g. using Kleene’s theorem [17]. To show that there is no path between
d and c of strength > k, we therefore need to establish that (d, c) /∈ LFP(Vk+1).

By duality between least and greatest fixpoints, we have that

(c, d) ∈ C × C \ LFP(Vk+1) ⇐⇒ (c, d) ∈ GFP(Wk+1)

where for arbitrary k, Wk : Pow(C × C)→ Pow(C × C) is the operator dual to
Vk, i.e.

Wk(R) = C × C \ (Vk(C × C \R))

and GFP(Wk) is the greatest fixpoint of Wk. As a consequence, to demonstrate
that there is no path of strength ≥ k between candidates d and c, we need to
demonstrate that (d, c) ∈ GFP(Wk+1). By the Knaster-Tarski fixpoint theorem
[18], this greatest fixpoint is the supremum of all Wk+1-coclosed sets, that is,
sets R ⊆ C × C for which R ⊆ Wk+1(R). That is, to demonstrate that (d, c) ∈
GFP(Wk+1), we need to exhibit a Wk+1-coclosed set R with (d, c) ∈ R. If we
unfold the definitions, we have

Wk(R) = {(c, e) ∈ C2 | m(c, e) < k and (m(c, d) < k or (d, c) ∈ R for all d ∈ C)}

so that given any fixpoint R of Wk and (c, e) ∈W , we know that (i) the margin
between c and e is < k so that there’s no path of length 1 between c and e, and
(ii) for any choice of midpoint d, either the margin between c and d is < k (so
that c, d, . . . cannot be the start of a path of strength ≥ k) or we don’t have a
path between d and e of strength ≥ k. We use the following terminology:

Definition 1. Let R ⊆ C × C be a subset and k ∈ Z. Then R is Wk-coclosed,
or simply k-coclosed, if R ⊆Wk(R).

Mathematically, the operator Wk acts on subsets of C × C that we think of as
predicates. In Coq, we formalise these predicates as boolean valued functions
and obtain the following definitions where we isolate the function marg lt (that
determines whether the margin between two candidates is less than a given
integer) for clarity:

6

Definition marg_lt (k : Z) (p : (cand * cand)) :=

Zlt_bool (marg (fst p) (snd p)) k.

Definition W (k : Z) (p: cand * cand -> bool) (x: cand * cand) :=

andb

(marg_lt k x)

(forallb (fun m => orb (marg_lt k (fst x, m)) (p (m, snd x))) cand_all).

In order to formulate type-level definitions, we need to promote the notion of
path from a Coq proposition to a proper type, and formulate the notion of
k-coclosed predicate.

Definition coclosed (k : Z) (f : (cand * cand) -> bool) :=

forall x, f x = true -> W k f x = true.

Inductive PathT (k: Z) : cand -> cand -> Type :=

| unitT : forall c d, marg c d >= k -> PathT k c d

| consT : forall c d e, marg c d >= k -> PathT k d e -> PathT k c e.

The only difference between type level paths (of type PathT) and (propositional)
paths defined earlier is the fact that the former are proper types, not propo-
sitions, and are therefore not erased during extraction. Given the above, we
have the following type-level definitions of winning (and dually, non-winning)
for Schulze counting:

Definition wins_type c := forall d : cand, existsT (k : Z),

((PathT k c d) * (existsT (f : (cand * cand) -> bool),

f (d, c) = true /\ coclosed (k + 1) f))%type.

Definition loses_type (c : cand) := existsT (k : Z) (d : cand),

((PathT k d c) * (existsT (f : (cand * cand) -> bool),

f (c, d) = true /\ coclosed k f))%type.

The main result of this section is that type level and propositional evidence for
winning (and dually, not winning) a Schulze election are in fact equivalent.

Lemma wins_type_prop : forall c, wins_type c -> wins_prop c.

Lemma wins_prop_type : forall c, wins_prop c -> wins_type c.

Note that the different nature of the two propositions doesn’t allow us to claim
an equivalence between both notions, as Coq defines biimplication only on propo-
sitions.

The proof of the first statement is completely straight forward, as the type
carries all the information needed to establish the propositional winning con-
dition. For the second statement above, we introduce an intermediate lemma

7

based on the iterated margin function Mk : C × C → Z. Intuitively, Mk(c, d) is
the strength of the strongest path between c and d of length ≤ k + 1. Formally,
M0(c, d) = m(c, d) and

Mi+1(c, d) = max{Mi(c, d),max{min{m(c, e),Mi(e, d) | e ∈ C}}}

for i ≥ 0. It is intuitively clear (and we establish this fact formally) that the
iterated margin function stabilises at the n-th iteration (where n is the number
of candidates), as paths with repeated nodes don’t contribute to maximising the
strength of a path. This proof loosely follows the evident pen-and-paper proof
given for example in [6] that is based on cutting out segments of paths between
repeated nodes and so reaches a fixed point.

Lemma iterated_marg_fp: forall (c d : cand) (n : nat),

M n c d <= M (length cand_all) c d.

That is, the generalised margin, i.e. the strength of the strongest (possibly infi-
nite) path between two candidates is effectively computable.

This allows us to relate the propositional winning conditions to the iterated
margin function and showing that a candidate c is winning implies that the
generalised margin between this candidate and any other candidate sd is at
least as large as the generalised margin between d and c.

Lemma wins_prop_iterated_marg (c : cand) : wins_prop c ->

forall d, M (length cand_all) d c <= M (length cand_all) c d.

This condition on iterated margins can in turn be to establish the type-level
winning condition, thus closing the loop to the type level winning condition.

Lemma iterated_marg_wins_type (c : cand) : (forall d,

M (length cand_all) d c <= M (length cand_all) c d) ->

wins_type c.

The crucial part of establishing the type-level winning conditions in the proof
of the lemma above is the construction of a co-closed set. First note that M

(length cand all) is precisely the generalised margin function. Writing g for
this function, we assume that g(c, d) ≥ g(d, c) for all candidates d, and given d,
we need to construct a k + 1-coclosed set S where k = g(c, d). One option is
to put S = {(x, y) | g(x, y) < k + 1}. As every i-coclosed set is also j-coclosed
for i ≤ j, the set S′ = {(x, y) | g(x, y) < g(d, c) + 1} is also k + 1-coclosed
and (in general) of smaller cardinality. We therefore witness the existence of a
k+1-coclosed set with S′ as this leads to certificates that are smaller in size and
therefore easier to check.

We note that the difference between the type-level and the propositional defi-
nition of winning is in fact more than a mere reformulation. As remarked before,
one difference is that purely propositional evidence is erased during program
extraction so that using just the propositional definitions, we would obtain a

8

determination of election winners, but no additional information that substan-
tiates this (and that can be verified independently). The second difference is
conceptual: it is easy to verify that a set is indeed coclosed as this just involves
a finite (and small) amount of data, whereas the fact that all paths between two
candidates don’t exceed a certain strength is impossible to ascertain, given that
there are infinitely many paths.

In summary, determining that a particular candidate wins an election based
on the wins type notion of winning, the extracted program will additionally
deliver, for all other candidates,

– an integer k and a path from the winning candidate to the other candidate
– a co-closed set that witnesses that no path of strength ≥ k exists that goes

the other way.

It is precisely this additional data (on top of merely declaring a set of election
winners) that allows for scrutiny of the process, as it provides an orthogonal
approach to verifying the correctness of the computation: both checking that
the given path has a certain strength, and that a set is indeed coclosed, is easy
to verify. We reflect more on this in Section 7, and present an example of a full
scrutiny sheet in the next section, when we join the type-level winning condition
with the construction of the margin function from the given ballots.

4 Schulze Voting as Inductive Type

Up to now, we have described the specification of Schulze voting relative to a
given margin function. We now describe the specification (and computation) of
the margin function given a profile (set) of ballots. Our formalisation describes
an individual count as a type with the interpretation that all inhabitants of this
type are correct executions of the vote counting algorithm. In the original paper
describing the Schulze method [15], a ballot is a linear preorder over the set of
candidates.

Rank all candidates
in order of preference

Lando Calrissian

Boba Fett

Mace Windu

Poe Dameron

Maz Kanata

1

3

2

2

4

In practice, ballots are implemented by
asking voters to put numerical preferences
against the names of candidates as repre-
sented by the image on the right. The most
natural representation of a ballot is therefore
a function b : C → N that assigns a natural
number (the preference) for each candidate,
and we recover a strict linear preorder <b on
candidates by setting c <b d if b(c) > b(d).

As preferences are usually numbered be-
ginning with 1, we interpret a preference of 0
as the voter failing to designate a preference
for a candidate as this allows us to also accom-
modate incomplete ballots. This is clearly a
design decision, and we could have formalised

9

ballots as functions b : C → 1 + N (with 1
being the unit type) but it would add little to
our analysis.

Definition ballot := cand -> nat.

The count of an individual election is then parameterised by the list of ballots
cast, and is represented as a dependent inductive type. More precisely, we have
a type State that represents either an intermediate stages of constructing the
margin function or the determination of the final election result:

Inductive State: Type :=

| partial: (list ballot * list ballot) -> (cand -> cand -> Z) -> State

| winners: (cand -> bool) -> State.

The interpretation of this type is that a state either consists of two lists of ballots
and a margin function, representing

– the set of ballots counted so far, and the set of invalid ballots seen so far
– the margin function constructed so far

or, to signify that winners have been determined, a boolean function that deter-
mines the set of winners.

The type that formalises correct counting of votes according to the Schulze
method is parameterised by the profile of ballots cast (that we formalise as a list),
and depends on the type State. That is to say, an inhabitant of the type Count

n, for n of type State, represents a correct execution of the voting protocol up
to reaching state n. This state generally represents intermediate stages of the
construction of the margin function, with the exception of the final step where
the election winners are being determined. The inductive type takes the following
shape:

Inductive Count (bs : list ballot) : State -> Type :=

| ax us m : us = bs -> (forall c d, m c d = 0) ->

Count bs (partial (us, []) m) (* zero margin *)

| cvalid u us m nm inbs : Count bs (partial (u :: us, inbs) m) ->

(forall c, (u c > 0)%nat) -> (* u is valid *)

(forall c d : cand,

((u c < u d) -> nm c d = m c d + 1) (* c preferred to d *) /\

((u c = u d) -> nm c d = m c d) (* c, d rank equal *) /\

((u c > u d) -> nm c d = m c d - 1))(* d preferred to c *) ->

Count bs (partial (us, inbs) nm)

| cinvalid u us m inbs : Count bs (partial (u :: us, inbs) m) ->

(exists c, (u c = 0)%nat) (* u is invalid *) ->

Count bs (partial (us, u :: inbs) m)

| fin m inbs w (d : (forall c, (wins_type m c) + (loses_type m c))):

Count bs (partial ([], inbs) m) (* no ballots left *) ->

(forall c, w c = true <-> (exists x, d c = inl x)) ->

10

(forall c, w c = false <-> (exists x, d c = inr x)) ->

Count bs (winners w).

The intuition here is simple: the first constructor, ax, initiates the construction of
the margin function, and we ensure that all ballots are uncounted, no ballot are
invalid (yet), and the margin function is constantly zero. The second constructor,
cvalid, updates the margin function according to a valid ballot (all candidates
have preferences marked against their name), and removes the ballot from the
list of uncounted ballots. The constructor cinvalid moves an invalid ballot
to the list of invalid ballots, and the last constructor fin applies only if the
margin function is completely constructed (no more uncounted ballots). In its
arguments, w: cand -> bool is the function that determines election winners,
and d is a function that delivers, for every candidate, type-level evidence of
winning or losing, consistent with w. Given this, we can conclude the count and
declare w to be the set of winners (or more precisely, those candidates for which
w evaluates to true).

Together with the equivalence of the propositional notions of winning or
losing a Schulze count with their type-level counterparts, every inhabitant of the
type Count b (winners w) then represents a correct count of ballots b leading
to the boolean predicate w: Cand -> bool that determines the winners of the
election with initial set b of ballots.

The crucial aspect of our formalisation of executions of Schulze counting is
that the transcript of the count is represented by a type that is not a propo-
sition. As a consequence, extraction delivers a program that produces the (set
of) election winner(s), together with the evidence recorded in the type to enable
independent verification.

5 All Schulze Election Have Winners

The main theorem, the proof of which we describe in this section, is that all
elections according to the Schulze method engender a boolean-valued function
w: Cand -> bool that determines precisely which candidates are winners of the
election, together with type-level evidence of this. Note that a Schulze election
can have more than one winner, the simplest (but not the only) example being
when no ballots at all have been cast. The theorem that we establish (and later
extract as a program) simply states that for every incoming set of ballots, there
is a boolean function that determines the election winners, together with an
inhabitant of the type Count that witnesses the correctness of the execution
of the count. In Coq, we use a type-level existential quantifier existsT where
existsT (x:A), P stands for Σx:AP.

Theorem schulze_winners: forall (bs : list ballot),

existsT (f : cand -> bool) (p : Count bs (winners f)), True.

The first step in the proof is elementary: We show that for any given list of
ballots we can reach a state of the count where there are no more uncounted
ballots, i.e. the margin function has been fully constructed.

11

The second step relies on the iterated margin function already discussed in
Section 3. As Mn(c, d) (for n being the number of candidates) is the strength of
the strongest path between c and d, we construct a boolean function w such that
w(c) = true if and only if Mn(c, d) ≥Mn(d, c) for all d ∈ C. We then construct
the type-level evidence required in the constructor fin using the function (or
proposition) iterated marg wins type described earlier.

Coq’s extraction mechanism then allows us to turn this into a provably cor-
rect program. When extracting, all purely propositional information is erased
and given a set of incoming ballots, the ensuing program produces an inhabitant
of the (extracted) type Count that records the construction of the margin func-
tion, together with (type level) evidence of correctness of the determination of
winners. That is, we see the individual steps of the construction of the margin
function (one step per ballot) and once all ballots are exhausted, the determi-
nation of winners, together with paths and co-closed sets. The following is the
transcript of a Schulze election where we have added wrappers to pretty-print
the information content. This is the (full) scrutiny sheet promised in Section 3.

V: [A3 B1 C2 D4,..], I: [], M: [AB:0 AC:0 AD:0 BC:0 BD:0 CD:0]

--

V: [A1 B0 C4 D3,..], I: [], M: [AB:-1 AC:-1 AD:1 BC:1 BD:1 CD:1]

--

V: [A3 B1 C2 D4,..], I: [A1 B0 C4 D3], M: [AB:-1 AC:-1 AD:1 BC:1 BD:1 CD:1]

. . .

--

V: [A1 B3 C2 D4], I: [A1 B0 C4 D3], M: [AB:2 AC:2 AD:8 BC:5 BD:8 CD:8]

--

V: [], I: [A1 B0 C4 D3], M: [AB:3 AC:3 AD:9 BC:4 BD:9 CD:9]

winning: A

for B: path A --> B of strenght 3, 4-coclosed set:

[(B,A),(C,A),(C,B),(D,A),(D,B),(D,C)]

for C: path A --> C of strenght 3, 4-coclosed set:

[(B,A),(C,A),(C,B),(D,A),(D,B),(D,C)]

for D: path A --> D of strenght 9, 10-coclosed set:

[(D,A),(D,B),(D,C)]

losing: B

exists A: path A --> B of strength 3, 3-coclosed set:

[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C),(D,A),(D,B),(D,C),(D,D)]

losing: C

exists A: path A --> C of strength 3, 3-coclosed set:

[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C),(D,A),(D,B),(D,C),(D,D)]

losing: D

exists A: path A --> D of strength 9, 9-coclosed set:

[(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),(D,A),(D,B),

(D,C),(D,D)]

Here, we assume four candidates, A, B, C and D and a ballot of the form A3

B2 C4 D1 signifies that D is the most preferred candidate (the first preference),
followed by B (second preference), A and C. In every line, we only display the first

12

uncounted ballot (condensing the remainder of the ballots to an ellipsis), followed
by votes that we have deemed to be invalid. We display the partially constructed
margin function on the right. Note that the margin function satisfies m(x, y) =
−m(y, x) and m(x, x) = 0 so that the margins displayed allow us to reconstruct
the entire margin function. In the construction of the margin function, we begin
with the constant zero function, and going from one line to the next, the new
margin function arises by updating according to the first ballot. This corresponds
to the constructor cvalid and cinvalid being applied recursively: we see an
invalid ballot being set aside in the step from the second to the third line, all
other ballots are valid. Once the margin function is fully constructed (there are
no more uncounted ballots), we display the evidence provided in the constructor
fin: we present evidence of winning (losing) for all winning (losing) candidates.
In order to actually verify the computed result, a third party observer would
have to

1. Check the correctness of the individual steps of computing the margin func-
tion

2. For winners, verify that the claimed paths exist with the claimed strength,
and check that the claimed sets are indeed coclosed.

Contrary to re-running a different implementation on the same ballots, our
scrutiny sheet provides an orthogonal perspective on the data and how it was
used to determine the election result.

6 Experimental Results

Coq’s built in extraction mechanism extracts into both Haskell and Ocaml, and
allows to extract Coq types into built in (or user defined) types in the target
programming language.

We have evaluated our approach by extracting the entire Coq development
into Haskell, with all types defined by Coq extracted as is, i.e. in particular
using Coq’s unary representation of natural numbers. The results are displayed
in Figure 1a using a logarithmic scale.
Profiling the executable reveals that a large portion of time is being spent com-
paring natural numbers (that Coq represents in unary) for size. In Figure 1b, we
have extracted Coq’s natural number type to the (native) Haskell type Int of
integers, and the comparison function to the Haskell native comparison operator
(<=). The use of native integers has resulted in a nearly tenfold speedup as seen
in the figure on the right.

While extraction of Coq data types into their Haskell counterparts potentially
jeopardises correctness of the code, the fact that we produce a transcript of
the code (a scrutiny sheet) that can (and should!) be checked for correctness
externally alleviates the risk of erroneous results that can be produced that way.

Both graphs have been produced assuming four candidates and (the same)
randomly generated ballots on an Intel i7 2.6 GHz Linux desktop computer
with 8GB of ram. We have not analysed the memory consumption for either
benchmark as it appeared to be minimal.

13

(a) Direct Extraction (b) Extraction using Haskell Integers

Fig. 1: Experimental Results

7 Discussion

Our paper takes the approach that computation of winners in electronic voting
(and in situations where correctness is key in general) should not only produce
an end result, but an end result, together with a verifiable justification of the
correctness of the computed result. In this paper, we have exemplified this ap-
proach by providing a provably correct, and evidence-producing implementation
of vote counting according to the Schulze method.

While the Schulze method is not difficult to implement, and indeed there are
many freely available implementations, comparing the results between different
implementations can give some level of assurance for correctness only in case
the results agree. If there is a discrepancy, a certificate for the correctness of the
count allows to adjudicate between different implementations, as the certificate
can be checked with relatively little computational effort.

From the perspective of computational complexity, checking a transcript for
correctness is of the same complexity as computing the set of winners, as our
certificates are cubic in size, so that certificate checking is not less complex than
the actual computation.

However, publishing an independently verifiable certificate that attests the
individual steps of the computation helps to increase trust in the computed elec-
tion outcome. Typically, the use of technology in elections increases the amount
of trust that we need to place both in technological artefacts, and in people.
It raises questions that range from fundamental aspects, such as proper testing
and/or verification of the software, to very practical questions, e.g. whether the
correct version of the software has been run. On the contrast, publishing a cer-
tificate of the count dramatically reduces the amount of trust that we need to
place into both people and technology: the ability to publish a verifiable justi-
fication of the correctness of the count allows a large number of individuals to
scrutinise the count. While only moderate programming skills are required to
check the validity of a certificate (the transcript of the count), even individuals

14

without any programming background can at least spot-check the transcript:
for the construction of the margin function, everything that is needed is to show
that the respective margins change according to the counted ballot. For the cor-
rectness of determination of winners, it is easy to verify existence of paths of a
given strength, and also whether certain sets are co-closed – even by hand! This
dramatically increases the class of people that can scrutinise the correctness of
the count, and so helps to establish a trust basis that is much wider as no trust
in election officials and software artefacts is required.

Technically, we do not implement an algorithm that counts votes according
to the Schulze method. Instead, we give a specification of the Schulze winning
conditions (wins prop in Section 2) in terms of an already computed margin
function that (we hope) can immediately be seen to be correct, and then show
that those winning conditions are equivalent to the existence of inhabitants of
types that carry verifiable evidence (wins type). We then join the (type level)
winning conditions with an inductive type that details the construction of the
margin function in an inductive type. Via propositions-as-types, a provably cor-
rect vote counting function is then equivalent the proposition that there exists
an inhabitant of Count for every set of ballots. Coq’s extraction mechanism then
allows us to extract a Haskell program that produces election winners, together
with verifiable certificates.

8 Conclusion and Further Work

This paper has presented a formalisation of the Schulze method for counting
preferential ballots. Our formalisation focuses on the correct execution of the
method. One appealing aspect of the Schulze method is that it meets lots of
desirable criteria of vote counting systems. We leave the verification of these for
future work.

In our formalisation of vote counting, there is a one-to-one correspondence
between correct executions of the protocol, and inhabitants of a (dependent)
inductive type. In our Coq development, we have used the propositions-as-types
approach, and have constructed an existence proof, from which we have gener-
ated Haskell code. An alternative approach would be to implement a function
that directly constructs inhabitants, and obtain a detailed performance compar-
ison between both approaches. While we anticipate that a direct implementation
brings performance benefits, our experimental evaluation shows that even with
very little optimisation (Section 6), extracting vote counting program from an
existence proof allows us to count a relatively large number of ballots already.

Finally, we remark that extracting Coq developments into a programming
language itself is a non-verified process which could still introduce errors in our
code. The most promising way to alleviate this is to independently implement
(and verify) a certificate verifier, possibly in a language such as CakeML [11]
that is guaranteed to be correct to the machine level.

15

References

1. K. Arkoudas and M. C. Rinard. Deductive runtime certification. Electr. Notes
Theor. Comput. Sci., 113:45–63, 2005.

2. K. J. Arrow. A difficulty in the concept of social welfare. Journal of Political
Economy, 58(4):328–346, 1950.

3. B. Beckert, R. Goré, C. Schürmann, T. Bormer, and J. Wang. Verifying voting
schemes. J. Inf. Sec. Appl., 19(2):115–129, 2014.

4. Y. Bertot. Coinduction in coq. CoRR, abs/cs/0603119, 2006.
5. Y. Bertot, P. Castéran, G. Huet, and C. Paulin-Mohring. Interactive theorem prov-

ing and program development : Coq’Art : the calculus of inductive constructions.
Texts in theoretical computer science. Springer, 2004.

6. B. A. Carr‘e. An algebra for network routing problems. IMA Journal of Applied
Mathematics, 7(3):273, 1971.

7. D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security &
Privacy, 2(1):38–47, 2004.

8. D. Cochran and J. Kiniry. Votail: A formally specified and verified ballot counting
system for irish PR-STV elections. In Pre-proceedings of the 1st International
Conference on Formal Verification of Object-Oriented Software (FoVeOOS), 2010.

9. L. A. Hemaspaandra, R. Lavaee, and C. Menton. Schulze and ranked-pairs voting
are fixed-parameter tractable to bribe, manipulate, and control. Ann. Math. Artif.
Intell., 77(3-4):191–223, 2016.

10. D. Kozen and A. Silva. Practical coinduction. Mathematical Structures in Com-
puter Science, pages 1–21, February 2016.

11. R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml: a verified imple-
mentation of ML. In S. Jagannathan and P. Sewell, editors, Proc. POPL 2014,
pages 179–192. ACM, 2014.

12. P. Letouzey. Extraction in coq: An overview. In A. Beckmann, C. Dimitracopoulos,
and B. Löwe, editors, Proc. CiE 2008, volume 5028 of Lecture Notes in Computer
Science, pages 359–369. Springer, 2008.

13. D. Pattinson and C. Schürmann. Vote counting as mathematical proof. In
B. Pfahringer and J. Renz, editors, Proc. AI 2015, volume 9457 of Lecture Notes
in Computer Science, pages 464–475. Springer, 2015.

14. R. L. Rivest and E. Shen. An optimal single-winner preferential voting system
based on game theory. 2010.

15. M. Schulze. A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method. Social Choice and Welfare,
36(2):267–303, 2011.

16. C. Schürmann. Electronic elections: Trust through engineering. In Proc. RE-VOTE
2009, pages 38–46. IEEE Computer Society, 2009.

17. V. Stoltenberg-Hansen, I. Lindström, and E. Griffor. Mathematical Theory of Do-
mains. Number 22 in Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1994.

18. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

16

