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Proess aluli and assoiated formal logis have been studied to deal withproblems of the �rst kind, whereas oordination languages have been provensuessful for integrating di�erent omputing platforms and languages.The present paper studies a alulus whih allows to address both issues in auniform framework: we investigate a oordination model for mobile systems,whih expliitely allows to model the hierarhial struture of network loa-tions. We study the syntati, logial and algebrai theory of the alulus andobtain a perfet math between the orresponding equivalenes. This shows,that our framework allows to add mobility to software omponents in a trans-parent way.On the side of proess aluli, the ambient alulus [16℄ was the �rst frameworkwhih diretly allowed to represent the hierarhial struture of loations. Thisalulus has been extended in many ways and diretions to aommodate dif-ferent omputational mehanism; we mention seure ambients [24℄, where theommuniation is synhronous, boxed ambients [10℄, whih adopts a di�erentommuniation sheme (parents ommuniate with hildren), whih is similarto the sheme employed by the Seal alulus [44℄.On a programming and more pratial level, oordination languages [32℄ havebeen used to provide the glue needed to build distributed appliations from aset of stand alone omponents. Several suh languages have been implementedand are being used in real-world appliations [23,3℄. On a foundational level,the language KLAIM [29℄ has been investigated as language where loalitiesare �rst lass itizens, and an be manipulated by a KLAIM programme.The ommon feature found in all oordination approahes of distributed om-puting is the separation of onerns between the distributed aspets and theomputation whih are arried out at the individual nodes.In this paper, we present and study a framework, whih allows for diret mod-elling of hierarhially strutured loations while providing a basi separationof onerns between the dynami and topologial aspets of omputations inthe style of oordination models. We onsider the hierarhial struture of lo-ations to be an essential ingredient in any approah to mobile omputation:the Internet provides the glue between di�erent sites, whih themselves aredivided into a hierarhial olletion of subnets, eah of whih with their ownadministrative poliy.From a oordination point of view, this is the main novelty of our approah:apart from standard oordination priniples, we assume that loalities havea hierarhial struture: Our basi model provides the glue between onur-rent omputations, eah of whih performed in distint loations, whih anommuniate and atively hange the topologial struture.In more detail, we onsider loations, where eah loation has a name, a on-2



trolling proess and a (possibly empty) set of sub-loations. We abstrat fromthe onrete realisation of the ontrolling proesses by not assuming a par-tiular alulus or language, and instead assume the ontrolling proesses tobe given in form of a labelled transition system. The proesses interat withtheir environment via a set of designated labels, whih allow them to hangethe topologial struture of the loations to whih they are attahed.The hierarhial struture of loations is similar in spirit to the ambient al-ulus; in ontrast to other approahes we aim at a lear separation betweenproesses and on�gurations: proesses show behaviour, whereas the on�g-urations provide the topologial struture. The separation between proessesand loations is also present in KLAIM [29℄, with the main di�erene thatloations in KLAIM are not nested.In view of appliations of mobility to programming tehnology, this seemsmost realisti: keeping the mobility primitives separate from the programminglanguages whih are using them allows for muh greater re-use and inreasesportability of ode. The introdution of this additional abstration layer asprovides a programming framework for mobile appliations. Existing frame-works typially implement this idea. Our onept of loation is very similarto that of a plae in Mole [4℄ and to Jade's ontainers [6,5℄. The assumptionswhih lead to our partiular model are guided by the oordination approahto distributed systems, whih we extend by postulating that loations have ahierarhial struture. We brie�y disuss our postulates below.Assumption 1 Every omputation takes plae in a uniquely determined lo-ation.This assumption in partiular fores a two-sorted approah: We need to dis-tinguish between elements whih relate to the spatial struture and those,whih drive the omputation proess. Sine our primary interest is the studyof mobile omputation, we would like to be as independent as possible fromthe onrete realisation of proesses, and therefore make:Assumption 2 The distributed part of the alulus is independent of the un-derlying programming language or proess alulus.However, a omputation needs some means to hange the distributed andspatial struture. That is, we need a lean mehanism, through whih thedistributed struture an be manipulated:Assumption 3 Proesses modify the distributed struture of the omputationthrough interfaes only.Finally, in order to model hierarhially strutured administrative domains, orsub-networks with di�erent administrative or seurity poliies, we postulate3



that loations are strutured; this is the main novelty of our approah, whihis not present in other oordination approahes to mobile systems.Assumption 4 Loations are hierarhially strutured, that is, eah loationhas a �nite (possibly empty) set of sub-loations.Our alulus is modelled after these assumptions. Regarding independene ofthe underlying programming language, we assume that the proesses, whihontrol the omputations, already ome with a (�xed) operational semantis,in terms of a labelled transition system; this allows us to realise interfaesas a partiular set of distinguished labels. As already mentioned before, theseparation between proesses and loations is taken are of by using a twosorted approah. In partiular, this enables us to work with strong proessequivalenes only, sine assume that omputation steps that do not a�et thetopologial struture are already taken are of on the level of proesses.The main tehnial ontribution of the paper is the study of the algebrai andlogial properties of the basi alulus, and its extension with loal names andmultiple names. We introdue the notion of spatial bisimulation and give analgebrai and a logial haraterisation of the indued ongruene. Our mainresult here is, that if one abstrats from the onrete realisation of the om-putations, we obtain a perfet math between strutural ongruene, logialequivalene and spatial ongruene. Methodologially, we want to advoatethe separation between the onepts �mobility� and �omputation� on a foun-dational basis; we take our results as an indiation that our framework trans-parently allows to inorporate omponent mobility. Tehnially, we use losureproperties to de�ne bisimulations and bisimulation ongruenes. Our equiv-alenes aount for the spatial struture of omputations, and we omparethe algebrai, logial and syntatial theory of our alulus. Both in the basialulus and its extensions, we disuss whih observations allow to apturespatial bisimulation ongruene: In the basi alulus, we need to observe thetransitions of the proesses ontrolling the omponent movement. Extendingthe alulus with loal names, we have to add name revelation as an observa-tion while a alulus with multiple names requires to observe behaviour aftername hanges.Struture of the paper: we introdue the basi alulus, that is, the aluluswithout loal names, in Setion 1. The algebrai theory of he alulus is in-vestigated in Setion 2 and Setion 3, and Setion 4 transfers these results toa logial setting. We then extend the alulus with loal names (Setion 5).We disuss one more extension, the possibility for a loation to have multiplenames, in Setion 6. Finally, Setion 7 ompares our approah to other alulifound in the literature. 4



1 Basi Sail: The Basi CalulusThis setion introdues BasiSail, our testbed for studying mobile omponents.In order to ensure independene from the underlying programming language(f. Assumption 2), BasiSail onsists of two layers. The lower layer (whih weassume as given) represents the programming language, whih is used on theomponent level. The upper level represents the distributed struture, whihis manipulated through programs (residing on the lower level) by means ofpre-de�ned interfaes. Tehnially, we assume that the underlying program-ming language omes with a labelled transition system semantis, whih ma-nipulates the distributed struture (on the upper level) by means of a set ofdistinguished labels.This is similar to the semantis of the oordination language MANIFOLD[8℄; the main di�erene is that our ontrolling proesses already ome with alabelled transition system semantis, whih allows us to onentrate on thedistributed struture. Our basi setup is as follows:Notation Unless stated otherwise, we �x a set N of names and the set L =
{in , out , open }×N of labels and a transition system (P,−→), where ∅ 6= Pis a set (of proesses) and −→⊆ P×L×P. We assume that (P,−→) is image�nite, that is, for every (P, l) ∈ P × L, the set {P ′ | P

l
−→ P ′} is �nite.We all two proesses P,Q proess bisimilar, if they are bisimilar as elementsof the labelled transition system (P,−→).We write inn for the pair (in , n) ∈ L and similarly for out , open and allthe elements of L basi labels. The set P is the set of basi proesses.The prototypial example of transition systems, whih an be used to instan-tiate our framework, are of ourse proess aluli. Note that we onsider onlytransitions with mobility primitives as labels, that is, we assume that internaltransitions are already aounted for in the semantis of proesses. One suhproess alulus, whih we use in our example, is the following:Example 1 Take P to be given as the least set aording to the followinggrammar:

P ∋ P,Q ::= 0 | P ‖ Q | α.P |!Pwhere α ∈ L ranges over the basi labels. The transition relation −→ is gen-erated by the following rules
α.P

α
−→ P

P
α

−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
,modulo strutural ongruene ≡, given by the axioms P ‖ Q ≡ Q ‖ P , P ‖5



0 ≡ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R and !P ≡ P ‖!P . For onveniene, weoften omit a trailing inert proess and write α for α.0.Intuitively, α.P is a proess whih an perform an α ation and ontinue as
P ; the term P ‖ Q represents the proesses P and Q running onurrentlyand !P represents a ountable number of opies of P .Although we have inluded the repliation operator in the ore alulus above,it is still image �nite, sine we onsider proesses only up to strutural on-gruene. Note that we use this onrete syntax for proesses just in order toillustrate our approah; the general theory is independent of the syntatialpresentation and just assumes that proesses form a set and ome with atransition system over the set L of labels.Given suh a transition system (P,−→), the distributed struture (whih isour primary interest) is built on top of (P,−→) as follows:De�nition 2 The set C of basi on�gurations is the least set aording tothe grammar

C ∋ A,B ::= 0 | n〈P 〉[A] | A,Bwhere P ∈ P is a proess and n ∈ N is a name. We onsider on�gurationsup to strutural equivalene ≡, given by the equations
A,B ≡ B,A A, 0 ≡ A A, (B,C) ≡ (A,B), CThe on�guration building operator �,� is alled spatial omposition, and werefer to 〈P 〉[ · ] as tree onstrution.In the above, 0 is the empty on�guration, n〈P 〉[A] is a on�guration withname n, whih is ontrolled by the proess P and has the subon�guration

A. Finally, A,B are two on�gurations, whih exeute onurrently. The nextde�nition lays down the formal semantis of our alulus, whih is given interms of the redution semantis −→ of the underlying proess alulus:De�nition 3 The operational semantis of BasiSail is the relation given bythe reation rules
P

inn
−→ P ′

m〈P 〉[A],n〈Q〉[B] =⇒ n〈Q〉[m〈P ′〉[A],B]

P
outn
−→ P ′

n〈Q〉[m〈P 〉[A],B] =⇒ m〈P ′〉[A],n〈Q〉[B]

P
openn
−→ P ′

m〈P 〉[A], n〈Q〉[B] =⇒ m〈P ′〉[A], B6



together with the ongruene rules
A =⇒ A′

A,B =⇒ A′, B

A =⇒ A′

n〈P 〉[A] =⇒ n〈P 〉[A′]

A ≡ A′ A′ =⇒ B′ B′ ≡ B

A =⇒ B.The relation =⇒ is alled spatial redution.The last rule aptures that we do not distinguish between struturally ongru-ent on�gurations. In the examples, we often omit the empty on�guration,and write n〈P 〉[] instead of n〈P 〉[0]. Using the above de�nition, we an studyphenomena, whih arise in a distributed setting, without making a ommit-ment to any kind of underlying language. In partiular, we do not have to takeinternal ations of proesses into aount; these are assumed to be inorpo-rated into the redution relation −→ on the level of proesses.We annot expet to be able to embed the full ambient alulus [16℄ intoour setting, sine we have to distinguish between the omputational and thedistributed omponents, whereas the ambient alulus follows an untyped ap-proah. However, we an nevertheless treat many examples:Example 4 We use the set of basi proesses from Example 1.(1) An agent, whih has the apability to enter and exit its home loation totransport lients inside an be modelled as follows: Put
agent = a〈P 〉[] client = c〈Q〉[] home = h〈0〉[agent]where P =!(outh.inh.0) and Q = in a.out a.0. In the on�guration

home, client, we have the following hain of redutions (where P ′ = inh.0 ‖
P and Q′ = out a.0):

home, client

=⇒ h〈0〉[], a〈P ′〉[], c〈Q〉[]

=⇒ h〈0〉[], a〈P ′〉[c〈Q′〉[]]

=⇒ h〈0〉[a〈P 〉[c〈Q′〉[]]

=⇒ h〈0〉[a〈P 〉[], c〈0〉[]].This sequene of redutions shows a guarded form of entry into h: Thelient has to enter the mediating agent a, whih then transports it into
h, where the lient then exits. Note that in the basi alulus, c ouldenter h diretly, if c's ontrolling proess were di�erent. This an be madeimpossible if one adds loal names, as we will see later.(2) We model an agent, whih repeatedly visits two network nodes, as follows:

agent ≡ a〈P 〉[]with P =!(inn1.outn1.0) ‖!(inn2.outn2.0). The ativity of a one it is7



at either n1 or n2 is not modelled (but imagine a heks, whether a nodehas been orrupted or is otherwise non-funtional). In the presene of twonodes n1 and n2, we have the (spatial) redutions, where we write N1 and
N2 for the ontrolling proesses of n1 and n2:

n1〈N1〉[], n2〈N2〉[], a〈P 〉[]

=⇒n1〈N1〉[a〈P1〉[]], n2〈N2〉[]

=⇒n1〈N1〉[], n2〈N2〉[], a〈P 〉[]

=⇒n1〈N1〉[], n2〈N2〉[a〈P2〉[]]

=⇒ . . .In the above, we have abbreviated P1 = outn1.0 ‖ P and P2 = out n2.0 ‖
P . Here, the program P ontrolling a does not fore a to visit n1 and n2in any partiular order, and a ould for example hoose to enter and leave
n1 ontinuously, without ever setting foot into n2.2 Spatial Bisimulation and Spatial CongrueneThis setion introdues spatial bisimulation and spatial ongruene, the basiequivalenes we will be onerned with for the remainder of the paper. Theequivalenes are introdued for the basi alulus. We disuss an extension ofthe equivalenes to a alulus with loal names in Setion 5 and to a aluluswhih allows multiple names in Setion 6.We introdue spatial bisimulation as binary relation on on�gurations, subjetto a set of losure properties. We take �losure property� as formal term, themeaning of whih is given as follows:Terminology Suppose R ⊆ A × A is a binary relation on a set A and S ⊆

A×· · ·×A is n+1-ary. We say that R is losed under S, if, whenever (a, b) ∈ Rand (a, a1, . . . , an) ∈ S, there are b1, . . . , bn ∈ A with (b, b1, . . . , bn) ∈ S and
(ai, bi) ∈ R for i = 1, . . . , n.If R is losed under S, it is often helpful to think of R as an equivalene onproesses and of S as a redution relation. In this setting, R is losed under
S if, whenever a and b are equivalent (i.e. (a, b) ∈ R) and a redues to a′(i.e. (a, a′) ∈ S), there is some b′ suh that a′ and b′ are again equivalent (i.e.
(a′, b′) ∈ R) and b redues to b′ (that is, (b, b′) ∈ S). So if R is losed under
S, we think of R as being some bisimulation relation and S the orrespondingnotion of redution.De�nition 5 (Spatial Bisimulation, Spatial Congruene) Consider thefollowing relations on C: 8



(1) Subtree redution ↓⊆ C × C, given by C ↓ D if ∃E ∈ C, n ∈ N , P ∈
P.C ≡ n〈P 〉[D], E.(2) Forest redution �⊆ C × C × C, given by C � (D,E) if C ≡ D,E.(3) Top-level names @n ⊆ C, given by C ∈ @n if ∃D,E ∈ C, P ∈ P.C ≡
n〈P 〉[D], E.(4) The inert relation 0 ⊆ C, where C ∈ 0 if C ≡ 0.We take spatial bisimulation ≃ (resp. spatial ongruene ∼=) to be the largestsymmetri (resp. ongruene) relation, whih is losed under spatial redutionand the relation (1 - 4).Note that forest redution is the ternary relation assoiated to spatial om-position in the sense of [31,35℄. For spatial ongruene, we just require theongruene property w.r.t. the onstrution of on�gurations, that is we re-quire(1) A0

∼= A1, B0
∼= B1 =⇒ A0, A1

∼= B0, B1 and(2) A ∼= B, n ∈ N , P ∈ P =⇒ n〈P 〉[A] ∼= n〈P 〉[B].This not only justi�es the name spatial ongruene � it furthermore allowsus to study the evolution of the tree struture of (a set of) mobile proesseswithout referene to the underlying proess alulus. Note that the spatialongruene is not the largest ongruene ontained in the spatial bisimulation(this relation is not a bisimulation in general). Our notion of spatial ongruenefollows the approah of dynami ongruene[28℄ to ensure that the resultingequivalene retains the bisimulation property.Remark Our de�nition of spatial ongruene is given in two steps: �rst wede�ne spatial bisimulation, and then onsider the largest ongruene, whih isa spatial bisimulation at the same time. The original paper [28℄ suggests thefollowing di�erent de�nition: spatial ongruene is the largest relation, whihis ontext losed under the relations (1) - (4) in De�nition 5. Here, we all abinary relationR ⊆ C×C ontext losed under a n+1-ary relation S ⊆ C×· · ·×
C, if for all ontexts C[ · ] and all (a, b) ∈ R, whenever (C[a], a1, . . . , an) ∈ S,there are (b1, . . . , bn) ∈ Cn with (C[b], b1, . . . , bn) ∈ S. One an obtain the sameresults using this de�nition; we prefer to work with De�nition 5 as it diretlyhighlights the important features of spatial ongruene: being a bisimulationand a ongruene at the same time.In a nutshell, two on�gurations are spatially bisimilar, if they have bisimilarreduts, bisimilar subtrees, and the same top-level names. Spatial ongrueneis taken to be the largest spatial bisimulation, whih is a ongruene w.r.t.spatial omposition and tree onstrution.These losure properties already allow us to distinguish proesses, whih on-sist of two ore more omponents running onurrently, from proesses whih9



have a single top level loation.De�nition 6 A on�guration C ∈ C is alled a singleton, if C ≡ n〈P 〉[D] forsome n ∈ N , P ∈ P and D ∈ C. This is denoted by st(C).In the next lemma, we show that spatial bisimulation is already strong enoughto distinguish singleton on�gurations from on�gurations whih are not.Lemma 7 Suppose C,D ∈ C with C ≃ D and st(C). Then st(D).Proof: Suppose not. Then either D ≡ 0 (in whih ase C ≡ 0, ontradition)or D ≡ D1, D2 with both D1, D2 6≡ 0. Then D � (D1, D2), and sine C ≃ D,
C ≡ C1, C2 with both C1, C2 6≡ 0, ontradition. 2If two on�gurations are spatially ongruent, they an be substituted for oneanother, yielding again spatially ongruent on�gurations. The next exampleshows, that spatial ongruene is properly ontained in spatial bisimulation.Example 8 Take n,m ∈ N with n 6= m and let A ≡ n〈inm.0〉[] and B ≡
n〈0〉[]. Then A ≃ B (sine neither A nor B an perform a spatial redution),but A 6∼= B, sine A,m〈0〉[] an redue, whereas B,m〈0〉[] annot.Sine we learly want equivalent on�gurations to be substitutable for one an-other (whih allows us to build large systems in a ompositional way), spatialongruene is the notion of equivalene we are interested in. By de�nition,spatial ongruene involves the losure under all on�guration onstrutingoperators, and is therefore not easy to verify.Our �rst goal is therefore an alternative haraterisation of spatial ongruene.As it turns out, we only need to add one losure property to the de�nition ofspatial bisimulation in order to obtain spatial ongruene.3 Labelled BisimulationIn this setion, we desribe the relation between spatial ongruene and la-belled bisimulation, a notion whih we will introdue shortly.This addresses the problem of heking that two on�gurations are spatiallybisimilar � the de�nition of spatial ongruene requires losure under all on-texts. This an be avoided if one onsiders labelled bisimulation, whih is anextension of spatial bisimulation with respet to one more losure property. Inthis setion we take the �rst step towards a haraterisation of spatial ongru-ene by showing that labelled bisimulation is ontained in spatial ongruene.10



De�nition 9 Let l ∈ L. De�ne the relation l
=⇒⊆ C × C by the rules

P
l

−→ P ′

n〈P 〉[A]
l

=⇒ n〈P ′〉[A]

C
l

=⇒ C ′

C,D
l

=⇒ C ′, Dand all a relation B ⊆ C × C losed under labelled redution, if B is losedunder l
=⇒ for all l ∈ L. We take labelled bisimulation - to be the largestsymmetri relation, whih is losed under labelled redution, spatial redutionand the relations (1 - 4) of De�nition 5.In order to be able to ompare spatial ongruene and labelled bisimulation, weneed a proof priniple, whih allows us to reason about labelled bisimulationusing indution on redutions. This priniple works for image �nite relationsonly:Lemma 10 The relations =⇒, �, ↓ and l

=⇒ (for all l ∈ L) are image �nite.Proof: By strutural indution using the respetive de�nitions using the fatthat (P,→) is image �nite. 2The last lemma puts us into the position to use indution on the number of(labelled) redution steps as a proof priniple. To make our reasoning expliit,we use a sequene of relations ∼i, eah of whih apturing the behaviour upto and inluding i labelled redution steps.De�nition 11 De�ne a sequene of relations ∼i⊆ C×C indutively as follows:(1) ∼0 is the largest symmetri relation suh that for all C ∼0 D
• st(C) implies st(D).
• C ∈ @n implies D ∈ @n for all n ∈ N .
• C

l
=⇒ C ′ implies ∃D′.D

l
=⇒ D′ and C ′ ∼0 D

′ for all l ∈ L.(2) C ∼i+1 D is the largest symmetri relation s.t. for all C ∼i+1 D
• st(C) implies st(D)
• C ∈ @n implies D ∈ @n
• (C,C ′) ∈ R implies ∃D′.(D,D′) ∈ R and C ′ ∼i D

′ for R ∈ {=⇒, ↓}.
• C � (C1C2) implies ∃D1, D2.D � (D1, D2) and Cj ∼i Dj, j = 1, 2.
• C

l
=⇒ C ′ implies ∃D′.D

l
=⇒ D′ and C ′ ∼i+1 D

′ for l ∈ LNote that in the above de�nition, the relations ∼i are required to be losedunder labelled redution; this is expressed in the last lause, where we do notrefer to the previously de�ned relation.The proof priniple, whih we use toshow that labelled bisimulation is a ongruene, an now be formulated asfollows:Proposition 12 (1) ∼i+1⊆∼i for all i ∈ N.11



(2) For all C,D ∈ C, C - D i� C ∼i D for all i ∈ N.Proof: The �rst laim is immediate from the de�nition. For the seond, weabbreviate ∼=
⋂

i∈N ∼i.To see that ∼⊆- it su�es to show that ∼ is a labelled bisimulation. We onlytreat losure under forest redution, the remaining ases are even easier. Sosuppose that C ∼ D and C � (C1, C2). Sine C ∼ D, there are, for all i ∈ N,
Di

1 and Di
2 ∈ C suh that D � (Di

1, D
i
2) and Di

j ∼ Ci
j for j = 1, 2. Sine � isimage �nite and ∼i+1⊆∼i for all i, we an �nd (D1, D2) with D � (D1, D2)and Dj ∼ Cj for j = 1, 2.The onverse inlusion -⊆

⋂

i∈N ∼i follows from -⊆∼i for all i ∈ N, whihis readily established using indution on i and the fat ∼i+1⊆∼i. Lemma 7establishes the lause dealing with singleton on�gurations. 2The next lemma is needed to ompare labelled bisimulation and spatial on-gruene.Lemma 13 Suppose P,Q ∈ P, C,D ∈ C , n ∈ N and ∼i is de�ned asProposition 12.(1) If n〈P 〉[C] ∼i n〈Q〉[D] for some i ∈ N, then P and Q are proess bisim-ilar.(2) If P and Q are proess bisimilar, then n〈P 〉[C] ∼i n〈Q〉[C] for all i ∈ N.The last lemma allows us to onsider the proesses of the underlying labelledtransition system (P,−→) up to proess bisimilarity. With this, plus the proofpriniple established in Proposition 12, we an now show that labelled bisim-ulation is a ongruene; this in partiular implies that labelled bisimulation isontained in spatial ongruene, whih establishes a �rst relationship betweenlabelled bisimulation and spatial ongruene. setion.Proposition 14 Labelled bisimulation is ontained in spatial ongruene.Proof: We show that eah ∼i is a ongruene; the laim then follows fromProposition 12 and the de�nition of spatial ongruene. The ase i = 0 iseasy, so suppose 0 < i. Note that we have to establish the ongruene propertyw.r.t. spatial omposition and tree onstrution(1) Congruene w.r.t. spatial omposition: Suppose C,D ∈ C with C ∼i Dand E ∈ C. We show that C,E ∼i D,E. It is easy to see that C,E have thesame labelled redutions, top level names and subtrees. We only show thatthey have ompatible spatial redutions.Assume C,E =⇒ C ′. We have to show that D,E =⇒ D′ with C ′ ∼i−1 D
′. We12



distinguish the di�erent ases orresponding to the di�erent redution rules.Throughout, we assume C ≡ n〈P 〉[C0], C1 and E ≡ m〈Q〉[E0], E1. The aseswhere C =⇒ C̃ and C ′ ≡ C̃, E or E =⇒ Ẽ and C ′ ≡ C, Ẽ are trivial, heneomitted.Case 1: C enters E. Formally C,E =⇒ C ′ where P
inm
−→ P ′ and C ′ ≡

C1, m〈Q〉[n〈P ′〉[C0], E0], E1.Then C � (n〈P 〉[C0], C1). Hene D � (n〈R〉[D0], D1) with n〈R〉[D0] ∼i−1

n〈P 〉[C0] and C1 ∼i−1 D1. Note that X ∼j Y only if both are singletonsor both are not singletons for all j ∈ N. Sine n〈R〉[D0] ∼i−1 n〈P 〉[C0]and n〈P 〉[C0]
l

=⇒ n〈P ′〉[C0], there is R′ with n〈R〉[D0]
inm
=⇒ n〈R′〉[D0] and

n〈P ′〉[C0] ∼i−1 n〈R′〉[D0]. By the operational semantis of the basi alulus,we have that D −→ D′ for D′ ≡ D1, m〈Q〉[n〈R′〉[D0], E0], E1. Sine ∼i−1 is aongruene, �nally C ′ ∼i−1 D
′ by Lemma 13.Case 2: E enters C. Formally C,E =⇒ C ′ where Q

inn
−→ Q′ and C ′ ≡

n〈P 〉[C0, m〈Q′〉[E0]], E1: Similar.Case 3: C opens E. Formally C,E =⇒ C ′ and C ′ ≡ n〈P ′〉[C0], C1, E1 with
P

openm
−→ P ′. As above, D � (n〈R〉[D0], D1) with n〈R〉[D0] ∼i−1 n〈P 〉[C0] and

D1 ∼i−1 C1. Sine n〈P 〉[C0]
openm
=⇒ n〈P ′〉[C0], there isR′ suh that n〈R〉[D0]

openm
=⇒

n〈R′〉[D0] and n〈P ′〉[C0] ∼i−1 n〈R′〉[D0]. By the operational semantis,D,E =⇒
D′ with D′ ≡ n〈R′〉[D0], D1, E1. We have D′ ∼i−1 C

′ by Lemma 13, sine ∼i−1is a ongruene.Case 4: E opens C. Formally C,E =⇒ C ′ and C ′ ≡ C1, m〈Q′〉[E0], E1 with
Q

openn
−→ Q′: Similar.The remaining ases, where the redution has been triggered by the out-rule,are trivial.(2) Congruene w.r.t. tree onstrution: Suppose C ∼i D; we show that

k〈S〉[C] ∼i k〈S〉[D] for arbitrary k ∈ N and S ∈ P.Again, it is straightforward to verify all lauses in the de�nition of ∼i save thelause onerning spatial redution. We treat the following ases:Case 1: C redues. Formally k〈S〉[C] =⇒ k〈S〉[C ′]. Then C =⇒ C ′, hene
D =⇒ D′ for some D′ ∼i−1 C

′. Then n〈S〉[D] =⇒ D′ for D′ ≡ k〈S〉[D′] and
k〈S〉[C ′] ∼i−1 k〈S〉[D′] sine ∼i−1 is a ongruene.Case 2: C leaves k. Formally, for C ≡ n〈P 〉[C0], C1 we have k〈S〉[C] =⇒ C ′with C ′ ≡ n〈P ′〉[C0], k〈S〉[C1] and P out k

−→ P ′. Then C � (n〈P 〉[C0], C1), hene
D � (n〈R〉[D0], D1) with n〈P 〉[C0] ∼i−1 n〈R〉[D0] and C1 ∼i−1 D1.13



Hene n〈R〉[D0]
out k
=⇒ n〈R′〉[D0] and n〈P ′〉[C0] ∼i−1 n〈R

′〉[D0]. By the opera-tional semantis, k〈S〉[D] =⇒ D′ for D′ ≡ n〈R′〉[D0], k〈S〉[D1]. Sine ∼i−1 isa ongruene, we onlude C ′ ∼i−1 D
′.The remaining ases are straightforward. 2We ontinue the omparison of equivalenes on the set of on�guration byrelating spatial ongruene with strutural ongruene. Note that it makesno sense to ompare spatial ongruene and strutural ongruene diretly: if

P,Q ∈ P are bisimilar but not equal, then n〈P 〉[] and n〈Q〉[] are ertainlyspatially ongruent, not struturally ongruent. For this reason, we introdueweak strutural ongruene, whih extends strutural ongruene to onsideron�gurations as ongruent, whose ontrolling proesses are bisimilar. Theformal de�nition is as follows:De�nition 15 Weak strutural ongruene is the least relation R generatedby the rules of De�nition 2, plus the rule
C ≡ D P,Q proess bisimilar

n〈P 〉[C] ≡ n〈Q〉[D]where n ∈ N , C,D ∈ C and P,Q ∈ P.Thus weak strutural ongruene not only identi�es struturally ongruenton�gurations, but also on�gurations with bisimilar ontrolling proesses. Wethink of weak strutural ongruene as strutural ongruene up to proessbisimilarity.Coming bak to the example at the beginning of the setion, note that n〈P 〉[]and n〈Q〉[] are weakly struturally ongruent for P,Q proess bisimilar. Wehave argued that this is an example of a pair of on�gurations, whih are spa-tially ongruent, but not struturally ongruent. Extending strutural on-gruene to inlude those on�gurations, whih only di�er in the ontrollingproess, we an show that spatial ongruene implies strutural ongruene.This result hinges on the following lemma, whih demonstrates that spatialongruene is losed under labelled redutions.Lemma 16 Spatial ongruene is losed under labelled redution.Proof: Suppose n ∈ N and C,D ∈ C are spatially ongruent with C l
=⇒ C ′′.Then C is of the form C ≡ C0, C1 with C0 ≡ m〈P 〉[E] and P l

−→ P ′ for some
P ′ ∈ P and E ∈ C. We proeed by ase distintion on l ∈ L, where we use afresh name k ∈ N , i.e. k does not our as the name of a loation either in Cor in D, and some arbitrary R ∈ P.Case l = inn: Consider the ontext K[_] = n〈R〉[k〈R〉[]],_. Then K[C] =⇒14



C ′ with C ′ ≡ C1, n〈R〉[m〈P ′〉[E], k〈R〉[]]. Sine C ∼= D, we have K[D] =⇒ D′with C ′ ∼= D′. Sine spatial ongruene is losed under forest redution andtop-level names, we an split D′ ≡ D1, n〈R′〉[F ] for some R′ ∈ P and F ∈ C,where D1
∼= C1 and n〈R′〉[F ] ∼= n〈R〉[m〈P ′〉[E], k〈R〉[]]. Using losure undersubtree redution, we obtain F ∼= m〈Q′〉[E ′], k〈R〉[] (sine k is fresh) with

m〈Q′〉[E ′] ∼= m〈P ′〉[E]. Again using that k is fresh, we have D ≡ D1, m〈Q〉[E ′]for someQ ∈ P withQ inn
−→ Q′ withD1

∼= C1 andm〈P ′〉[E] ∼= m〈Q′〉[E ′]; sinespatial ongruene is a ongruene we �nally obtain D inn
=⇒ D1, m〈Q′〉[E ′] ∼=

C1, m〈P ′〉[E].Case l = outn: Similar, using the ontext n〈R〉[_, k〈R〉[]].Case l = openn: Similar, using the ontext n〈R〉[k〈R〉[]],_. 2We are now ready to state and prove the main result of this setion:Proposition 17 Spatial ongruene and weak strutural ongruene oinide.Proof: It follows diretly from the de�nitions that weak strutural ongruene(whih we denote by ≡ for the purpose of this proof) is ontained in spatialongruene. We prove the onverse inlusion by ontradition: assume thatthe set F = {(C,D) ∈ C × C | C ∼= D,C 6≡ D} of felons is non empty. For
C ∈ C, we de�ne the size of C, size(C), by indution as follows: size(0) =
0, size(C,D) = size(C) + size(D), size(n〈P 〉[C ′]) = 1 + size(C ′).Sine the standard ordering on natural numbers is a well-ordering, there is apair (C,D) of felons, suh that size(C) is minimal, that is, for all (C ′, D′) ∈ Fwe have size(C ′) ≥ size(C). We disuss the di�erent possibilities for C.Case C ≡ C0, C1 with C0 6≡ 0 6≡ C1: Using forest redution, we an split
D ≡ D0, D1 withDj

∼= Cj for j = 0, 1. Sine size(C0) < size(C) and size(C1) <
size(C), neither (C0, D0) nor (C1, D1) are felons, that is, C0 ≡ D0 and C1 ≡ D1,hene C ≡ C0, C1 ≡ D0, D1 ≡ D, ontraditing (C,D) ∈ F .Case C ≡ n〈P 〉[C0]: By subtree redution, D ≡ m〈Q〉[D0] with C0

∼= D0.Sine size(C0) < size(C), the pair (C0, D0) is not a felon, hene C0 ≡ D0.By losure under top-level names, furthermore n = m, and losure underlabelled redution (Lemma 16) implies that P and Q are proess bisimilar.Hene n〈P 〉[C0] and m〈Q〉[D0] are weakly ongruent, ontraditing (C,D) ∈
F .Case C ≡ 0: From C ∼= D we onlude D ≡ 0, ontraditing C 6≡ D. 2So far, we have shown that labelled bisimulation is ontained in spatial on-gruene, whih is in turn ontained in strutural ongruene. In the following15



setion, we introdue a spatial logi and desribe the relationship betweenstrutural ongruene and logial equivalene.
4 A Spatial Logi for BasiSailIn the previous setion, we have shown a hain of impliations between dif-ferent equivalenes on the set of on�gurations: labelled bisimilarity impliesspatial ongruene, whih in turn implies weak strutural ongruene. Thissetion adopts a logial view and loses the hain of impliations by show-ing that weak strutural ongruene implies logial equivalene, whih is thenproven to ontain labelled bisimilarity. Using the setup from the previous se-tion, this hinges on the fat that that the underlying proesses are image �nite.Our logi is very similar in style to modal logis used to reason about the poweralgebra assoiated with an algebrai struture: we obtain a hybrid of modallogi and separation logi [31,35℄. In style, this logi is very similar the logisdisussed in [15,11℄ exept for the absene of linear impliation. However, aswe shall see later, linear impliation an be added at no extra ost.As before, our de�nitions and results are parametri in a set N of names andthe assoiated set L of labels. We now introdue the logi we are going towork with.De�nition 18 (Spatial Logi: Syntax) The language L of spatial logi isthe least set of formulas aording to the grammar

L ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | 〈R〉φ | 〈�〉φψwhere n ∈ N , l ∈ L and R ranges over the relations ↓,=⇒ and l
=⇒ for l ∈ L.Intuitively, the formula ǫ allows us to speak about the empty ontext and @nallows us to observe the names of loations. Formulas of type 〈R〉φ allow us(as in standard modal logi) to reason about the behaviour of a proess afterevolving aording to the relation R. In our ase, we an speify properties ofsub-on�gurations (using ↓), transitions (using =⇒) and labelled redutions(using l

=⇒). Finally, a formula of type 〈�〉φψ asserts that the urrent on�g-uration an be split into two subon�gurations, the �rst satisfying φ and theseond ψ.De�nition 19 (Spatial Logi: Semantis) The semantis of propositional16



onnetives is as usual. For the modal operators, we put, for C ∈ C:
C |= ǫ i� C ≡ 0

C |= @n i� C ∈ @n

C |= 〈R〉φ i� ∃C ′.(C,C ′) ∈ R and C ′ |= φ

C |= 〈�〉φψ i� ∃C ′, C ′′.C � (C ′, C ′′) and C ′ |= φ, C ′′ |= ψwhere R ranges over =⇒, ↓ and l
=⇒ for l ∈ L as above. As usual, Th(C) =

{φ ∈ L | C |= φ} denotes the logial theory of C ∈ C. Two on�gurations C,Dare logially equivalent, if Th(C) = Th(D); this is denoted by C =L D.Note that we use the expression �@n� above both as an atomi formula of thelogi and as a unary relation. In this setion, we show that logial equivaleneis invariant under strutural ongruene, adding one more item to our hainof impliations:Lemma 20 Weak strutural ongruene is ontained in logial equivalene.Proof: Straightforward by indution on the de�nition of weak strutural on-gruene. The ase of two bisimilar ontrolling proesses uses the standard fatthat bisimulation implies logial equivalene in proess aluli (see e.g. [7,43℄).
2We now lose the hain of relation between the di�erent relation on on�gu-rations by showing that logial equivalene implies labelled bisimulation; theproof uses standard tehniques in modal logi, see e.g. [7℄.Proposition 21 Logial Equivalene is ontained in labelled bisimulation.Proof: We show that

=L= {(C,D) ∈ C | C, D logially equivalent}is a labelled bisimulation. Using Lemma 10, losure under =⇒, ↓, l
=⇒, 0 and

@n are straightforward, see e.g. [7℄. We just demonstrate that =L is losedunder forest redution.To this end, suppose that C,D ∈ C with C =L D and C � (C0, C1). Supposefor a ontradition that for all D0, D1 with D � (D0, D1) we have D0 6=L C0or D1 6=L C1.Thus for all (D0, D1) with D � (D0, D1) there is i = i(D0, D1) ∈ {0, 1} and
φi(D0,D1) with Ci |= φi but Di 6|= φi. Now, for
φ =

∧

{φi(D0,D1) | i(D0, D1) = 0} and ψ =
∧

{φi(D0,D1) | i(D0, D1) = 1}17



we have that C |= 〈�〉(φ, ψ) but D 6|= 〈�〉(φ, ψ), ontraditing Th(C) =
Th(D). 2We now onlude the investigation of the basi alulus by a omparison ofthe di�erent forms of equivalene we have disussed so far.Theorem 22 In the BasiSail alulus, labelled bisimilarity, spatial ongru-ene, logial equivalene and weak strutural ongruene oinide.The above equivalenes all apply to the basi alulus, that is, the aluluswithout loal names. Before extending our results to the alulus with loalnames, disuss the impat of adding linear impliation to our logi.Typially, spatial logis for reasoning about mobile proesses, for example[15,11,12℄ ontain linear impliation � as further onnetive. We have hosennot to inlude linear impliation into the spatial logi for the basi alulus,sine the main haraterisation result, Theorem 22, an be proved withouthaving linear impliation available. Our logi is thus more similar in nature tothat of [13℄. This setion shows, that linear impliation an be added withoutdestroying invariane under strutural ongruene.De�nition 23 The language L

� of spatial logi with linear impliation is theleast set of formulas aording to the grammar
L

� ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | φ� ψ | 〈R〉φ | 〈�〉φψwhere the semantis is given as in De�nition 18, plus the lause
C |= φ� ψ i� ∀D.D |= φ =⇒ D,C |= ψfor C ∈ C. If Th(C) = Th(D) for C,D ∈ C, we all C and D logiallyequivalent, whih we denote by =�

L .The onnetive � is alled linear impliation: it stipulates that the formula ψholds in presene of all on�gurations satisfying φ. It is sometimes helpful tothink of φ as a property that needs to be guaranteed to hold in presene of allpossible attakers whih satisfy ψ.It is immediately lear from the de�nition of the semantis of � that lin-ear impliation does not allow to distinguish between struturally ongruenton�gurations.Lemma 24 Suppose C ≡ D are weakly struturally ongruent and φ ∈ L
�.Then C |= φ i� D |= φ.Proof: It follows from Theorem 22 that the statement holds for formulas notontaining �. It follows diretly from the de�nition of � that this result arries18



over to L
�. 2Using Theorem 22, we immediately obtain that linear impliation does nothelp to distinguish on�gurations whih are labelled bisimilar (or spatiallyongruent, for that matter).Corollary 25 Suppose C ∼= D are spatially ongruent. Then C =�

L D.5 LoalSail: A Calulus with Loal NamesIn the alulus of mobile ambients, loal names are essential for many exam-ples. The treatment of loal names is derived from the π-alulus, i.e. governedby strutural rule of sope extrusion (νnP ) | Q ≡ νn(P | Q) whenever n isnot a freely ourring name of Q. In the ambient alulus, loal names utaross dynamis and spatial struture, by adopting a seond strutural rule:
νn(k[P ]) ≡ k[νnP ] if n 6= k, whih allows to move the restrition operator upand down the tree struture, indued by the nesting of the ambient brakets.If we want to remain independent from the underlying proess alulus, weannot adopt the latter rule, as we do not have name restrition avaliable atthe proess level. However, we an look at a alulus with loal names, whereloal names obey sope extrusion a la π-alulus.The next de�nition extends the syntax as to inorporate loal names. In orderto deal with sope extrusion, we also have to introdue the onept of freenames.De�nition 26 (LoalSail) The set C of on�gurations in LoalSail is givenby

C ∋ C,D ::= 0 | n〈P 〉[C] | C,D | (νn)Cfor n ∈ N and P ∈ P. If ~n = (n1, . . . , nk), we write (ν~n) for (νn1) . . . (νnk).Given P ∈ P and n ∈ N , we say that n is free in P , if there are l1, . . . , lk and
P1, . . . , Pk suh that P l1−→ P1

l2−→ · · ·
lk−→ Pk

l
−→ Q, where l is one of in n,

outn and openn. We let fn(P ) = {n ∈ N | n free in P}.For C ∈ C, the set fn(C) is de�ned by indution on the struture of C asfollows:
• fn(ǫ) = ∅
• fn(C,D) = fn(C) ∪ fn(D)
• fn(n〈P 〉[C]) = {n} ∪ fn(P ) ∪ fn(C)
• fn((νn)C) = fn(C) \ {n} 19



where strutural ongruene is as in De�nition 2, augmented with α-equivaleneand the rules (νn)(A,B) ≡ ((νn)A), B whenever n does not our freely in Band the axiom (νn)0 ≡ 0.The operational semantis is given as in De�nition 2, augmented with the rule
C =⇒ C ′

(νn)C =⇒ (νn)C ′for C,C ′ ∈ C and n ∈ N . The extension of BasiSail with loal names is alledLoalSail.Note that, in order to be able to state the rule for α-equivalene, we needa notion of substitution on the underlying proesses, whih needs to assumethat the set of proesses is losed under substitution. Formally, we have thefollowing oindutive de�nition:De�nition 27 Let l = opm ∈ L with op ∈ {in , open , out }. If n, k ∈ N , weput l[n/k] = l, if m 6= k, and l[n/k] = opn if m = k.Suppose P,Q ∈ P and n, k ∈ N . We say that Q is [n/k]- bisimilar to P ,denoted by Q ∼ P [n/k], if
• P

α
→ P ′ =⇒ ∃Q′.Q

α[n/k]
→ Q′ and P ′ ∼ Q′[n/k].

• Q
α[n/k]
→ Q′ =⇒ ∃P ′.P

α
→ P ′ and P ′ ∼ Q′[n/k].We say that P is substitution losed, if, for all P ∈ P and all n, k ∈ N , thereis Q ∈ P with Q ∼ P [k/n]. If this is the ase, we put

m〈P 〉[C][k/n] ≡







k〈P [k/n]〉[C[k/n]] if m = n and Q ∼ P [k/n]

n〈P [k/n]〉[C[k/n]] if m 6= n and Q ∼ P [k/n]and extend this de�nition to the whole of C by putting
0[k/n] ≡ 0 (C,D)[k/n] ≡ C[k/n], D[k/n]where C,D ∈ C, P ∈ P and n,m, k ∈ N .In order to be able to deal with α-equivalene, we therefore assume for theremainder of the setion that P is substitution losed; this an always beahieved by adding the missing substitution instanes to P. Despite of itsname, losure under substitutions is not a syntati notion: it applies to anarbitrary labelled transition system. Using this notion of substitution on theproess level, the indutive extension to on�gurations is standard.Before investigating the logial and algebrai theory of the alulus with loalnames, we ontinue the disussion of Example 4. Reall that we had an agent20



in a home loation, whose sole purpose was to transport lients inside home.However, as we remarked when disussing this example, nothing prevents thelient proess to enter the home-loation diretly. This shortoming an nowbe remedied in the alulus with loal names.Example 28 We an now model an agent, whih has the apability to enterand exit its home loation and to transport lients inside with loal names asfollows: We let �lient� and �agent� as in Example 4 and put
home = (νh)h〈0〉[agent]Using sope extrusion, we have the same hain of redutions as in Example4. However, sine h is a private name now, the lient annot enter �home�without the help of �agent�.The next issue we are going to disuss is the algebrai and the logial theoryof the alulus with loal names. If we simply transfer the de�nition of spatialongruene to the setting with loal names, we an not expet to obtain thesame math between the logial, syntatial and algebrai theory. Considerfor example C ≡ 0 and D ≡ (νn)n〈0〉[]. Clearly C 6≡ D, but it is easy to seethat C and D are struturally ongruent.In order to obtain a similar haraterisation as in the alulus without loalnames, we therefore have to extend the de�nition of spatial bisimulation, anddemand losure under name revelations. We think of name revelation as anadditional experiment whih we an perform on on�gurations: for two on�g-urations to be equivalent, they have to behave equivalently even if we exposeone of their hidden names.De�nition 29 Suppose C ∈ C and n, k ∈ N . We put

C
revn
=⇒ C ′ i� C ≡ (νk)C ′′ and C ′ ≡ C ′′[n/k]whenever n /∈ fn(C) (free names annot be revealed � they are not seret). Weonsider the following equivalenes:

• spatial bisimulation (resp. spatial ongruene) is the largest symmetri (resp.ongruene) relation whih is losed under spatial redution =⇒, forest re-dution �, subtree redution ↓, top level names @n and under revelation
revn
=⇒ (for all n ∈ N ).

• labelled bisimulation is the largest spatial bisimulation, whih is losed underlabelled redution (De�nition 9).
• weak strutural ongruene is the least relation whih ontains struturalongruene and all pairs of the form (n〈P 〉[C], n〈Q〉[C]) for P,Q ∈ P pro-ess bisimilar.In spite of the syntati similarities, our de�nition is only super�ially related21



to Sangiorgi's open bisimulation [37℄ and the equivalenes used in the fusionalulus [33℄. The use of substitution in the above de�nition is solely used toonsistently rename a hidden name, whereas open bisimilarity uses substitu-tion to deal with the synhronous ommuniation of names. Moreover, openbisimilarity is also meaningful in absene of loal names.We now turn to the impat of loal names on the equivalenes, whih wehave disussed previously. Sine we make revelation an expliit part of spatialbisimulation, everything goes through as before, one the equivalenes aretransferred (without hanges) to the alulus with loal names. We obtain:Proposition 30 The following hold in the LoalSail alulus:(1) Labelled bisimulation ontains spatial ongruene(2) spatial ongruene ontains weak strutural ongrueneProof: To show that labelled bisimulation is ontained in spatial ongruene,we extend the proof of Proposition 14 and show, that labelled bisimulationis a ongruene. We need to deal with three on�guration-forming opera-tions: Spatial Composition, tree onstrution and name restrition. Note thatLemma 10 and Proposition 12 are also valid for the set L = {opn | op ∈
{in , out , open , rev } and n ∈ N} of labels; we hene have to show that eahrelation ∼i, as de�ned in De�nition 11 is a ongruene, for every i ∈ N.(1) Congruene w.r.t. spatial omposition: Suppose C ∼i D and E ∈ C. Wehave to show that C,E ∼i D,E. Again we fous only on the nontrivial lausesin the de�nition of ∼i and only treat the ase of spatial redutions. The ase
C =⇒ C̃ and C ′ ≡ C̃, E and E =⇒ Ẽ with C ′ ≡ C, Ẽ are trivial. For theother ases, we assume that C ≡ (ν~n)C0 and E ≡ (ν ~m)E0 where there isno ourrene of ν at the top level of either C0 or E0. In order for C and
D to interat, both must perform sope extrusion, that is, we must have
C,E ≡ (ν~n)(ν ~m), C0, E0 =⇒ C ′ and C,E =⇒ (ν~n)(ν ~m)C ′. Sine C - E, wehave D revn1=⇒ . . .

revnk=⇒ D0 - C0 where D0 has no ourrene of name restritionat the top level. As C0 - E0 and both have no name restrition at their toplevel, we an proeed as in Proposition 12.(2) Congruene w.r.t. tree onstrution: As in the proof of Proposition 12.(3) Congruene w.r.t. name restrition: Suppose C ∼i D; we have to show that
(νn)C ∼i (νn)D. Clearly (νn)C and (νn)D have the same spatial redutions,as their only redutions an be performed under the ν-binder (De�nition 26).The only labelled redutions either C or E an perform are the revelation ofthe bound name n, whih an be mathed sine C ∼i D.For the seond impliation, the minimal witness argument used in Proposition17 has to me modi�ed as follows: We put size(νn)C = size(C) and onsider22



the set F = {(C,D) ∈ C × C | C ∼= D,C 6≡ D} of felons. If (C,D) ∈ Fsuh that size(C) is minimal, we have to onsider the additional ase that
C ≡ (ν~n)C0 with ~n = (n0, . . . , nk). In this ase, C revn0=⇒ . . .

revnk=⇒ C ′, where
C ′ 6≡ (νm)C ′′ for all m,C ′′. Hene D revn0=⇒ . . .

revnk=⇒ D′ with C ′ ∼= D′. Now
(C ′, D′) ∈ F , whih redues this ase to one of the two ases disussed in theproof of Proposition 17. 2In order to transfer the haraterisation result to a logial setting, we introduea hidden name quanti�er in the style of Gabbay and Pitts [20℄:De�nition 31 The language of spatial logi with loal names is the least setaording to the following grammar

L ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | 〈R〉φ | 〈�〉φψ | Hn.φGiven C ∈ C and φ ∈ L, satisfation C |= φ is as in De�nition 18, plus thelause
C |= Hn.φ i� there is C ′ ∈ C s.t. C revn

=⇒ C ′ and C ′ |= φfor the hidden name quanti�er. As before, Th(C) = {φ ∈ L | C |= φ} for
C ∈ C, and C,D ∈ C are alled logially equivalent, denoted by C =L D, if
Th(C) = Th(D).Sine the relation revn

=⇒ (for n ∈ N ) are image-�nite, Lemma 10 and Proposition12 remain valid in the alulus with loal names. We thus obtainProposition 32 In the LoalSail alulus:(1) weak strutural ongruene is ontained in logial equivalene.(2) logial equivalene is ontained in labelled bisimulation.Proof: The �rst laim is immediate from the de�nition of weak strutural on-gruene in the alulus with loal names. Note that the relations revn
=⇒ are image�nite for all n ∈ N . This allows us to preeed as in the proof of Proposition21 for the seond laim, whih we extend by showing that logial equivalene

=L is losed under revelation. Assume for a ontradition that C,D ∈ C with
C =L D, C revn

=⇒ C ′ but we have C ′ 6=L D
′ for all D′ with D revn

=⇒ D′. Sine theset R = {D′ ∈ C | D
revn
=⇒ D′} of reduts is �nite by assumption, we have a for-mula φD′ for every D′ ∈ R s.t. C ′ |= φD′ but D′ 6|= φD′. Hene C |=

∧

D′∈R φD′but D 6|=
∧

D′∈R φD′, whih ontradits C =L D. 2As a orollary, we obtain that the haraterisation of Theorem 22 arries overto the alulus with loal names.Theorem 33 The notions of labelled bisimulation, spatial ongruene, weakstrutural ongruene and logial equivalene oinide for the LoalSail alu-lus. 23



6 MultipleSail: A Calulus with Multiple NamesIn this setion, we disuss a seond extension of the BasiSail alulus andallow eah loation to have multiple names. Multiple names an be used tomodel network devies with more than one network interfae; we allow forthese interfaes to be swithed on or o� independently of eah other. Thisfeature an be used for example to model �rewalls, whih have one interfae tothe outside and a seond network onnetion to a (proteted) internal network.While this is a very realisti assumption, it is � to the best of our knowledge �not present in other aluli whih an be used to model mobile omputation.Due to the layered struture of BasiSail, every ation of a ontrolling pro-ess takes plae in a unique loation. Therefore, it is straightforward to allowproesses to manipulate the names of the loations whih they ontrol. Wean therefore easily model the addition and deletion of names using two extraprimitives upn (add the name n to the names of the present loation) and
down n (remove the name n from the set of names of the present loation).These ations orrespond to swithing network interfaes on and o�, sine ev-ery network interfae omes with a unique name. This in partiular overs thease where a loation has more than one network interfae � or none at all.If we extend the syntax of on�gurations to inlude multiple names, a typialsingleton on�guration has the form ~n〈P 〉[C], where ~n = (n1, . . . , nk) is a listof names.In ontrast to the extension of BasiSail with loal names, whih amounts toadding extra apabilities in the onstrution of on�gurations, multiple namesrequire to add new apabilities to the underlying proesses. More preisely,we need to assume that (P,−→) is an image �nite labelled transition system,where the labels inorporate upn and down n. The following onvention makesthis preise.Notation Throughout the setion, we �x a set N of names and onsider theset L = {opn | op ∈ {in , out , open , up , down } and n ∈ N}. Furthermore,we �x a labelled transition system (P,−→), where P 6= ∅ and −→⊆ P×L×Pis image �nite.Based on a set of proesses that an exerise ontrol over the names of aloation, the MultipleSail alulus is given as follows:De�nition 34 (MultipleSail) The set of on�gurations of MultipleSail isthe least set aording to the grammar

C ∋ A,B ::= 0 | ~n〈P 〉[A] | A,Bwhere P ∈ P is a proess and ~n = (n1, . . . , nk) ∈ N ∗ is a list of names. As24



before, on�gurations are onsidered up to strutural ongruene ≡ given bythe axioms of De�nition 2, augmented with
(n1, . . . , nk) < P > [C] ≡ (nσ(1), . . . , nσ(k))〈P 〉[C]where σ is a permutation of {1, . . . , k}.In the sequel, we write n ∈ (n1, . . . , nk) i� n = nj for some 1 ≤ j ≤ k. Theoperational semantis is now given by extending the rules given in De�nition3 with the rules
P

upn
−→ P ′ n /∈ ~n

~n〈P 〉[A] −→ ~n⊕ n(P ′)[A]

P
downn
−→ P ′ n ∈ ~n

~n〈P 〉[A] −→ ~n⊖ n(P ′)[A]where
(n1, . . . , nk) ⊕ n =







(n1, . . . , nk, n) n 6= nj for all j = 1, . . . , n

(n1, . . . , nk) otherwiseand similarly
(n1, . . . , nk) ⊖ n =







(n1, . . . , nj−1, nj+1, . . . , nk) 1 ≤ j ≤ k and n = nj

(n1, . . . , nk) otherwiseThe resulting extension of BasiSail is alled MultipleSail.The idea of a term (n,m)〈P 〉[A] is that of a loation with two names, n and
m, running the programme P and whih has A as sub-loations. Note thatativating a new name (via up n) at a loation where the name is already inuse has no e�et. Similarly, removing a name from a loation whih is notpresent will not hange the spatial struture.In partiular, a loation an have no name at all. The following exampleontrasts this with hidden names.Example 35 (1) The e�et of having no name at all annot be apturedwith loal names, sine nameless loations are also nameless for loationsfrom within. Take for example ()〈P 〉[A] for P ∈ P and A ∈ C. Notethat anonymous loations are anonymous also for proesses from within,that is, the same e�et annot be ahieved using loal names. Indeed,the proesses (νn)(n)〈P 〉[k〈outn〉[]] and ()〈P 〉[k〈outn〉[]] di�er in thatthe former an perform a redution under the name binder, whereas thelatter annot.(2) Unnamed loations are by no means immobile. Consider the on�gura-tion (n)〈downn.0〉[A], ()〈inn.0〉[B]. This example also illustrates that themovement only sueeds, if the unnamed agent is luky enough to enterinto his partner before the name disappears.25



In the MultipleSail alulus, we annot expet that spatially ongruent pro-esses (in the sense of De�nition 5) to ontain strutural ongruene. Thereason is that the ontrolling proesses of two spatially ongruent proessesare not proess bisimilar. This ours for example, if the ontrolling proessallows for de-ativating a name, whih is not present in the on�guration, ase.g. for ()〈downn.O〉[] and 〈down k.0〉[]. In order to ahieve a math betweenthe di�erent proess equivalenes, we therefore have to allow for an additionalobservation: The hanging of names. The formal de�nition of spatial bisimu-lation and ongruene in MultipleSail is as follows:De�nition 36 Suppose C ∈ C and n ∈ N . We put
C

⊕n
=⇒ C ′ i� C ≡ ~n〈P 〉[C0] and C ′ ≡ ~n⊕ n〈P 〉[C0]and analogously

C
⊖n
=⇒ C ′ i� C ≡ ~n〈P 〉[C0] and C ′ ≡ ~n⊖ n〈P 〉[C0].We say that a relation is losed under name hanges, if it is losed under ⊕n

=⇒and ⊖n
=⇒ for all n ∈ N .We onsider the following equivalenes:

• spatial bisimulation ≃ (resp. spatial ongruene ∼=) is the largest symmetri(resp. ongruene) relation that is losed under spatial redution =⇒, forestredution �, subtree redution ↓, top level names @n and name hanges
⊕n
=⇒,

⊖n
=⇒ (for all n ∈ N ).

• labelled bisimulation is the largest spatial bisimulation whih is losed underlabelled redution (see De�nition 9).
• weak strutural ongruene is the least relation whih ontains struturalongruene and all pairs of the form (n〈P 〉[C], n〈Q〉[C]) for P,Q ∈ P pro-ess bisimilar.We think of losure under name hanges as an experiment, whih we anperform on a singleton on�guration. For two (singleton) on�gurating to beequivalent, we require that they exhibit the same behaviour even when wehange the names of their top level loations. This additional observationensures that labelled bisimulation is a ongruene, and that spatial ongrueneimplies weak strutural ongruene.Proposition 37 The following hold for the MultipleSail alulus:(1) Labelled bisimulation ontains spatial ongruene.(2) Spatial ongruene ontains weak strutural ongruene.Proof: We extend the orresponding results for the basi alulus. For the �rst26



laim, we extend the proof of Proposition 14 and show, that labelled bisimula-tion is a ongruene. As for the LoalSail alulus, we note that 10 and Proposi-tion 12 remain valid for the set L = {opn | op ∈ {in , out , open , up , down ,⊕,⊖} and n ∈
N}. We thus have to show that ∼i (De�nition 11) is a ongruene w.r.t. spatialomposition and tree onstrution.(1) Congruene w.r.t. spatial omposition: Assume that C ≡ ~n〈P 〉[C0], C1and C ∼i D. We �x E ∈ C and show that C,E ∼i D,E, where we only treatspatial redutions indued by (de)ativating a name.Case 1: C ativates a new name. Formally C,E =⇒ C ′ with P up k

−→ P ′ and
C ′ ≡ ~n ⊕ k〈P ′〉[C0], C1, E. Using forest redution and Lemma 7, we an as-sume that D ≡ ~n〈Q〉[D0], D1 where ~n〈P 〉[C0] ∼i−1 ~n〈Q〉[D0] and C1 ∼i−1

D1. Now ~n〈P 〉
up k
=⇒ ~n〈P ′〉[C0]. By losure under labelled redution, we have

~n〈Q〉[D0]
upn
=⇒ ~n〈Q′〉[D0] with ~n〈P ′〉[C0] ∼i−1 ~n〈Q

′〉[D0]. As ∼i−1 is losed un-der name hanges, also ~n⊕k〈P ′〉[C0] ∼i−1 ~n⊕k〈Q′〉[D0], and the laim follows,sine ∼i−1 is a ongruene.Case 2: C de-ativates a new name. Formally C,E =⇒ C ′ with P
down k
−→ P ′and C ′ ≡ ~n⊖ k〈P ′〉[C0], C1, E: Similar.The ases, where E ativates or de-ativates a new name, are straightforward.(2) Closure w.r.t. tree onstrution: Immediate.For the seond laim we use the minimal witness argument of Proposition17, whih applies one we have established that spatial ongruene is losedunder labelled redution. To this end, assume C ∼= D are on�gurations and

C
opn
=⇒ C ′. We have to exhibit D′ ∼= C ′ suh that D opn

=⇒ D′. We only treatthe new ases op ∈ {up , down }. So suppose C ∼= D and C opn
=⇒ C ′. Then wean assume that C ≡ ~n〈P 〉[C0], C1 and C ′ ≡ ~n′〈P ′〉[C0], C1. By losure underforest redution �, we have D ∼= ~n〈Q〉[D0], D1 with ~n〈Q〉[D0] ∼= ~n〈P 〉[C0] and

D1
∼= C1.Case 1: op = up . We an assume without loss of generality that k /∈ ~n;otherwise we use losure under name hanges and replae ~n with ~n⊖ k. Sine

n〈P 〉[C0] =⇒ ~n ⊕ k〈P ′〉[C0], there is D′

0
∼= ~n ⊕ k〈P ′〉[C0] with ~n〈Q〉[D0] =⇒

D′

0. Again by losure under forest redution and top level names, we have
D′

0 ≡ ~n⊕ k〈Q′〉[D′′

0 ]. But this an only happen if Q up k
−→ Q′ and D′′

0 ∈ @k, wehave D′′

0 ≡ D0. The laim follows, sine ∼= is a ongruene.Case 2: op = down : Similar. 2We now take a logial point of view and give a logial haraterisation ofspatial ongruene, whih is very similar to the logial haraterisation in the27



setting with loal names (Setion 5). Similar to the hidden name quanti�er,we introdue a new logial operator, whih deals with name hanges.De�nition 38 The language of spatial logi with multiple names is the leastset aording to the following grammar
L ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | 〈R〉φ | 〈�〉φψ | ⊕n.φ | ⊖n.φGiven C ∈ C and φ ∈ L, satisfation C |= φ is as in De�nition 18, plus thelause

C |= ⊕n.φ i� C ≡ ~k〈P 〉[C ′] and ~n⊕ k〈P 〉[C ′] |= φ,and aordingly for ⊖. As before, Th(C) = {φ ∈ L | C |= φ} for C ∈ C,and C,D ∈ C are alled logially equivalent, denoted by C =L D, if Th(C) =
Th(D).As in the alulus with loal names, we have the following result:Proposition 39 The following hold in the MultipleSail alulus:(1) weak strutural ongruene is ontained in logial equivalene.(2) logial equivalene is ontained in labelled bisimulation.Proof: As for Proposition 32. 2Using name hanges as additional observation, we ahieve a perfet mathbetween the syntatial, logial and algebrai theory also for the MultipleSailalulus:Theorem 40 In the MultipleSail alulus, labelled bisimulation, spatial on-gruene, weak strutural ongruene and logial equivalene oinide.7 Conlusions and Related WorkWe have presented a oordination approah to mobile omponents: the Basi-Sail alulus and two extensions LoalSail and MultipleSail. The main noveltyof our approah lies in the fat that our alulus stritly distinguishes betweenthe omputational and the spatial aspets of distributed omputation. Com-pared to other oordination models, the main novelty of our approah is thespatial struture, where we assume that loations are hierarhially organised.Our main result is that logial equivalene, strutural ongruene and spatialongruene agree; this indiates that our framework allows to add mobility toomponents in a transparent way.The study of mobility goes bak to Milner's π-alulus [27℄. Further aluli are28



the Fusion alulus [33℄, Nomadi Pit [45℄ and the distributed oordinationlanguage KLAIM [29℄. The study of hierarhial re-on�gurable administrativedomains was introdued by the Ambient [16℄ and the Seal alulus [44℄. Ba-siSail follows these lines but distinguishes proesses and on�gurations in ana priori way and onentrates on a even simpler set of operations for hangingthe topologial struture.The basi alulus and its variations were inspired by the Seal-Calulus. [44℄.However, the Seal-Calulus is quite involved syntatially; the present alulusis a simpli�ation in order to study the e�et of the separation of dynamisfrom the underlying topologial struture, whih is also present in Seal. Theseond soure of inspiration was the alulus of mobile ambients [16℄, fromwhih we have borrowed the primitives in, out and open. As we have pointedout before, our prinipal design deisions do not allow to embed the full am-bient alulus into our framework.The lear separation of spatial and omputational aspets allows for the in-trodution of an additional layer whih monitors the ations performed by theprograms ontrolling the individual omponents to enfore seurity poliiesin the style of edit automata [25℄. This allows for even more modularity, asseurity poliies are added independently from the onrete realisation of theomponents and the mobility layer. The enforement of seurity poliies bymeans of an extra layer of ontrol has also been studied in a single alulus; wemention box-π [42℄ and ambients with guardians [19℄. Our notion of ontrol-ling proess di�ers from the guardians of [19℄ as a guardian ontrols mobility,whereas our ontrolling proess initiate a movement.Separation of onerns has always been an important aspet of software arhi-teture, and the glue whih allows for the inter-operability between di�erentomponents is studied in the ontext of oordination languages (see [32,2℄ foran overview). The language KLAIM [29℄ provides an integration between o-ordination and mobility. Based on the notion of tuple spaes in the style ofLinda [18,21℄ it allows for modelling of distributed systems in the style of the
π-alulus; in partiular, the hierarhial struture of loations annot be rep-resented diretly. Our approah of ombining omponent is similar in spirit tothat of [1,30℄ (whih does not ater for mobility). There the authors di�eren-tiate between omponents, whih provide ertain servies, and an additionallayer, whih desribes the omposition of omponents.Spatial logis were studied by Cardelli and Caires [11,12℄, although to ourknowledge not w.r.t. a lear haraterisation of the expressive power. Suha haraterisation (alled �intensional bisimulation�) was onsidered by San-giorgi for a variant of the ambient alulus [38,39℄.Our work on the omparison between di�erent equivalenes on mobile proess29



has to be seen in the ontext of the work of Merro and Hennessy [26℄ andSangiori, Hirshko�, Lozes [38,39℄. Their results were obtained in an untypedsetting, i.e. where one does not distinguish between proesses and loations.Our results show, that similar omparisons an also be made in a typed setting,where furthermore one is independent of the underlying proess alulus.The lear distintion between proess and loation, enfored by our two-layered approah, an of ourse also be enfored by adding type system aposteriori. Existing type systems [9,17,14℄ do not aount for this distintion,as they are designed with a di�erent goal: In general, eah type orrespondsto a ertain property of a proess, and the type system allows for the deriva-tion of these properties. Moreover, typing is only meaningful when the soureode of the individual omponents is available, whereas we have assumed in-dependene from the underlying language by just using a labelled transitionsemantis; see [40℄ for a disussion of this dihtonomy. We see partial typing[36℄ and the work on the box-π alulus and loal subtyping [42,41℄, where un-trusted omponents are put inside a wrapper, as steps towards the integrationof both aspets. Finally, we remark that our approah of modelling mobileomponents and their onnetions is a speial ase of the bigraph models ofJensen and Milner [22℄: The bigraphs orresponding to our setup are quitespeialised, as our basi alulus does not diretly allow to model onnetionsbetween the di�erent omponents.Of ourse, there remains a wealth of open problems: Most pressingly, we haveinvestigated neither the logial nor the algebrai theory of the alulus withname passing or multiple names, nor a variant whih inludes dynami reon-�guration.A preliminary version of this work has already appeared as [34℄. The presentpaper di�ers from lo.it. in the hoie of the redution relations whih de�nespatial bisimulation. The present approah, resulting in a hybrid of separationlogi and modal logi, is loser to the logis already disussed in an untypedsetting. Also, the omparison of the di�erent redution relations follows a morestandard pattern and uses standard proof priniples, where available.Referenes[1℄ F. Arbab. Abstrat behavior types: A foundation model for omponents andtheir omposition. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever,editors, Pro. FMCO 2002 (Revised Letures), volume 2852 of Let. Notes inComp. Si., pages 33�70. Springer, 2003.[2℄ F. Arbab. What do you mean, oordination? Bulletin of the Duth Assoiationfor Theoretial Computer Siene, Marh 1998.30
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