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Abstract. This paper shows, that three di�erent types of logics for coalgebras are institutions.
The logics di�er regarding the presentation of their syntax. In the �rst framework, abstract
behavioural logic, one has a syntax-free representation of behavioural properties. We then turn
to coalgebraic logic, the syntax of which is given as an initial algebra. The last framework, which
we consider, is coalgebraic modal logic, the syntax of which is concretely given.

1 Introduction

This paper tries to contribute to the question, whether di�erent types of logics, interpreted over
coalgebras, carry the structure of an institution. Institutions, originally introduced by Goguen
and Burstall, capture interplay between the transformation of systems and corresponding
translations of logics. An institution therefore consists of two parts: A class of systems, and a
class of logics, which can be used to describe properties of the systems under considerations.
Both are linked by (semantical) transformation of systems and corresponding (syntactical)
translation of the logics. If the systems, together with their logics, form an institution, we
have the possibility to derive properties of a transformed system from properties of the original
system, which makes the concept of institutions valuable in the stepwise process of building
systems.

The class of systems we are dealing with in this paper, are coalgebras for an endofunctor
on the category of sets. Coalgebras provide a uniform view on a large class of state-based
systems, (see [20] for examples). In order to reason about coalgebraically modelled systems,
modal logic has proven an appropriate tool ([10,15,8,19,7]).

Both the class of systems (coalgebras) and the corresponding class of (modal) logics are
well understood � as long as we do not migrate between di�erent types of systems (that
is, between coalgebras for di�erent functors) and leave the logics �xed. It is the purpose of
this paper to add transformations between models and translation between the logics to the
picture.

After recalling some basic terminology, we �rst address the question, whether coinstitutions
are the appropriate framework in which one should consider logics for coalgebras and their
translations. We can rightfully say, that this is just a matter of taste: Every institution over a
category Sig of signatures corresponds to a coinstitution over Sigop, and vice versa (Proposition
1). In this light, we choose to work with coinstitution, which we feel are easier to work with
in the context of coalgebras, mainly because we do not need to work with the dual category
of signature morphisms.

Before dealing with translations on the logical side, we �rst study the transformation of
models on semantical side. We argue that � working with coalgebras for endofunctors � natural
transformations between functors provide us with a natural notion of signature morphism.
This notion of signature morphism is then used to treat three di�erent types of logics for
coalgebras: abstract behavioural logic (the presentation of which is syntax free), coalgebraic



logic (the syntax of which is abstract), and coalgebraic modal logic, where the syntax is
concretely given.

We show, how to de�ne translations between the logics for each of the three di�erent types.
It turns out that the institution property of abstract behavioural logic and coalgebraic modal
logic is relatively easy to establish; in the case of coalgebraic logic, one needs a small extension
of the syntax.

2 Preliminaries and Notation

In the whole paper, T denotes an endofunctor on the category Set of sets and functions.

2.1 Coalgebras

The de�nition of coalgebras (and their morphisms) dualises that of algebras for endofunctors:

De�nition 1 (Coalgebras, Morphisms). A T -coalgebra is a pair (C, γ) where C is a set

and γ : C → TC is a function. A morphism between two T -coalgebras (C, γ) and (D, δ) is a

function f : C → D, which satis�es Tf ◦ γ = δ ◦ f .
Coalgebras, together with their morphisms, form a category, which we denote by CoAlg(T ).

We think of coalgebras for an endofunctor as a general framework for state based systems,
and we think of T as a signature for the T -coalgebras. Instantiating the framework with speci�c
endofunctors (di�erent signatures), we obtain di�erent types of systems:

Example 1. (i) Suppose T1X = L × X for a set L of labels. Then every state c ∈ C of a
T -coalgebra (C, γ) can be seen as producing an in�nite trace of labels l ∈ L:

c = c0
l1 // c1

l2 // c2 // . . .

where (lk, ck) = γ(ck−1) for k > 0.
(ii) For T2X = (O×X)I , the T2-coalgebras are Mealy Automata: Given (C, γ) ∈ CoAlg(T2),

a state c ∈ C and an input i ∈ I, the transition function γ provides us with a new state
π2 ◦ γ(c)(i) and an output o = π1 ◦ γ(c)(i) ∈ O.

(iii) Suppose TX = P(X)L, where P is the covariant powerset functor. Then T -coalgebras
are in 1-1 correspondence with labelled transition systems: Given (C, γ) ∈ CoAlg(T ), put
c

l−→ c′ i� c′ ∈ γ(c)(l).

One of the appealing features of the general theory of coalgebras is, that T -coalgebras
come with a meaningful built-in notion of behavioural equivalence:

De�nition 2. Suppose (C, γ) and (D, δ) ∈ CoAlg(T ). Then a pair of states (c, d) ∈ C ×D is

behaviourally equivalent, if there is (E, ε) ∈ CoAlg(T ) and a pair of morphisms f : (C, γ) →
(E, ε) and g : (D, δ) → (E, ε) such that f(c) = g(d).

This de�nition goes back to [11]; Rutten [20] has studied bisimulation, as de�ned by Aczel
and Mendler [1] as fundamental notion of equivalence. Both notions agree if the signature
functor preserves weak pullbacks; for functors not having this property, behavioural equiva-
lence seems to be the more fundamental notion of equivalence (see [11] for discussion). In the
examples, behavioural equivalence can be expressed as follows:



Example 2. (i) Let T1X = L×X and suppose (C, γ) and (D, δ) ∈ CoAlg(T1) Then (c, d) ∈
C ×D are behaviourally equivalent, if they produce the same trace of labels l ∈ L.

(ii) In the case T2X(O×X)I , every state c ∈ C of a T2-coalgebra (C, γ) de�nes a function
fc : Iω → Oω (given i = (in)n∈ω, let c = c0 and (on, cn+1) = γ(cn)(in). Put fc(i) = (on)n∈ω).
We obtain that two states are behaviourally equivalent, if the associated functions are equal.

(iii) For T3X = P(X)L and (C, γ), (D, δ) ∈ CoAlg(T3), behavioural equivalence coincides
with bisimulation, as used by Park [16] and Milner [14].

The signi�cance of behavioural equivalence is that it identi�es precisely those states, which
cannot be distinguished from the outside. The logics, which we consider later, will all be
invariant under behavioural equivalence.

2.2 Institutions

Institutions [21,6] have been successfully used to describe the interplay between translation of
logics and transformations of models along morphisms of signatures:

De�nition 3. Suppose Sig is a category (of signatures). An institution is a triple (Mod,Sen,Sig)
where

• Mod : Sig → Catop associates categories of models to signatures

• Sen : Sig → Set associates a set of sentences (formulas) to every signature, and

• |= is a family (|=S) of relations |=S⊆ Mod(S)×Sen(S), indexed by the signatures S ∈ Sig

such that the satisfaction condition

Mod(σ)(M) |= φ ⇐⇒ M |= Sen(σ)(φ)

is satis�es for all σ : S → S′, M ∈ Mod(S′) and φ ∈ Sen(S).

It is the purpose of the paper to establish the satisfaction condition for di�erent types of
logics, interpreted over coalgebras. For other examples of institutions, the reader is referred
to the original paper by Goguen and Burstall [6]. Dually, we have

De�nition 4. A coinstitution over a category Sig of signatures consists of

• A functor Mod : Sig → Cat
• A functor Sen : Sig → Setop

• A family |=S of relations |=S⊆ Mod(S)× Sen(S), indexed by the objects S of Sig,

such that the dual of the satisfaction condition

Mod(σ)(M) |= φ ⇐⇒ M |= Sen(σ)(φ)

is satis�ed for all σ : S → S′, M ∈ Mod(S) and φ ∈ Sen(S′).

Note that, in a coinstitution, the translation Mod is covariant, whereas the translation Sen
of sentences is contravariant. However, when dualising institutions, we do not obtain a new
concept:

Proposition 1. Suppose Sig is a category. Then there is a 1-1 correspondence between insti-

tutions over Sig and coinstitutions over Sigop.



Proof. Suppose (Mod,Set,Sig) is an institution over Sig. Then (Modop,Senop, |=) is a coinsti-
tution over Sigop; clearly this construction can be reversed.

In the light of this proposition, the concept of coinstitution is strictly speaking unnecessary.
However, for the purposes of the present paper, we prefer to work with coinstitutions. This
allows us to take a subcategory S ⊆ [T, T ] of the category of endofunctors (instead of Sop) as
a category of signatures.

3 Translation of Models

One of the goals of this paper is to show that three di�erent conceptions of modal logic for
coalgebras give rise to an institution. All three logics will be interpreted over coalgebras for
endofunctors on sets. Since we think of the underlying endofunctor T as a signature for the
corresponding T -coalgebras, signature morphisms need to mediate between endofunctors on
Set. The obvious notion for signature morphisms are therefore natural transformations (see
[13]). Thus, our category Sig of signatures will have endofunctors as objects and natural trans-
formations as morphisms, that is, we take Sig ⊆ [Set,Set] as a (possibly non-full) subcategory
of the functor category [Set,Set]. As far as signatures are concerned, this setup is common
to all three types of logics, which we show to carry the structure of an institution. This sec-
tion describes the model theoretic part, that is, the Mod functor, which translates models
along signature morphisms. The translation between models described here is the same for all
three conceptions of logics for coalgebras, which are later shown to carry the structure of an
institution.

Before we start to study the translation of models (coalgebras) along signature morphisms,
we �rst try to convince the reader that natural transformations are a indeed a natural choice
for signature morphisms.

The key observation is the following:

Lemma 1. Suppose T, S : Set → Set and σ : S → T is a natural transformation. Then

σ† : CoAlg(S) → CoAlg(T ), de�ned by σ†(C, γ) = (C, σ(C) ◦ γ), is functorial.

Of course, this observation is not speci�c to the category of sets. We illustrate the use of
natural transformations using the running examples introduced above.

Example 3. We consider natural transformations between the signatures discussed in Example
2.

(i) Every T1-coalgebra (C, γ) can be viewed as Mealy automaton (that is, as T2-coalgebra)
if we simply ignore the input: put γ′(c)(i) = γ(c) to obtain a transition function γ′ : C →
(C×L)I = T2(C). On the level of natural transformations between the corresponding signature
functors, this translation is accomplished by σ : T1 → T2, with σ(X) : L × X → (L × X)I

de�ned by σ(x)(i) = x.
(ii) We can also view every Mealy automaton as a labelled transition system. Given a

set I of inputs and O of outputs of the Mealy automaton, we put L = O × I. Given
(C, γ) ∈ CoAlg(T2), we obtain a labelled transition system (i.e. a T3-coalgebra) by letting
γ′(c) = {(i, o, c′) | γ(c)(i) = (o, c′)}. Using natural transformations, the situation is as follows:
Consider σ : T2 → T3, given by σ(X) : (O × X)I → P(X)O×I where σ1(X)(f)(o, i) = {x ∈
X | f(i) = (o, x)}. We obtain (C, γ′) = σ†(C, γ).



Note that we can also treat coalgebras for endofunctors, which depend on an additional
parameter in our framework:

Example 4. Suppose T : C × Set → Set, where C is an arbitrary category of parameters.
In order to emphasise the fact that we think of the �rst component as parameter, we write
TA(X) for T (A,X). Given a morphism f : A → B ∈ C, we obtain a natural transformation
σ(X) = T (f, idX). Identifying C ∈ C with the endofunctor TC , we can thus treat C as a
category of signatures for coalgebras.

4 Abstract Behavioural Logic

This shows, that abstract behavioural logic can be endowed with the structure of an institution.
Abstract behavioural logic was studied in [10,11], where the term �logic� is understood in a
very general sense:

De�nition 5. A logic for coalgebras is a set L (the language of the logic), together with a

family |= of relations, indexed by the T -coalgebras, such that |=(C,γ)⊆ C × L.
We call a logic behavioural,

d |=(D,δ) φ ⇐⇒ c |=(C,γ) φ

for all formulas φ ∈ L and all behaviourally equivalent states (c, d) ∈ C × D. As usual,

(C, γ) |= φ i� ∀c ∈ C.c |=(C,γ) φ, and [[φ]](C,γ) = {c ∈ C | c |=(C,γ) φ.

The starting point of the investigations conducted in [10,11] is the representation of for-
mulas of a behavioural logic as subsets of the �nal T -coalgebra (assuming it exists). This
representation can be formulated as follows:

Proposition 2. Suppose (Z, ζ) ∈ CoAlg(T ) is �nal and L is a behavioural logic for T -
coalgebras. Then

[[φ]](C,γ) =!−1([[φ]](Z,ζ))

for all (C, γ) ∈ CoAlg(T ) and all φ ∈ L, where ! : C → Z is the morphism given by �nality.

Proof. Immediate from the de�nition of behavioural equivalence.

Thus, every formula φ of a behavioural logic can be semantically represented as a subset
of the �nal T -coalgebra. Thus, if (Z, ζ) is �nal in CoAlg(T ), we can view P(Z) as behavioural
logic with c |=(C,γ) φ if !(c) ∈ φ, where φ ∈ P(Z) and ! : C → Z is the �nal morphism:

De�nition 6. Suppose (Z, ζ) is �nal in CoAlg(T ). The abstract behavioural logic AT = P(Z)
has subsets of the �nal T -coalgebra as formulas. Satisfaction is given by c |=(C,γ) φ if !(c) ∈ φ.

It is immediately obvious from the de�nition of behavioural logic, that abstract behavioural
logic is indeed behavioural. We now add signature morphisms to the picture. So suppose σ :
S → T is a natural transformation. If (ZS , ζS) is �nal in CoAlg(S), then σ†(ZS , ζS) ∈ CoAlg(T ),
thus, assuming (ZT , ζT ) is �nal in CoAlg(T ), we have a unique morphism ! : ZS → ZT , the
inverse image of which induces a translation AT → AS between the abstract logics associated
to T and S.



Proposition 3. Suppose σ : S → T , and S, T allow for �nal coalgebras (ZS , ζS) and (ZT , ζT ),
respectively. Then

(C, γ) |= σ∗(φ) ⇐⇒ σ†(C, γ) |= φ

for all (C, γ) ∈ CoAlg(S) and all φ ∈ AT , where σ∗ =!−1 for the unique morphism ! :
σ†(ZS , ζS) → (ZT , ζT ), given by �nality.

Proof. Suppose (C, γ) ∈ CoAlg(S) and consider the diagram

C

γ

��

u // ZS

ζS

��

v // ZT

ζT

��

SC
Su //

σ(C)

��

SZS

σ(ZS)
��

TC
Tu // TZS

Tv // TZT

where u is the morphism given by �nality of (ZS , ζS) and v is the morphism given by �nality
of (ZT , ζT ). Suppose φ ∈ AT and c ∈ C. Then c |=(C,γ) σ

∗(φ) i� u(c) ∈ v−1(φ) i� u ◦ v(c) ∈ φ
i� c |=σ†(C,γ) φ, since v ◦ u : σ†(C, γ) → (ZT , ζT ) is equal to the unique morphism given by
�nality of (Z, ζT ).

If we take some care in setting up our category of signatures Sig as to ensure that ev-
ery endofunctor T ∈ Sig admits a �nal coalgebra (otherwise abstract behavioural logic isn't
meaningful), we obtain:

Theorem 1. Suppose Sig ⊆ [Set,Set] is a subcategory such that every T ∈ Sig admits a �nal

T -coalgebra. Let Sen(T ) = A(T ) and Sen(σ) = σ†. Then (Sig,Mod,Sen, |=), with |= as in

De�nition 6, is a coinstitution.

This theorem shows, that behavioural logics are an institution, if we replace the concrete
syntax by a semantical abstraction. We now turn to coalgebraic logic, the language of which
is given inductively as initial algebra.

5 Coalgebraic Logic

Coalgebraic Logic, due to Moss [15], is a modal logic, interpreted over coalgebras. The main
feature of coalgebraic logic is the insight, that � on the level of T -coalgebras for an arbitrary
endofunctor T � modal operators can be expressed using functor application. It turns out
that coalgebraic logic, as originally de�ned by Moss [15] is not an institution: one cannot
translate formulas along non-injective signature morphisms. However, adapting the de�nition
slightly, we obtain a logic, which is an institution and into which coalgebraic logic can be
conservatively embedded. In the original paper, the language of coalgebraic logic comprises
a (in general proper) class of formulas, and is constructed by extending the endofunctor T
to classes (assuming that T is standard and set-based). Here, we give an alternative (but
equivalent) presentation of coalgebraic logic, which dispenses with the use of classes at the
expense of assuming the existence of an inaccessible cardinal. Instead of assuming T to be
standard and set-based, we assume that T is κ-accessible, for some inaccessible cardinal κ. In a
nutshell, the accessibility condition assures that the image of T on a set is already determined



by the image of T on sets of cardinality less than κ; this is a technical requirement wich ensures
the existence of initial algebras, which constitute a part of the syntax of coalgebraic logic. We
make this choice simply because we think that accessibility of an endofunctor is � for most
readers � a more familiar concept than being standard and set based.

The second condition we have to require is, that T extends to an endofunctor T̂ on the
category Rel of sets and relations (we often write A→ B for a relation R ⊆ A × B). This
extension is given by T̂X = TX for sets X and T̂R = Tπ2 ◦ (Tπ1)−1, for a relation R : A→ B
with associated projections π1 : R→ A and π2 : R→ B (this is as in [15]). It is well known (the
original reference is [4]), that functoriality of T̂ is equivalent to T preserving weak pullbacks.
We now introduce syntax and semantics of coalgebraic logic, where we assume throughout
the section, that T is κ-accessible for some inaccessible κ and preserves weak pullbacks and
denote the bounded powerset functor by Pκ, that is, Pκ(X) = {x ⊆ X | card(x) < κ}.

De�nition 7. Let LT = Pκ +Pκ ◦ T . The syntax of coalgebraic logic is the carrier LT of the

initial LT -algebra (LT , ιT ).
If (C, γ) ∈ CoAlg(T ), put dC : PκP(C) → P(C), dC(x) = ∩x and eC : PκTP(C) → P(C),

eC(x) = {c ∈ C | ∃y ∈ x.(γ(c), y) ∈ T̂ (εC)}, where εC ⊆ C×P(C) is the membership relation.

The semantics [[·]](C,γ) : LT → P(C) of LT with respect to (C, γ) is the unique function

with [dC , eC ] ◦LT ([[·]](C,γ)) = [[·]](C,γ) ◦ ιT . If c ∈ [[φ]](C,γ), we also write c |=(C,γ) φ; we drop the

subscript (C, γ) whenever there is no danger of confusion; also (C, γ) |= φ i� c |=(C,γ) φ for

all c ∈ C.

Note L contains tt =
∧
∅ and is closed under conjunctions of size < κ.

In the above de�nition, the auxiliary familiy of functions dC is used to interpret conjunc-
tions, and e takes care of the modalities. Note that the initial LT -algebra (LT , ιT ) always exists
since LT is κ-accessible, see [2]. If in1 : PκLT → PκLT +PκTLT and in2 : TLT → PκLT +TLT

denote the coproduct injections, we write
∧

T = ιT ◦ in1 and ∇T = ι ◦ in2. The language of
coalgebraic logic can thus be described as the least set such that

Φ ⊆ LT , card(Φ) < κ =⇒
∧
T

Φ ∈ LT

φ ⊆ TLT =⇒ ∇Tφ ∈ LT

This presentation also highlights the (only) di�erence compared to Moss' original de�ni-
tion, where one does not take subsets of TLT in the second clause, but elements of TLT .

If (C, γ) ∈ CoAlg(T ), we then obtain

c |=
∧
T

Φ i� c |= φ for all φ ∈ Φ

c |= ∇TΦ i�(γ(c), φ) ∈ T̂ (|=)for some φ ∈ Φ

for subsets Φ ⊆ LT of cardinality less than κ and φ ∈ TLT .
We give a brief example of the nature of coalgebraic logic; for an in-depth discussion and

more example see Moss' original article [15].

Example 5. Let TX = L × X, where L is a set of labels; we drop the subscript �T � on L
and ∇. As already mentioned, tt ∈ L and obviously [[tt]] = C for all (C, γ) ∈ CoAlg(T ). If
l ∈ L, we have {(l, tt)} ⊆ TL, hence ∇{(l, tt)} ∈ L. Unravelling the de�nitions, one obtains
c |= ∇{(l, tt)} if π1 ◦ γ(c) = l. In the same manner, one has ∇{(m,∇{(l, tt)})} ∈ L for m ∈ L



with c |= ∇{(m,∇{(l, tt)})} i� the stream associated to c (cf. Example 1) begins with m and
is followed by l.

Note that � if we restrict ourselves to singleton sets (as in the original paper [15]) as
arguments of ∇, we cannot express the fact that a stream starts with l0 or l1 logically. This
is the reason why coalgebraic logic, in its original formulation, fails to be a coinstitution: We
cannot translate formulas along a signature morphism, which identi�es two labels l0 and l1.

The generalisation of the original de�nition of coalgebraic logic does not allow us to dis-
tinguish bisimilar states. In other words, we have:

Proposition 4. LT is behavioural.

Proof. It su�ces to show that f(c) |=(D,δ) φ i� c |=(C,γ) φ whenever φ ∈ LT , f : (C, γ) →
(D, δ) ∈ CoAlg(T ) and c ∈ C. This follows from the fact that f−1 : P(D) → P(C) is a
morphism of the LT -algebras (P(D), [dD, eD]) and (P(C), [dC , eC ]), where dD, eD, dC and eC
are as in De�nition 7.

To see that f−1 is a morphism of algebras, it su�ces to show that

PκTP(D)
PκT (f−1)//

eD

��

PκTP(C)

eC

��
P(D)

f−1
// P(D)

commutes. For c ∈ C and x ∈ PκTPD, we have
c ∈ eC ◦ PκT (f−1)(x)

i� ∃y ∈ x.(Tf ◦ γ(c), y) ∈ T̂ (∈D)

i� ∃y ∈ x.(δ ◦ f(c), y) ∈ T̂ (∈D)

i� c ∈ f−1 ◦ eD(x),

which shows the claim.

We now turn to show that coalgebraic logic forms an institution. Here, a little care is
needed when setting up the category of signatures and the category of models: Recall that we
have required T to be κ-accessible for some inaccessible κ. To show the satisfaction condition
(and to de�ne the appropriate translations), we need to restrict the cardinality of the models
to < κ and require that T restricts to the full subcategory of sets, which are of cardinality
less than κ. Working with classes, this would be unnecessary � we would have to require the
dual condition that T can be continuously extended to classes.

De�nition 8. A κ-accessible endofunctor is below κ if |TX| < κ whenever |X| < κ.

Most κ-accessible functors are indeed below κ. The prime example of a κ-accessible functor,
which is not below κ is the constant functor with value κ. The following lemma gives a
characterisation of functors below κ, which just depends on the value of the functor at 1.

Lemma 2. Suppose T is κ-accessible. Then T is below κ if |T1| < κ.

Proof. If |X| < κ, then the diagram ({x} ↪→ X | x ∈ X) is κ-�ltered. The claim follows from
κ being inaccessible and from the construction of κ-�ltered colimits (see [3]).



In order establish the satisfaction condition, we additionally have to require that the nat-
ural transformation σ is compatible with the extensions Ŝ and T̂ to relations. That is, we
require that G(σ) : Ŝ → T̂ is natural, where G(σ)(X) = G(σ(X)) : ŜX→ T̂X is de�ned as
the graph of σ(X), for X a set. In this case, we call σ relational.

Many natural transformations can be shown to be relational using the following criterion:

Lemma 3. A natural transformation σ : S → T is relational, if every naturality square,

SA

Sf
��

σ(A) // TA

Tf
��

SB
σ(B)

// TB

where f : A→ B, is a weak pullback.

Proof. Suppose A,B are sets and R : A→ B is a relation; we need to show that

SA
G(σ(A))//

Ŝ(R)
��

TA

T̂ (R)
��

SB
G(σ(B))

// TB

commutes in Rel.
First suppose that (x, y) ∈ G(σ(B))◦Ŝ(R). Thus there is some x1 ∈ Ŝ(R) with Sπ1(x1) = x

and σ(B)◦Sπ2(x1) = y. Put y1 = σ(R)(x1). Then Tπ1(y1) = σ(A)(x) and Tπ2(y1) = y, hence
(x, y) ∈ T̂ (R) ◦G(σ(A)).

Now let (x, y) ∈ T̂ (R) ◦G(σ(A)). As above, there is y1 ∈ TR with Tπ1(y1) = σ(A)(x) and
Tπ2(y1) = y. Since

SR

Sπ1

��

σ(R) // TR

Tπ1

��
SA

σ(A)
// TA

is a weak pullback, there is x1 ∈ SR with σ(R)(x1) = y1 and Sπ1(x1) = x. Using naturality
of σ, we obtain Sπ1(x1) = x and σ(B) ◦ Sπ2(x1) = y, so (x, y) ∈ σ(B) ◦ SR.

Using the fact that products, coproducts, the powerset functor, identity functor and con-
stant functors preserve weak pullbacks, we have the following criterion, which can be applied
to a large class of signatures, obtained via parameterised functors (cf. Example 4).

Corollary 1. Suppose T : Set × Set → Set is built using products, coproducts, the powerset

functor, identity functor and constant functors only. Then, given f : A → B, the natural

transformation T (f, id) : TA → TB is relational.

Given a (not necessary relational) transformation σ : S → T , we can de�ne a translation
σ∗ : LT → LS as follows: Since LT supports the structure ιT of an initial T -algebra, every
LT -algebra structure t : LTLS → LS de�nes a unique mapping σ∗ : LT → LS with σ∗ ◦ ιT =
t ◦LT (σ∗). So we have to �nd an appropriate LT -algebra structure t on LS . We let t = [t1, t2]
where t1 : PκLS → LS is intersection and t2 : Pκ ◦ TLS → LS is given as t2 = ∇T ◦ σ(LS)−1.
Note that σ(LS)−1 maps Pκ(TLS) → Pκ(SLS).



Proposition 5. Suppose σ : S → T is relational and (C, γ) ∈ CoAlg(S). Then

(C, γ) |= σ∗(φ) ⇐⇒ σ†(C, γ) |= φ

for all φ ∈ LT , provided |C| < κ.

Proof. Let d = dC and e = eC be as in De�nition 7 and suppose d†(x) = ∩x and e†(x) = {c ∈
C | ∃y ∈ x.(σ(C) ◦ γ(c), y) ∈ T̂ (∈C)}. Then, by de�nition of [[·]]T , we have [[·]]T ◦ [

∧
T ,∇T ] =

[d†, e†] ◦ Pκ[[·]]T + PκT [[·]]T . Consider the following diagram:

LTLT

[
V

T ,∇T ]

��

LT σ∗ // LTLS

id+σ(LS)−1

��

LT [[·]]S// LTP(C)

id+σ(PC)−1

��
LSLS

[
V

S ,∇S ]

��

LS [[·]]S// LSP(C)

[d,e]
��

LT
σ∗ // LS

[[·]]S // P(C)

The left hand square commutes by de�nition of σ∗ and the lower right hand square by de�nition
of [[·]]S . We show that

(i) [d, e] ◦ (id + σ(PC)−1) = [d†, e†]
(ii) The top right corner commutes.

Both claims then entail the satisfaction condition as stated.
Ad 1: Since σ is relational, we have T̂ (∈C) ◦G(σ(C)) = G(σ(PC)) ◦ Ŝ(∈C). Now let c ∈ C

and x ∈ PκTP(C). We have

c ∈ e†(x)
i� ∃y ∈ x.(γ(c), y) ∈ G(σ(PC)) ◦ S(∈C)

i� ∃z ∈ σ(PC)−1(x).(γ(c), z) ∈ Ŝ(∈C)

i� c ∈ e ◦ σ(PC)−1(x).

Ad 2: If R is a relation, we denote the opposite relation by Rop. Then, for a function f ,
we have G(Tf)op = T̂ ((Gf)op), and similarly for S. Also note that T̂ (G[[·]]ops ) ◦G(σ(PC)) =
G(σ(LS) ◦ Ŝ(G[[·]]opS ) since σ is relational. Having said that, we obtain for φ ∈ PκTLS and
c ∈ SPC:

c ∈ PκS[[·]]S ◦ σ(LS)−1(φ)

i� ∃ψ ∈ φ.(c, ψ) ∈ G(σ(LS)) ◦ Ŝ(G[[·]]opS )

i� ∃ψ ∈ φ.(c, ψ) ∈ T̂ (G[[·]]opS ) ◦G(σ(PC))

i� c ∈ σ(PC)−1 ◦ PκT [[·]]S(φ),

that is, the satisfaction condition holds.

Taking some care when choosing signatures and models, coalgebraic logic is a coinstitution
(Modκ(T ) is the full subcategory of T -coalgebras with carrier < κ):

Theorem 2. Suppose Sig ⊆ [Set,Set] is a subcategory such that



• Each T ∈ Sig is below κ
• Each σ : S → T ∈ Sig is relational.

Then (Sig,Modκ,Sen, |=), with Sen(T ) = LT and Sen(σ) = σ∗, is a coinstitution.

6 Coalgebraic Modal Logic

We have seen in the previous sections, that abstract behavioural logic and coalgebraic logic
are coinstitutions. The formulation of abstract modal logic is completely syntax-free; the
language of coalgebraic modal logic is abstract in that it is given as initial algebra. We now
investigate coalgebraic modal logic, the language of which is concretely given as propositional
logic, enriched with modal operators. Coalgebraic modal logic is based on the observation, that
predicate liftings, which we now introduce, generalise modal operators from Kripke models to
coalgebras for arbitrary signature functors.

Predicate liftings were �rst considered by Jacobs and Hermida [9] in the context of coinduc-
tion principles and later by Röÿiger [18] and Jacobs [8] in the context of modal logic. There, as
well as in the related paper [18], predicate liftings appear as syntactically de�ned entities, and
naturality is a derived property. The notion of predicate lifting used in the present exposition
is more general, and takes naturality as the de�ning property.

De�nition 9. A predicate lifting for T is a natural transformation λ : 2 → 2 ◦ T , where

2 : Set → Setop denotes the contravariant powerset functor.

The next example shows, that predicate liftings do not only capture modal operators, but can
also be used to interpret atomic propositions.

Example 6. Suppose TX = P(X) × P(A). Then every T -coalgebra (C, γ) de�nes a Kripke
model K(C, γ) = (C,R, V ) over the set A of atomic propositions: the accessibility relation is
given by (c, c′) ∈ R i� c′ ∈ π1 ◦ γ(c) and for a ∈ A we have V (a) = {c ∈ C | a ∈ π2 ◦ γ(c)}.

Now, for a set C, consider the operation λ(C) : P(C) → P(TC) given by λ(C)(c) =
{(c′, a) ∈ TC | c′ ⊆ c}. It is easy to see that λ de�nes a predicate lifting for T . Now suppose
(C, γ) ∈ CoAlg(T ) and c ⊆ C, which we think of as the interpretation of a modal formula
φ. Under the correspondence outlined above, we have γ−1 ◦ λ(C)(c) = {c ∈ C | ∀c′.(c, c′) ∈
R =⇒ c′ ∈ c}, corresponding to the interpretation of the formula 2φ.

For the case of atomic propositions, consider the constant lifting, de�ned by α(C)(c) =
{(c′, a) ∈ TC | a ∈ a}. Again, an easy calculation shows that α is a predicate lifting.
Identifying T -coalgebras with Kripke models via the correspondence above, we obtain for
(C, γ) ∈ CoAlg(T ) and an arbitrary subset c ⊆ C that γ−1 ◦ α(c) = V (a), that is, the set of
states which validate the proposition a.

This leads us to study propositional logic, enriched with predicate liftings, as a logic for
coalgebras.

De�nition 10. Suppose T : Set → Set and Λ is a set of predicate liftings for T . The language
L(ΛT ) of coalgebraic modal logic associated with T and Λ is the least set according to the

grammar

φ ::= ff | φ→ ψ | [λ]φ (λ ∈ Λ).



Given (C, γ) ∈ CoAlg(T ), the semantics [[φ]](C,γ) = [[φ]] of formulas φ ∈ L(Λ) is given by:

[[ff]] = ∅
[[φ→ ψ]] = (C \ [[φ]]) ∪ [[ψ]]

[[[λ]φ]] = γ−1 ◦ λ(C)([[φ]]).

As usual, we write c |=(C,γ) φ (and drop the subscript if there is no danger of confusion), if

c ∈ [[φ]](C,γ). As usual, we write (C, γ) |= φ if c |=(C,γ) φ for all c ∈ C.

An easy induction on the structure of formulas shows, that coalgebraic modal logic cannot
distinguish between states, which are behaviourally equivalent.

Lemma 4. Coalgebraic modal logic is behavioural.

Proof. By induction on the structure of formulas, one shows that [[φ]](C,γ) = f−1([[φ]](D,δ))
for φ ∈ L(Λ) and a morphism of coalgebras f : (C, γ) → (D, δ). The claim follows from the
de�nition of behavioural equivalence.

We now investigate the e�ect of signature morphisms on formulas. The key observation is
the following:

Lemma 5. Suppose σ : S → T is natural and λ is a predicate lifting for T . Then σ−1 ◦ λ is

a predicate lifting for S.

The proof is a straightforward calculation, and therefore omitted. That is, a signature
morphism σ : S → T translates the modal operators associated with T to modal operators for
S. This de�nes an inductive translation between languages for S to languages for T :

De�nition 11. Suppose σ : S → T and suppose that ΛT , ΛS are sets of predicate liftings

for T and S, respectively. Let σ−1(Λ) = {σ−1 ◦ λ | λ ∈ Λ}. If ΛS ⊆ σ−1(ΛT ), we de�ne

σ∗ : L(ΛS) → L(σ−1(ΛT )) by

σ∗(ff) = ff
σ∗(φ ∧ ψ) = σ∗(φ) ∧ σ∗(φ)

σ∗([λ]φ) = [σ−1 ◦ λ]φ

Using this translation, we have the following property, which immediately entails the sat-
isfaction condition:

Lemma 6. Suppose σ : S → T and ΛT , ΛS are sets of predicate liftings for T and S, respec-
tively, with σ−1(λT ) ⊆ ΛS. Then

[[σ∗(φ)]](C,γ) = [[φ]]σ†(C,γ)

for all (C, γ) ∈ CoAlg(S) and all φ ∈ L(ΛT ).

Proof. We proceed by induction on the structure of formulas and do the only interesting case
φ = [λ]ψ; by induction hypothesis we may assume that [[σ∗ψ]](C,γ) = [[ψ]]σ†(C,γ). We obtain

[[σ∗([λ]φ)]](C,γ) = γ−1 ◦ σ−1 ◦ λ(C)([[σ∗(ψ)]](C,γ))

= (γ†)−1 ◦ λ(C)([[ψ]]σ†(C,γ))

= [[[λ]ψ]]σ†(C,γ),

which �nishes the proof.



Again, we have to pay some attention when setting up the category of signatures in order
to obtain an institution.

Theorem 3. Suppose Sig ⊆ [Set,Set] is a subcategory, and

• ΛT is a set of predicate liftings for all T ∈ Sig, and
• σ−1(ΛT ) ⊆ ΛS for all σ : S → T ∈ Sig.

Then (Sig,Mod,Sen, |=) is an institution, where Sen(T ) = L(ΛT ) for T ∈ Sig and Sen(σ) = σ∗

for σ : S → T ∈ Sig.

7 Conclusions and Related Work

We have addressed the question whether logics for coalgebras can be translated along signature
morphisms, as to form an institution. The answer was �in general yes, but one has to take a
little care when setting up the framework.�

It is well known, that algebras form institutions with respect to di�erent kinds of logics.
Therefore, one might be lead to expect that coalgebras and their logics congregate in some
kind of coinstitution. This is true to the same extent as coalgebras and their logics form an
institution, since there is a one-to-one correspondence between institutions over a category S
and coinstitutions over Sop (Proposition 1).

Hence, instead of showing that coalgebras and their logics form an institution, we can
equivalently show that they are coinstitutions. We prefer the latter, since we feel more com-
fortable with a category S ⊆ [T, T ] of signatures than with its opposite; but this is clearly just
a matter of taste.

We then showed that the dual of the satisfaction condition holds for three di�erent types
of logics for coalgebras: Abstract Behavioural Logic, Coalgebraic Logic and Coalgebraic Modal
Logic. The framework of abstract behavioural logic is based on the observation, that formulas
of a behavioural logic can be represented as subsets of the �nal coalgebra, if the latter exists.
This leads to a translation not of formulas, but of the associated representations, resulting in
an institution (Theorem 1). For the second type of logic, Moss' coalgebraic logic, the syntax
needed to be modi�ed slightly to obtain an institution. We have showed that this modi�cation
does not increase the expressive power of the logic (Proposition 4) and gives rise to an insti-
tution (Theorem 2). The third framework which we have studied is coalgebraic modal logic,
which � in contrast to the ones mentioned before � comes with a concrete syntax, given by a
set of predicate liftings for the endofunctor under consideration. The key observation here is,
that predicate liftings translate along signature morphisms (Lemma 5), thus giving rise to an
inductively de�ned translation between logics for di�erent signature functors. This translation
is well-behaved, witnessed by the fact that coalgebraic modal logic also forms an institution
(Theorem 3).

The question whether logics for coalgebras form institutions was also taken up in [5,17].
In [5], the satisfaction condition was established for an inductively de�ned class of functors,
so-called �Kripke polynomial functors�, on a category of sorted sets. In contrast, our approach
is purely semantical and can be seen to subsume the one-sorted case, treated in [5]. In [17], the
satisfaction condition was only established for the case of coalgebraic modal logic. A purely
semantical study about the relationship between categories of coalgebras for parameterised
endofunctors was already carried out in [12].
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