A Coordination Approach to Mobile
Components *

Dirk Pattinson, Martin Wirsing

Institut fiir Informatik, LMU Miinchen, Germany

Abstract

We present a calculus for mobile systems, the main novel feature of which is the
separation between dynamic and topological aspects of distributed computations.
Our calculus realises the following basic assumptions: (1) every computation executes
in a uniquely determined location (2) processes modify the distributed structure by
means of predefined operations, (3) the underlying programming language can be
changed easily, and (4) locations are hierarchically organised. This paper introduces
our calculus, and shows, that this separation of concerns leads to a perfect match
between the logical, syntactical and algebraic theory. We discuss a core calculus, and
extensions with local names and with multiple names.

Key words: mobile components, coordination languages
PACS:

Introduction

With the success of the Internet, mobile computation has presented itself as
a new computing paradigm. Over the Internet, distributed computation can
be highly dynamic, with a network, which is hierarchically organised into
administrative domains and constantly changing.

In practice, distributed systems pose many challenges: users fear security prob-
lems or, more generally, problems with controlling the behaviour of mobile
systems. The designer of a system has to integrate many different platforms
and programming languages.

* This work has been partially sponsored by the project AGILE, IST-2001-39029.

Preprint submitted to Elsevier Science November 22, 2007

Process calculi and associated formal logics have been studied to deal with
problems of the first kind, whereas coordination languages have been proven
successful for integrating different computing platforms and languages.

The present paper studies a calculus which allows to address both issues in a
uniform framework: we investigate a coordination model for mobile systems,
which explicitely allows to model the hierarchical structure of network loca-
tions. We study the syntactic, logical and algebraic theory of the calculus and
obtain a perfect match between the corresponding equivalences. This shows,
that our framework allows to add mobility to software components in a trans-
parent way.

On the side of process calculi, the ambient calculus [16] was the first framework
which directly allowed to represent the hierarchical structure of locations. This
calculus has been extended in many ways and directions to accommodate dif-
ferent computational mechanism; we mention secure ambients [24], where the
communication is synchronous, boxed ambients [10], which adopts a different
communication scheme (parents communicate with children), which is similar
to the scheme employed by the Seal calculus [44].

On a programming and more practical level, coordination languages [32| have
been used to provide the glue needed to build distributed applications from a
set of stand alone components. Several such languages have been implemented
and are being used in real-world applications [23,3]. On a foundational level,
the language KLAIM [29] has been investigated as language where localities
are first class citizens, and can be manipulated by a KLAIM programme.
The common feature found in all coordination approaches of distributed com-
puting is the separation of concerns between the distributed aspects and the
computation which are carried out at the individual nodes.

In this paper, we present and study a framework, which allows for direct mod-
elling of hierarchically structured locations while providing a basic separation
of concerns between the dynamic and topological aspects of computations in
the style of coordination models. We consider the hierarchical structure of lo-
cations to be an essential ingredient in any approach to mobile computation:
the Internet provides the glue between different sites, which themselves are
divided into a hierarchical collection of subnets, each of which with their own
administrative policy.

From a coordination point of view, this is the main novelty of our approach:
apart from standard coordination principles, we assume that localities have
a hierarchical structure: Our basic model provides the glue between concur-
rent computations, each of which performed in distinct locations, which can
communicate and actively change the topological structure.

In more detail, we consider locations, where each location has a name, a con-

trolling process and a (possibly empty) set of sub-locations. We abstract from
the concrete realisation of the controlling processes by not assuming a par-
ticular calculus or language, and instead assume the controlling processes to
be given in form of a labelled transition system. The processes interact with
their environment via a set of designated labels, which allow them to change
the topological structure of the locations to which they are attached.

The hierarchical structure of locations is similar in spirit to the ambient cal-
culus; in contrast to other approaches we aim at a clear separation between
processes and configurations: processes show behaviour, whereas the config-
urations provide the topological structure. The separation between processes
and locations is also present in KLAIM |29, with the main difference that
locations in KLAIM are not nested.

In view of applications of mobility to programming technology, this seems
most realistic: keeping the mobility primitives separate from the programming
languages which are using them allows for much greater re-use and increases
portability of code. The introduction of this additional abstraction layer as
provides a programming framework for mobile applications. Existing frame-
works typically implement this idea. Our concept of location is very similar
to that of a place in Mole [4] and to Jade’s containers [6,5]. The assumptions
which lead to our particular model are guided by the coordination approach
to distributed systems, which we extend by postulating that locations have a
hierarchical structure. We briefly discuss our postulates below.

Assumption 1 Every computation takes place in a uniquely determined lo-
cation.

This assumption in particular forces a two-sorted approach: We need to dis-
tinguish between elements which relate to the spatial structure and those,
which drive the computation process. Since our primary interest is the study
of mobile computation, we would like to be as independent as possible from
the concrete realisation of processes, and therefore make:

Assumption 2 The distributed part of the calculus is independent of the un-
derlying programming language or process calculus.

However, a computation needs some means to change the distributed and
spatial structure. That is, we need a clean mechanism, through which the
distributed structure can be manipulated:

Assumption 3 Processes modify the distributed structure of the computation
through interfaces only.

Finally, in order to model hierarchically structured administrative domains, or
sub-networks with different administrative or security policies, we postulate

that locations are structured; this is the main novelty of our approach, which
is not present in other coordination approaches to mobile systems.

Assumption 4 Locations are hierarchically structured, that is, each location
has a finite (possibly empty) set of sub-locations.

Our calculus is modelled after these assumptions. Regarding independence of
the underlying programming language, we assume that the processes, which
control the computations, already come with a (fixed) operational semantics,
in terms of a labelled transition system; this allows us to realise interfaces
as a particular set of distinguished labels. As already mentioned before, the
separation between processes and locations is taken care of by using a two
sorted approach. In particular, this enables us to work with strong process
equivalences only, since assume that computation steps that do not affect the
topological structure are already taken care of on the level of processes.

The main technical contribution of the paper is the study of the algebraic and
logical properties of the basic calculus, and its extension with local names and
multiple names. We introduce the notion of spatial bisimulation and give an
algebraic and a logical characterisation of the induced congruence. Our main
result here is, that if one abstracts from the concrete realisation of the com-
putations, we obtain a perfect match between structural congruence, logical
equivalence and spatial congruence. Methodologically, we want to advocate
the separation between the concepts “mobility” and “computation” on a foun-
dational basis; we take our results as an indication that our framework trans-
parently allows to incorporate component mobility. Technically, we use closure
properties to define bisimulations and bisimulation congruences. Our equiv-
alences account for the spatial structure of computations, and we compare
the algebraic, logical and syntactical theory of our calculus. Both in the basic
calculus and its extensions, we discuss which observations allow to capture
spatial bisimulation congruence: In the basic calculus, we need to observe the
transitions of the processes controlling the component movement. Extending
the calculus with local names, we have to add name revelation as an observa-
tion while a calculus with multiple names requires to observe behaviour after
name changes.

Structure of the paper: we introduce the basic calculus, that is, the calculus
without local names, in Section 1. The algebraic theory of he calculus is in-
vestigated in Section 2 and Section 3, and Section 4 transfers these results to
a logical setting. We then extend the calculus with local names (Section 5).
We discuss one more extension, the possibility for a location to have multiple
names, in Section 6. Finally, Section 7 compares our approach to other calculi
found in the literature.

1 Basic Sail: The Basic Calculus

This section introduces BasicSail, our testbed for studying mobile components.
In order to ensure independence from the underlying programming language
(cf. Assumption 2), BasicSail consists of two layers. The lower layer (which we
assume as given) represents the programming language, which is used on the
component level. The upper level represents the distributed structure, which
is manipulated through programs (residing on the lower level) by means of
pre-defined interfaces. Technically, we assume that the underlying program-
ming language comes with a labelled transition system semantics, which ma-
nipulates the distributed structure (on the upper level) by means of a set of
distinguished labels.

This is similar to the semantics of the coordination language MANIFOLD
[8]; the main difference is that our controlling processes already come with a
labelled transition system semantics, which allows us to concentrate on the
distributed structure. Our basic setup is as follows:

Notation Unless stated otherwise, we fix a set ANV of names and the set £ =
{in,out,open } x N of labels and a transition system (P, —), where () # P
is a set (of processes) and —C P x £ x P. We assume that (P,—) is image

finite, that is, for every (P,1) € P x L, the set {P' | P - P’} is finite.

We call two processes P, () process bisimilar, if they are bisimilar as elements
of the labelled transition system (P, —).

We write inn for the pair (in,n) € £ and similarly for out, open and call
the elements of L basic labels. The set P is the set of basic processes.

The prototypical example of transition systems, which can be used to instan-
tiate our framework, are of course process calculi. Note that we consider only
transitions with mobility primitives as labels, that is, we assume that internal
transitions are already accounted for in the semantics of processes. One such
process calculus, which we use in our example, is the following:

Example 1 Take P to be given as the least set according to the following
grammar:

P>PQ:=0|P|Q|aP]|P
where o € L ranges over the basic labels. The transition relation — s gen-
erated by the following rules

PP
aP P P|lQ-XP|Q

modulo structural congruence =, given by the azioms P || Q = Q || P, P ||

0=P, P Q| R =(P| Q)] Rand!P =P |IP. For convenience, we

often omit a trailing inert process and write o for a.0.

Intuitively, . P s a process which can perform an o action and continue as
P; the term P || Q represents the processes P and Q) running concurrently
and | P represents a countable number of copies of P.

Although we have included the replication operator in the core calculus above,
it is still image finite, since we consider processes only up to structural con-
gruence. Note that we use this concrete syntax for processes just in order to
illustrate our approach; the general theory is independent of the syntactical
presentation and just assumes that processes form a set and come with a
transition system over the set £ of labels.

Given such a transition system (P, —), the distributed structure (which is
our primary interest) is built on top of (P, —) as follows:

Definition 2 The set C of basic configurations s the least set according to
the grammar

C>A,B:=0|n(P)A]| A B

where P € P is a process and n € N is a name. We consider configurations
up to structural equivalence =, given by the equations

A B=B,A A0=A A, (B,C)=(A,B),C
The configuration building operator “,” is called spatial composition, and we
refer to (P)[-] as tree construction.

In the above, 0 is the empty configuration, n{P)[A] is a configuration with
name n, which is controlled by the process P and has the subconfiguration
A. Finally, A, B are two configurations, which execute concurrently. The next
definition lays down the formal semantics of our calculus, which is given in
terms of the reduction semantics — of the underlying process calculus:

Definition 3 The operational semantics of BasicSail is the relation given by
the reaction rules
p 2% p
m(PYAL,n(Q)B] = n(Q)lm(P"JA],B]

p L pr
n(Q)m(P)A],B] = m(P"|Al,n(Q) B]

openn
P =P

m(P)[A],n(Q)[B] = m(P")[A], B

together with the congruence rules

A= A A= A A=A A= B B =B
A B— A",B n(P)[A] = n(P)[A’] A = B.

The relation = is called spatial reduction.

The last rule captures that we do not distinguish between structurally congru-
ent configurations. In the examples, we often omit the empty configuration,
and write n(P)[] instead of n(P)[0]. Using the above definition, we can study
phenomena, which arise in a distributed setting, without making a commit-
ment to any kind of underlying language. In particular, we do not have to take
internal actions of processes into account; these are assumed to be incorpo-
rated into the reduction relation — on the level of processes.

We cannot expect to be able to embed the full ambient calculus [16] into
our setting, since we have to distinguish between the computational and the
distributed components, whereas the ambient calculus follows an untyped ap-
proach. However, we can nevertheless treat many examples:

Example 4 We use the set of basic processes from FExample 1.

(1) An agent, which has the capability to enter and exit its home location to
transport clients inside can be modelled as follows: Put

agent = a(P)[] client = ¢(Q)[] home = h(0)[agent]

where P =!(out h.inh.0) and @ = ina.outa.0. In the configuration
home, client, we have the following chain of reductions (where P’ = in h.0 ||

P and Q' = out a.0):

home, client

This sequence of reductions shows a guarded form of entry into h: The
client has to enter the mediating agent a, which then transports it into
h, where the client then exits. Note that in the basic calculus, ¢ could
enter h directly, if ¢’s controlling process were different. This can be made
impossible if one adds local names, as we will see later.

(2) We model an agent, which repeatedly visits two network nodes, as follows:

agent = a(P)]]

with P =!(innj.out ny.0) ||!(inng.out ny.0). The activity of a once it is

at either ny or ny is not modelled (but imagine a checks, whether a node
has been corrupted or is otherwise non-functional). In the presence of two
nodes ny and ny, we have the (spatial) reductions, where we write Ny and
Ny for the controlling processes of ny and na:

n1 (ND)[], n2(No)[], a(P)]]
=1 (Ni)[a(P)[]], na(No)]]
=n1 (N1)[], n2(No)[], a(P)]]
=1 (N1)[], na(No) [a() []]
— ..

In the above, we have abbreviated Py = out ny.0 | P and P, = out ns.0 ||
P. Here, the program P controlling a does not force a to visit ny and no
wn any particular order, and a could for example choose to enter and leave
ny continuously, without ever setting foot into ns.

2 Spatial Bisimulation and Spatial Congruence

This section introduces spatial bisimulation and spatial congruence, the basic
equivalences we will be concerned with for the remainder of the paper. The
equivalences are introduced for the basic calculus. We discuss an extension of
the equivalences to a calculus with local names in Section 5 and to a calculus
which allows multiple names in Section 6.

We introduce spatial bisimulation as binary relation on configurations, subject
to a set of closure properties. We take “closure property” as formal term, the
meaning of which is given as follows:

Terminology Suppose R C A x A is a binary relation on a set A and S C
Ax---xAis n+1-ary. We say that R is closed under S, if, whenever (a,b) € R
and (a,ay,...,a,) € S, there are by,...,b, € A with (b,b1,...,b,) € S and
(a;, b)) € Rfori=1,....n

If R is closed under S, it is often helpful to think of R as an equivalence on
processes and of S as a reduction relation. In this setting, R is closed under
S if, whenever a and b are equivalent (i.e. (a,b) € R) and a reduces to @
(i.e. (a,a’) € S), there is some V' such that ¢’ and b are again equivalent (i.e.
(a',0') € R) and b reduces to b’ (that is, (b,t') € 5). So if R is closed under
S, we think of R as being some bisimulation relation and S the corresponding
notion of reduction.

Definition 5 (Spatial Bisimulation, Spatial Congruence) Consider the
following relations on C:

(1) Subtree reduction |C C x C, given by C | D if AE € C,n € N,P €
P.C =n(P)D],E.

(2) Forest reduction OC C x C x C, given by C O (D, FE) if C = D, E.

(3) Top-level names Qn C C, given by C' € @Qn if 3D, E € C,P € P.C
n(P)[D], E.

(4) The inert relation 0 C C, where C € 0 if C = 0.

We take spatial bisimulation ~ (resp. spatial congruence =) to be the largest
symmetric (resp. congruence) relation, which is closed under spatial reduction

and the relation (1 - 4).

Note that forest reduction is the ternary relation associated to spatial com-
position in the sense of [31,35]. For spatial congruence, we just require the
congruence property w.r.t. the construction of configurations, that is we re-
quire

(].) AO gAl, By= B = AQ,Al = B(),Bl and
(2) AXB.neN,PeP — n(P)A = n(P)[B]

This not only justifies the name spatial congruence — it furthermore allows
us to study the evolution of the tree structure of (a set of) mobile processes
without reference to the underlying process calculus. Note that the spatial
congruence is not the largest congruence contained in the spatial bisimulation
(this relation is not a bisimulation in general). Our notion of spatial congruence
follows the approach of dynamic congruence[28| to ensure that the resulting
equivalence retains the bisimulation property.

Remark Our definition of spatial congruence is given in two steps: first we
define spatial bisimulation, and then consider the largest congruence, which is
a spatial bisimulation at the same time. The original paper |28] suggests the
following different definition: spatial congruence is the largest relation, which
is context closed under the relations (1) - (4) in Definition 5. Here, we call a
binary relation R C C xC context closed under a n+1-ary relation S C Cx- - -x
C, if for all contexts C[-] and all (a,b) € R, whenever (Clal,as,...,a,) € S,
there are (by,...,b,) € C" with (C[b], by, ...,b,) € S. One can obtain the same
results using this definition; we prefer to work with Definition 5 as it directly
highlights the important features of spatial congruence: being a bisimulation
and a congruence at the same time.

In a nutshell, two configurations are spatially bisimilar, if they have bisimilar
reducts, bisimilar subtrees, and the same top-level names. Spatial congruence
is taken to be the largest spatial bisimulation, which is a congruence w.r.t.
spatial composition and tree construction.

These closure properties already allow us to distinguish processes, which con-
sist of two ore more components running concurrently, from processes which

have a single top level location.

Definition 6 A configuration C € C is called a singleton, if C' = n(P)[D] for
somen € N, P € P and D € C. This is denoted by st(C).

In the next lemma, we show that spatial bisimulation is already strong enough
to distinguish singleton configurations from configurations which are not.

Lemma 7 Suppose C, D € C with C ~ D and st(C). Then st(D).

Proof: Suppose not. Then either D = 0 (in which case C' = 0, contradiction)
or D = Dy, Dy with both Dy, Dy # 0. Then D O (D4, D5), and since C ~ D,
C = (1, Cy with both Cy, Cs # 0, contradiction. O

If two configurations are spatially congruent, they can be substituted for one
another, yielding again spatially congruent configurations. The next example
shows, that spatial congruence is properly contained in spatial bisimulation.

Example 8 Take n,m € N with n # m and let A = n(inm.0)[] and B =
n{0)[]. Then A ~ B (since neither A nor B can perform a spatial reduction),
but A 2 B, since A,m(0)[] can reduce, whereas B, m(0)[] cannot.

Since we clearly want equivalent configurations to be substitutable for one an-
other (which allows us to build large systems in a compositional way), spatial
congruence is the notion of equivalence we are interested in. By definition,
spatial congruence involves the closure under all configuration constructing
operators, and is therefore not easy to verify.

Our first goal is therefore an alternative characterisation of spatial congruence.
As it turns out, we only need to add one closure property to the definition of
spatial bisimulation in order to obtain spatial congruence.

3 Labelled Bisimulation

In this section, we describe the relation between spatial congruence and la-
belled bisimulation, a notion which we will introduce shortly.

This addresses the problem of checking that two configurations are spatially
bisimilar — the definition of spatial congruence requires closure under all con-
texts. This can be avoided if one considers labelled bisimulation, which is an
extension of spatial bisimulation with respect to one more closure property. In
this section we take the first step towards a characterisation of spatial congru-
ence by showing that labelled bisimulation is contained in spatial congruence.

10

Definition 9 Let [€ L. Define the relation :l>§ C x C by the rules

p-Lp C =L
n(P)[A] == n(P")[A] C,D=%C',D

and call a relation B C C x C closed under labelled reduction, if B is closed
under == for all 1 € L. We take labelled bisimulation < to be the largest

symmetric relation, which is closed under labelled reduction, spatial reduction
and the relations (1 - 4) of Definition 5.

In order to be able to compare spatial congruence and labelled bisimulation, we
need a proof principle, which allows us to reason about labelled bisimulation
using induction on reductions. This principle works for image finite relations
only:

Lemma 10 The relations =, O, | and =L (for alll € L) are image finite.

Proof: By structural induction using the respective definitions using the fact
that (P, —) is image finite. O

The last lemma puts us into the position to use induction on the number of
(labelled) reduction steps as a proof principle. To make our reasoning explicit,
we use a sequence of relations ~;, each of which capturing the behaviour up
to and including ¢ labelled reduction steps.

Definition 11 Define a sequence of relations ~;C CxC inductively as follows:

(1) ~q is the largest symmetric relation such that for all C ~q D
o st(C) implies st(D).
o C € @n implies D € @Qn for alln € N.
o« O =L (' implies 3D'.D =L D' and C' ~y D foralll € L.
(2) C ~;i1 D is the largest symmetric relation s.t. for all C ~; D
st(C) implies st(D)
C € @n implies D € @Qn
(C,C") € R implies 3D'.(D,D’) € R and C' ~; D" for R € {=>, | }.
C O (C1Cy) implies 3Dy, D3.D O (D4, Ds) and Cj ~; D;, j = 1,2.
C =% ¢’ implies 3D'.D == D' and C" ~i1 D' forl € L

Note that in the above definition, the relations ~; are required to be closed
under labelled reduction; this is expressed in the last clause, where we do not
refer to the previously defined relation.The proof principle, which we use to
show that labelled bisimulation is a congruence, can now be formulated as
follows:

Proposition 12 (1) ~;;1C~; for all i € N.

11

(2) ForallC,D e€C,C < D iff C ~; D for alli € N.

Proof: The first claim is immediate from the definition. For the second, we
abbreviate ~= ey ~i-

To see that ~C<« it suffices to show that ~ is a labelled bisimulation. We only
treat closure under forest reduction, the remaining cases are even easier. So
suppose that C'~ D and C' O (C1, Cs). Since C' ~ D, there are, for all 1 € N,
D} and D} € C such that D O (D}, Dj) and D} ~ Ci for j = 1,2. Since O is
image finite and ~; 1 C~; for all i, we can find (Dq, Dy) with D O (Dy, Ds)
and Dj ~ Cj fOI‘j = 1,2

The converse inclusion £C M;cy ~; follows from <£C~; for all ¢« € N, which
is readily established using induction on 7 and the fact ~;;;C~;. Lemma 7
establishes the clause dealing with singleton configurations. a

The next lemma is needed to compare labelled bisimulation and spatial con-
gruence.

Lemma 13 Suppose P,.Q € P, C,D € C , n € N and ~; is defined as
Proposition 12.

(1) If n(P)[C] ~; n{(Q)[D] for some i € N, then P and Q are process bisim-
ilar.
(2) If P and Q are process bisimilar, then n(P)[C] ~; n(Q)[C] for all i € N.

The last lemma allows us to consider the processes of the underlying labelled
transition system (P, —) up to process bisimilarity. With this, plus the proof
principle established in Proposition 12, we can now show that labelled bisim-
ulation is a congruence; this in particular implies that labelled bisimulation is
contained in spatial congruence, which establishes a first relationship between
labelled bisimulation and spatial congruence. section.

Proposition 14 Labelled bistmulation is contained in spatial congruence.

Proof: We show that each ~; is a congruence; the claim then follows from
Proposition 12 and the definition of spatial congruence. The case ¢ = 0 is
easy, so suppose 0 < i. Note that we have to establish the congruence property
w.r.t. spatial composition and tree construction

(1) Congruence w.r.t. spatial composition: Suppose C, D € C with C' ~; D
and F € C. We show that C, E ~; D, E. It is easy to see that C, E have the
same labelled reductions, top level names and subtrees. We only show that
they have compatible spatial reductions.

Assume C, E = C’". We have to show that D, E = D’ with C' ~,_; D’. We

12

distinguish the different cases corresponding to the different reduction rules.
Throughout, we assume C' = n(P)[Co], C, and E = m(Q)[Eo|, E1. The cases
where ¢ = C and ¢' = C,E or E = E and ' = C, E are trivial, hence
omitted.

Case 1: C enters E. Formally C,E = ' where P 2% P’ and ¢’ =
C1, (@) [n(P")[Col, Eo], Er.

Then C O (n(P>[C’0],C’1) Hence D O (n(R>[D0],D1) with n(R>[D0] ~i1
n(P)[Cy] and C; ~;_1 D;. Note that X ~; Y only if both are singletons
or both are not singletons for all j € N. Since n(R)[Dy] ~;—1 n(P)[C]
and n(P)[Cy] == n(P")[Cy], there is R with n(R)[Dy] £& n(R')[D,] and
n(P"Y[Co] ~i—1 n(R')[Do]. By the operational semantics of the basic calculus,
we have that D — D' for D" = Dy, m(Q)[n(R')[Dy], Eol, E1. Since ~;_; is a
congruence, finally C’ ~;,_; D’ by Lemma 13.

Case 2: E enters C. Formally C,E = ' where Q 2% Q' and C' =
n{P)[Co, m(Q")[Eo]], E1: Similar.

Case 3: C opens E. Formally C, F = C" and C" = n(P")[Cy], Cy, E; with
P P2 P As above, D O (n(R)[Dy), D) with n(R)[Dq] ~;_1 n{P)[Co] and
Dy ~;_y C}. Since n(P)[Cy] R n{P")[Co], there is R’ such that n(R)[Dy] R
n(R')[Do] and n{P")[Cy] ~;—1 n{R')[Dy]. By the operational semantics, D, F =
D’ with D’ = n(R')[Dy|, D1, E1. We have D’ ~; 1 C' by Lemma 13, since ~;_;

is a congruence.

Case 4: E opens C. Formally C, E = C" and C" = C,,m(Q")[Ep], £y with
Q 2 @': Similar.

The remaining cases, where the reduction has been triggered by the out-rule,
are trivial.

(2) Congruence w.r.t. tree construction: Suppose C' ~; D; we show that
k(S)[C] ~; k(S)[D] for arbitrary k € N and S € P.

Again, it is straightforward to verify all clauses in the definition of ~; save the
clause concerning spatial reduction. We treat the following cases:

Case 1: C reduces. Formally k(S)[C] = k(S)[C’]. Then C' = ", hence
D = D' for some D' ~;_; C'. Then n(S)[D] = D’ for D' = k(S)[D’] and
k(S)[C'] ~i—1 k(S)[D’] since ~;_; is a congruence.

Case 2: C leaves k. Formally, for C' = n(P)[Co],Cy we have k(S)[C] = C’
with C' = n(P')[Co], k(S)[C1] and P =25 P’ Then C' O (n(P)[Cy], C1), hence
DO (7’L<R> [DQ],Dl) with 7’L<P> [Co] ~i_1 7’L<R> [DO] and Cl ~i—1 Dl.

13

Hence n(R)[D,| oued n(R")[Dy] and n(P’)[Cy] ~;—1 n{R')[Dy]. By the opera-
tional semantics, k(S)[D] = D’ for D' = n(R')[Dy], k(S)[D]. Since ~;_; is
a congruence, we conclude C' ~; 1 D'

The remaining cases are straightforward. a

We continue the comparison of equivalences on the set of configuration by
relating spatial congruence with structural congruence. Note that it makes
no sense to compare spatial congruence and structural congruence directly: if
P, () € P are bisimilar but not equal, then n(P)[] and n(Q)[] are certainly
spatially congruent, not structurally congruent. For this reason, we introduce
weak structural congruence, which extends structural congruence to consider
configurations as congruent, whose controlling processes are bisimilar. The
formal definition is as follows:

Definition 15 Weak structural congruence is the least relation R generated
by the rules of Definition 2, plus the rule

C=D P, Q process bisimilar
n(P)[C] = n{(Q)[D]

wheren € N, C,D € C and P,Q € P.

Thus weak structural congruence not only identifies structurally congruent
configurations, but also configurations with bisimilar controlling processes. We
think of weak structural congruence as structural congruence up to process
bisimilarity.

Coming back to the example at the beginning of the section, note that n(P)]]
and n(Q)|[] are weakly structurally congruent for P, () process bisimilar. We
have argued that this is an example of a pair of configurations, which are spa-
tially congruent, but not structurally congruent. Extending structural con-
gruence to include those configurations, which only differ in the controlling
process, we can show that spatial congruence implies structural congruence.
This result hinges on the following lemma, which demonstrates that spatial
congruence is closed under labelled reductions.

Lemma 16 Spatial congruence is closed under labelled reduction.

Proof: Suppose n € N and C, D € C are spatially congruent with C =L o

Then C'is of the form C' = Cy, C} with Cy = m(P)[E] and P L\ P’ for some
P € Pand E € C. We proceed by case distinction on [€ £, where we use a
fresh name k € N, i.e. k does not occur as the name of a location either in C'
or in D, and some arbitrary R € P.

Case | = inn: Consider the context K| | =n(R)[k(R)[]], _. Then K[C] =

14

C" with C" = Cy,n(R)[m(P")[E], k(R)[]]. Since C' = D, we have K[D] = D’
with C" =2 D', Since spatial congruence is closed under forest reduction and
top-level names, we can split D' = Dy, n(R')[F] for some R' € P and F € C,
where D; = C) and n(R')[F] = n(R)m(P")[E], k(R)[]]. Using closure under
subtree reduction, we obtain F' = m(Q")[E'],k(R)|] (since k is fresh) with
m(Q")[E'] =2 m(P’)[E]. Again using that k is fresh, we have D = Dy, m{(Q)[E’]
for some Q € P with Q 2% Q' with D; = O} and m(P')[E] = m(Q')[E']; since

inn ~

spatial congruence is a congruence we finally obtain D = Dy, m(Q')[E’'] =
C1, m{P")[E].

Case | = out n: Similar, using the context n{R)[_, k(R)]]].

Case | = openn: Similar, using the context n(R)[k(R)[]], _. O

We are now ready to state and prove the main result of this section:
Proposition 17 Spatial congruence and weak structural congruence coincide.

Proof: 1t follows directly from the definitions that weak structural congruence
(which we denote by = for the purpose of this proof) is contained in spatial
congruence. We prove the converse inclusion by contradiction: assume that
the set F = {(C,D) €e C xC | C = D,C # D} of felons is non empty. For
C € C, we define the size of C, size(C'), by induction as follows: size(0) =
0,size(C, D) = size(C') + size(D), size(n(P)[C']) = 1 + size(C").

Since the standard ordering on natural numbers is a well-ordering, there is a
pair (C, D) of felons, such that size(C') is minimal, that is, for all (C', D") € F
we have size(C”) > size(C'). We discuss the different possibilities for C.

Case C = Cy,Cy with Cy # 0 # C;: Using forest reduction, we can split
D = Dy, D; with D; = C; for j = 0, 1. Since size(C)) < size(C') and size(C) <
size(C), neither (Cy, Do) nor (Cy, Dy) are felons, that is, Cy = Dy and Cy = Dy,
hence C' = Cy, Cy = Dy, D1 = D, contradicting (C, D) € F.

Case C = n(P)[Cy]: By subtree reduction, D = m(Q)[Do] with Cy = Dy.
Since size(Cy) < size(C), the pair (Cy, Dy) is not a felon, hence Cy = D).

By closure under top-level names, furthermore n = m, and closure under
labelled reduction (Lemma 16) implies that P and @ are process bisimilar.
Hence n(P)[Co] and m(Q)[Dy] are weakly congruent, contradicting (C, D) €
F.

Case C'=0: From C' = D we conclude D = 0, contradicting C' # D. a

So far, we have shown that labelled bisimulation is contained in spatial con-
gruence, which is in turn contained in structural congruence. In the following

15

section, we introduce a spatial logic and describe the relationship between
structural congruence and logical equivalence.

4 A Spatial Logic for BasicSail

In the previous section, we have shown a chain of implications between dif-
ferent equivalences on the set of configurations: labelled bisimilarity implies
spatial congruence, which in turn implies weak structural congruence. This
section adopts a logical view and closes the chain of implications by show-
ing that weak structural congruence implies logical equivalence, which is then
proven to contain labelled bisimilarity. Using the setup from the previous sec-
tion, this hinges on the fact that that the underlying processes are image finite.
Our logic is very similar in style to modal logics used to reason about the power
algebra associated with an algebraic structure: we obtain a hybrid of modal
logic and separation logic [31,35]. In style, this logic is very similar the logics
discussed in [15,11] except for the absence of linear implication. However, as
we shall see later, linear implication can be added at no extra cost.

As before, our definitions and results are parametric in a set A/ of names and
the associated set £ of labels. We now introduce the logic we are going to
work with.

Definition 18 (Spatial Logic: Syntax) The language L of spatial logic s
the least set of formulas according to the grammar

Lo ¢y u=elQn[ff]¢—v[(R)¢]| {0y

wheren € N, | € L and R ranges over the relations |,=— and =L forl e L.

Intuitively, the formula e allows us to speak about the empty context and @Qn
allows us to observe the names of locations. Formulas of type (R)¢ allow us
(as in standard modal logic) to reason about the behaviour of a process after
evolving according to the relation R. In our case, we can specify properties of
sub-configurations (using |), transitions (using =) and labelled reductions
(using :l>) Finally, a formula of type ()@ asserts that the current config-
uration can be split into two subconfigurations, the first satisfying ¢ and the
second 1.

Definition 19 (Spatial Logic: Semantics) The semantics of propositional

16

connectives is as usual. For the modal operators, we put, for C' € C:

CEe ifC=0

C = @n iff C e @n

C = (R)¢ if 3C.(C,C") € R and C' = ¢

C = (O)py iff 3C",C".C O (C',C") and C' = ¢,C" =1

where R ranges over =, | and =t for l € L as above. As usual, Th(C) =
{¢p € L | C [¢} denotes the logical theory of C € C. Two configurations C, D
are logically equivalent, if Th(C') = Th(D); this is denoted by C =, D.

Note that we use the expression “@n” above both as an atomic formula of the
logic and as a unary relation. In this section, we show that logical equivalence
is invariant under structural congruence, adding one more item to our chain
of implications:

Lemma 20 Weak structural congruence is contained in logical equivalence.

Proof: Straightforward by induction on the definition of weak structural con-
gruence. The case of two bisimilar controlling processes uses the standard fact
that bisimulation implies logical equivalence in process calculi (see e.g. [7,43]).

(]

We now close the chain of relation between the different relation on configu-
rations by showing that logical equivalence implies labelled bisimulation; the
proof uses standard techniques in modal logic, see e.g. [7].

Proposition 21 Logical Equivalence is contained in labelled bisimulation.
Proof: We show that

=={(C,D) € C| C, D logically equivalent}

is a labelled bisimulation. Using Lemma 10, closure under —>, |, :l>, 0 and
@n are straightforward, see e.g. [7]. We just demonstrate that =j, is closed
under forest reduction.

To this end, suppose that C, D € C with C = D and C O (Cy, C}). Suppose
for a contradiction that for all Dy, Dy with D O (Dy, D;) we have Dy #; Cy
or D1 7£L Cl.

Thus for all (Dg, D1) with D O (Dyg, D1) there is ¢ = i(Dgy, D;) € {0,1} and
¢i(Do7D1) with CZ): QSZ but Dz b’é ¢z NOW, for

¢ = \{9ipo.01) | i(Do, D1) =0} and ¢ = A{¢ipy,p,) | (Do, D1) = 1}

17

we have that C' = (O)(¢,v) but D & (O)(¢,1), contradicting Th(C)
Th(D). O

We now conclude the investigation of the basic calculus by a comparison of
the different forms of equivalence we have discussed so far.

Theorem 22 In the BasicSail calculus, labelled bisimilarity, spatial congru-
ence, logical equivalence and weak structural congruence coincide.

The above equivalences all apply to the basic calculus, that is, the calculus
without local names. Before extending our results to the calculus with local
names, discuss the impact of adding linear implication to our logic.

Typically, spatial logics for reasoning about mobile processes, for example
[15,11,12] contain linear implication > as further connective. We have chosen
not to include linear implication into the spatial logic for the basic calculus,
since the main characterisation result, Theorem 22, can be proved without
having linear implication available. Our logic is thus more similar in nature to
that of [13]. This section shows, that linear implication can be added without
destroying invariance under structural congruence.

Definition 23 The language L™ of spatial logic with linear implication is the
least set of formulas according to the grammar

L"2¢ v u=clQn|fflo—v[o>v|(R)¢|(O)¢¢

where the semantics is given as in Definition 18, plus the clause

Ceé¢sv iff VDDE¢ = D,C =1

for C € C. If Th(C) = Th(D) for C,D € C, we call C" and D logically
equivalent, which we denote by =7 .

The connective > is called linear implication: it stipulates that the formula v
holds in presence of all configurations satisfying ¢. It is sometimes helpful to
think of ¢ as a property that needs to be guaranteed to hold in presence of all
possible attackers which satisfy .

It is immediately clear from the definition of the semantics of > that lin-
ear implication does not allow to distinguish between structurally congruent
configurations.

Lemma 24 Suppose C = D are weakly structurally congruent and ¢ € L*.
Then C = ¢ iff D |= ¢.

Proof: 1t follows from Theorem 22 that the statement holds for formulas not
containing >. It follows directly from the definition of > that this result carries

18

over to L>. O

Using Theorem 22, we immediately obtain that linear implication does not
help to distinguish configurations which are labelled bisimilar (or spatially
congruent, for that matter).

Corollary 25 Suppose C = D are spatially congruent. Then C =7 D.

5 LocalSail: A Calculus with Local Names

In the calculus of mobile ambients, local names are essential for many exam-
ples. The treatment of local names is derived from the m-calculus, i.e. governed
by structural rule of scope extrusion (vnP) | @ = vn(P | Q) whenever n is
not a freely occurring name of). In the ambient calculus, local names cut
across dynamics and spatial structure, by adopting a second structural rule:
vn(k[P]) = klvnP] if n # k, which allows to move the restriction operator up
and down the tree structure, induced by the nesting of the ambient brackets.

If we want to remain independent from the underlying process calculus, we
cannot adopt the latter rule, as we do not have name restriction avaliable at
the process level. However, we can look at a calculus with local names, where
local names obey scope extrusion a la m-calculus.

The next definition extends the syntax as to incorporate local names. In order
to deal with scope extrusion, we also have to introduce the concept of free
names.

Definition 26 (LocalSail) The set C of configurations in LocalSail is given
by

C>C,D:==0|n(P)[C]|C,D | (vn)C
forn € N and P € P. If i = (nq,...,ng), we write (vi) for (vny)...(vng).
Given P € P andn € N, we say that n is free in P, if there are ly, ..., 1, and

P, ..., P, such that P SN P LI R b LN @, where [is one of inn,
outn and openn. We let fu(P) = {n € N | n free in P}.

For C € C, the set In(C) is defined by induction on the structure of C as
follows:

e fn(e) =10

e n(C,D)=n(C)Ufn(D)

e fn(n(P)[C]) ={n} Un(P)uU(C)
e fn((vn)C) =(C)\ {n}

19

where structural congruence is as in Definition 2, augmented with a-equivalence
and the rules (vn)(A, B) = ((vn)A), B whenever n does not occur freely in B
and the aziom (vn)0 = 0.

The operational semantics is given as tn Definition 2, augmented with the rule

C =
(vn)C = (vn)C’

for C,C" € C andn € N. The extension of BasicSail with local names is called
LocalSail.

Note that, in order to be able to state the rule for a-equivalence, we need
a notion of substitution on the underlying processes, which needs to assume
that the set of processes is closed under substitution. Formally, we have the
following coinductive definition:

Definition 27 Let | = opm € L with op € {in,open,out }. Ifn,k € N, we
put l[n/k] =1, if m # k, and l[n/k] = opn if m = k.

Suppose P,Q € P and n,k € N. We say that Q is [n/k]- bisimilar to P,
denoted by Q ~ P[n/k|, if

o PP — 3Q.Q ™" Q and P' ~ Q'[n/k].

o QMY — IP'P Y P and P~ Q'n/k].

We say that P is substitution closed, if, for all P € P and all n,k € N, there
is Q € P with Q ~ P[k/n]. If this is the case, we put

k(Pk/n))C[k/n]] if m=n and Q ~ P[k/n]

m(P)[C][k/n] = {n<P[k:/n]>[C[l€/”H if m#n and Q ~ P[k/n]

and extend this definition to the whole of C by putting
Olk/n]=0 (C,D)[k/n] = C[k/n|, D[k/n]
where C,D € C, P € P and n,m,k € N.

In order to be able to deal with a-equivalence, we therefore assume for the
remainder of the section that P is substitution closed; this can always be
achieved by adding the missing substitution instances to P. Despite of its
name, closure under substitutions is not a syntactic notion: it applies to an
arbitrary labelled transition system. Using this notion of substitution on the
process level, the inductive extension to configurations is standard.

Before investigating the logical and algebraic theory of the calculus with local
names, we continue the discussion of Example 4. Recall that we had an agent

20

in a home location, whose sole purpose was to transport clients inside home.
However, as we remarked when discussing this example, nothing prevents the
client process to enter the home-location directly. This shortcoming can now
be remedied in the calculus with local names.

Example 28 We can now model an agent, which has the capability to enter
and exit its home location and to transport clients inside with local names as
follows: We let “client” and “agent” as in Example 4 and put

home = (vh)h(0)[agent]

Using scope extrusion, we have the same chain of reductions as in Example
4. Howewver, since h is a private name now, the client cannot enter “home”
without the help of “agent”.

The next issue we are going to discuss is the algebraic and the logical theory
of the calculus with local names. If we simply transfer the definition of spatial
congruence to the setting with local names, we can not expect to obtain the
same match between the logical, syntactical and algebraic theory. Consider
for example C'= 0 and D = (vn)n(0)[]. Clearly C' # D, but it is easy to see
that C' and D are structurally congruent.

In order to obtain a similar characterisation as in the calculus without local
names, we therefore have to extend the definition of spatial bisimulation, and
demand closure under name revelations. We think of name revelation as an
additional experiment which we can perform on configurations: for two config-
urations to be equivalent, they have to behave equivalently even if we expose
one of their hidden names.

Definition 29 Suppose C' € C and n,k € N'. We put
C=L (" iff C=(vk)C" and C' = C"[n/k]

whenever n ¢ (C) (free names cannot be revealed — they are not secret). We
consider the following equivalences:

e spatial bisimulation (resp. spatial congruence) is the largest symmetric (resp.
congruence) relation which is closed under spatial reduction =, forest re-
duction O, subtree reduction |, top level names Qn and under revelation
=L (for alln € N).

e labelled bisimulation is the largest spatial bisimulation, which is closed under
labelled reduction (Definition 9).

e weak structural congruence is the least relation which contains structural
congruence and all pairs of the form (n(P)[C],n(Q)[C]) for P,Q € P pro-
cess bisimilar.

In spite of the syntactic similarities, our definition is only superficially related

21

to Sangiorgi’s open bisimulation [37] and the equivalences used in the fusion
calculus [33]. The use of substitution in the above definition is solely used to
consistently rename a hidden name, whereas open bisimilarity uses substitu-
tion to deal with the synchronous communication of names. Moreover, open
bisimilarity is also meaningful in absence of local names.

We now turn to the impact of local names on the equivalences, which we
have discussed previously. Since we make revelation an explicit part of spatial
bisimulation, everything goes through as before, once the equivalences are
transferred (without changes) to the calculus with local names. We obtain:

Proposition 30 The following hold in the LocalSail calculus:

(1) Labelled bisimulation contains spatial congruence
(2) spatial congruence contains weak structural congruence

Proof: To show that labelled bisimulation is contained in spatial congruence,
we extend the proof of Proposition 14 and show, that labelled bisimulation
is a congruence. We need to deal with three configuration-forming opera-
tions: Spatial Composition, tree construction and name restriction. Note that
Lemma 10 and Proposition 12 are also valid for the set £L = {opn | op €
{in,out,open,rev } and n € N'} of labels; we hence have to show that each
relation ~;, as defined in Definition 11 is a congruence, for every ¢ € N.

(1) Congruence w.r.t. spatial composition: Suppose C' ~; D and E € C. We
have to show that C, F ~; D, F. Again we focus only on the nontrivial clauses
in the definition of ~; and only treat the case of spatial reductions. The case
C = C and C' = C’ E and E = F with ¢’ = C, E are trivial. For the
other cases, we assume that C' = (vi)Cy and E = (vm)E, where there is
no occurrence of v at the top level of either Cy or Ey. In order for C' and
D to interact, both must perform scope extrusion, that is, we must have
C,E = (vii)(vm), Cy, By = C'" and C, E = (vi)(vm)C". Since C' & E, we
have D =22 .. =22F D, & Oy where D, has no occurrence of name restriction
at the top level. As Cy & Fy and both have no name restriction at their top
level, we can proceed as in Proposition 12.

(2) Congruence w.r.t. tree construction: As in the proof of Proposition 12.

(3) Congruence w.r.t. name restriction: Suppose C' ~; D; we have to show that
(vn)C ~; (vn)D. Clearly (vn)C and (vn)D have the same spatial reductions,
as their only reductions can be performed under the v-binder (Definition 26).
The only labelled reductions either C' or E can perform are the revelation of
the bound name n, which can be matched since C' ~; D.

For the second implication, the minimal witness argument used in Proposition
17 has to me modified as follows: We put size(vn)C' = size(C') and consider

22

the set 7 = {(C,D) e CxC | C = D,C # D} of felons. If (C,D) € F
such that size(C') is minimal, we have to consider the additional case that
C = (vil)Cy with 7 = (ng,...,ny). In this case, C =" ... ==2* ', where
C'" # (vm)C" for all m,C". Hence D == ... =2 D' with C' = D’. Now
(C',D") € F, which reduces this case to one of the two cases discussed in the
proof of Proposition 17. O

In order to transfer the characterisation result to a logical setting, we introduce
a hidden name quantifier in the style of Gabbay and Pitts [20]:

Definition 31 The language of spatial logic with local names is the least set
according to the following grammar

Lo, u=el@n[ff]o—|(R)o|{0)d¢|Hn.g

Given C € C and ¢ € L, satisfaction C |= ¢ is as in Definition 18, plus the
clause
C |=Hn.¢ iff there is C' € C s.t. C =2 C" and C' | ¢

for the hidden name quantifier. As before, Th(C) = {¢ € L | C |= ¢} for
C e€C, and C,D € C are called logically equivalent, denoted by C =, D, if
Th(C') = Th(D).

Since the relation == (for n € N) are image-finite, Lemma 10 and Proposition
12 remain valid in the calculus with local names. We thus obtain

Proposition 32 In the LocalSail calculus:

(1) weak structural congruence is contained in logical equivalence.
(2) logical equivalence is contained in labelled bisimulation.

Proof: The first claim is immediate from the definition of weak structural con-
gruence in the calculus with local names. Note that the relations == are image
finite for all n € A. This allows us to preceed as in the proof of Proposition
21 for the second claim, which we extend by showing that logical equivalence
=, is closed under revelation. Assume for a contradiction that C, D € C with
C =1 D, C = ' but we have C" #;, D’ for all D’ with D == D’. Since the
set R ={D' € C| D=2 D'} of reducts is finite by assumption, we have a for-
mula ¢p for every D' € R s.t. C' |= ¢pr but D' = ¢pr. Hence C' = Apicg dpr
but D ¥~ Aper ¢p/, which contradicts C' =y D. O

As a corollary, we obtain that the characterisation of Theorem 22 carries over
to the calculus with local names.

Theorem 33 The notions of labelled bisimulation, spatial congruence, weak
structural congruence and logical equivalence coincide for the LocalSail calcu-
lus.

23

6 MultipleSail: A Calculus with Multiple Names

In this section, we discuss a second extension of the BasicSail calculus and
allow each location to have multiple names. Multiple names can be used to
model network devices with more than one network interface; we allow for
these interfaces to be switched on or off independently of each other. This
feature can be used for example to model firewalls, which have one interface to
the outside and a second network connection to a (protected) internal network.
While this is a very realistic assumption, it is — to the best of our knowledge —
not present in other calculi which can be used to model mobile computation.

Due to the layered structure of BasicSail, every action of a controlling pro-
cess takes place in a unique location. Therefore, it is straightforward to allow
processes to manipulate the names of the locations which they control. We
can therefore easily model the addition and deletion of names using two extra
primitives upn (add the name n to the names of the present location) and
downn (remove the name n from the set of names of the present location).
These actions correspond to switching network interfaces on and off, since ev-
ery network interface comes with a unique name. This in particular covers the
case where a location has more than one network interface — or none at all.
If we extend the syntax of configurations to include multiple names, a typical
singleton configuration has the form 7(P)[C], where 7l = (nq,...,ng) is a list
of names.

In contrast to the extension of BasicSail with local names, which amounts to
adding extra capabilities in the construction of configurations, multiple names
require to add new capabilities to the underlying processes. More precisely,
we need to assume that (P, —) is an image finite labelled transition system,
where the labels incorporate up n and down n. The following convention makes
this precise.

Notation Throughout the section, we fix a set N of names and consider the
set L = {opn | op € {in,out,open,up,down} and n € N'}. Furthermore,
we fix a labelled transition system (P, —), where P #) and —C P x L X P

is image finite.

Based on a set of processes that can exercise control over the names of a
location, the MultipleSail calculus is given as follows:

Definition 34 (MultipleSail) The set of configurations of MultipleSail is
the least set according to the grammar

C>AB:=0|i(P)A]| A B

where P € P is a process and 1 = (ny,...,n;) € N* is a list of names. As

24

before, configurations are considered up to structural congruence = given by
the axioms of Definition 2, augmented with

(n1,...,n) < P> [C] = (noqry, - - o)) (P)[C]
where o is a permutation of {1,... ,k}.

In the sequel, we write n € (ny,...,ng) iff n = n; for some 1 < j < k. The
operational semantics is now given by extending the rules given in Definition
3 with the rules

PELP ndiq PP nei
A(PYA — nen(P)[4] #(P)A — i n(P)[A]

where

ng,n) n#Fn; foralj=1,....n

(N1, ..., ng) otherwise

(ny,...,nE) ®n = {(nl,-

and similarly

T TR TN T o) 1<i<kandn=n;
(nl’” ,nk)@n: (1 s Toj—1,5 Thj41,) k) _]_ 7
(ny,...,ng) otherwise

The resulting extension of BasicSail is called MultipleSail.

The idea of a term (n,m)(P)[A] is that of a location with two names, n and
m, running the programme P and which has A as sub-locations. Note that
activating a new name (via upn) at a location where the name is already in
use has no effect. Similarly, removing a name from a location which is not
present will not change the spatial structure.

In particular, a location can have no name at all. The following example
contrasts this with hidden names.

Example 35 (1) The effect of having no name at all cannot be captured
with local names, since nameless locations are also nameless for locations
from within. Take for example (){P)[A] for P € P and A € C. Note
that anonymous locations are anonymous also for processes from within,
that s, the same effect cannot be achieved using local names. Indeed,
the processes (vn)(n)(P)[k(out n)[]] and ()(P)[k{outn)|]] differ in that
the former can perform a reduction under the name binder, whereas the
latter cannot.

(2) Unnamed locations are by no means immobile. Consider the configura-
tion (n)(downn.0)[A], ()(inn.0)[B]. This example also illustrates that the
movement only succeeds, if the unnamed agent is lucky enough to enter
into his partner before the name disappears.

25

In the MultipleSail calculus, we cannot expect that spatially congruent pro-
cesses (in the sense of Definition 5) to contain structural congruence. The
reason is that the controlling processes of two spatially congruent processes
are not process bisimilar. This occurs for example, if the controlling process
allows for de-activating a name, which is not present in the configuration, as
e.g. for ()(downn.O)[] and (down £.0)[]. In order to achieve a match between
the different process equivalences, we therefore have to allow for an additional
observation: The changing of names. The formal definition of spatial bisimu-
lation and congruence in MultipleSail is as follows:

Definition 36 Suppose C € C andn € N'. We put

CZC iff C=i(P)[Cy) and C' =7t & n(P)[Cy)
and analogously

C=C" iff C=n(P)[Co] and C' =i o n(P)[Cy).

We say that a relation is closed under name changes, if it is closed under SN

and == for alln € N.
We consider the following equivalences:

e spatial bisimulation ~ (resp. spatial congruence =) is the largest symmetric
(resp. congruence) relation that is closed under spatial reduction =, forest
reduction O, subtree reduction |, top level names @Qn and name changes
E8ER (foralln e N).

e labelled bisimulation s the largest spatial bisimulation which is closed under
labelled reduction (see Definition 9).

e weak structural congruence is the least relation which contains structural
congruence and all pairs of the form (n(P)[C],n(Q)[C]) for P,Q € P pro-
cess bisimilar.

We think of closure under name changes as an experiment, which we can
perform on a singleton configuration. For two (singleton) configurating to be
equivalent, we require that they exhibit the same behaviour even when we
change the names of their top level locations. This additional observation
ensures that labelled bisimulation is a congruence, and that spatial congruence
implies weak structural congruence.

Proposition 37 The following hold for the MultipleSail calculus:

(1) Labelled bisimulation contains spatial congruence.
(2) Spatial congruence contains weak structural congruence.

Proof: We extend the corresponding results for the basic calculus. For the first

26

claim, we extend the proof of Proposition 14 and show, that labelled bisimula-

tion is a congruence. As for the LocalSail calculus, we note that 10 and Proposi-

tion 12 remain valid for the set £ = {opn | op € {in,out,open,up,down,®, S} and n €
N}. We thus have to show that ~; (Definition 11) is a congruence w.r.t. spatial
composition and tree construction.

(1) Congruence w.r.t. spatial composition: Assume that C' = 7i(P)[Cy], Cy
and C' ~; D. We fix E € C and show that C, E' ~; D, E, where we only treat
spatial reductions induced by (de)activating a name.

Case 1: C activates a new name. Formally C, F = C’" with P ®E Pl and
C' =1 & k(P)[Cyl,Cy, E. Using forest reduction and Lemma 7, we can as-
sume that D = ﬁ<Q>[D0],D1 where ﬁ<P> [Co] ~i_1 ﬁ<Q>[D0] and Cl ~i_1
D;. Now 7i(P) 2k n(P")[Cy]. By closure under labelled reduction, we have
i{Q)[Do] == 7(Q")[Dy] with 7({P")[Co] ~i—1 7(Q)[Dy). As ~;_1 is closed un-
der name changes, also 1@ k(P')[Cy] ~;—1 B k(Q')[Dy], and the claim follows,
since ~;_1 1s a congruence.

Case 2: C de-activates a new name. Formally C, E = C' with P =8 p/
and C' =71 © k(P")[Co|, Cy, E: Similar.

The cases, where E activates or de-activates a new name, are straightforward.
(2) Closure w.r.t. tree construction: Immediate.

For the second claim we use the minimal witness argument of Proposition
17, which applies once we have established that spatial congruence is closed
under labelled reduction. To this end, assume C' = D are configurations and
C 22 C'. We have to exhibit D’ 22 C” such that D == D’. We only treat
the new cases op € {up,down }. So suppose C' = D and C' == (. Then we
can assume that C' = 7i(P)[Cy|, C; and C' = 7' (P")[Cy], C;. By closure under
forest reduction O, we have D = 77(Q)[Dy], D1 with 7(Q)[Dy] = 7i(P)[Cy| and
D1 = Cl.

Case 1: op = up. We can assume without loss of generality that k ¢ 7i;
otherwise we use closure under name changes and replace @ with 77 © k. Since
n(P)[Co| = 1 & k(P")[Cy], there is D{ = 11 & k(P')[Co] with 7(Q)[Dy] =
Dj{. Again by closure under forest reduction and top level names, we have
D} =71 & k(Q')[D{]. But this can only happen if @ wk Q' and Dj € Qk, we
have Dj = Dy. The claim follows, since = is a congruence.

Case 2: op = down: Similar. O

We now take a logical point of view and give a logical characterisation of
spatial congruence, which is very similar to the logical characterisation in the

27

setting with local names (Section 5). Similar to the hidden name quantifier,
we introduce a new logical operator, which deals with name changes.

Definition 38 The language of spatial logic with multiple names is the least
set according to the following grammar

Lo ¢ ¢u=elQn|ffl¢—v][(R)¢| (O] Ene|one

Given C € C and ¢ € L, satisfaction C |= ¢ is as in Definition 18, plus the
clause .

C E @n.¢ iff C = k(P)[C'] and 1i ® k(P)[C'] E ¢,
and accordingly for ©. As before, Th(C) = {¢p € L | C | ¢} for C € C,
and C, D € C are called logically equivalent, denoted by C' =1, D, if Th(C) =
Th(D).

As in the calculus with local names, we have the following result:
Proposition 39 The following hold in the MultipleSail calculus:

(1) weak structural congruence is contained in logical equivalence.
(2) logical equivalence is contained in labelled bisimulation.

Proof: As for Proposition 32. O

Using name changes as additional observation, we achieve a perfect match
between the syntactical, logical and algebraic theory also for the MultipleSail
calculus:

Theorem 40 In the MultipleSail calculus, labelled bistmulation, spatial con-
gruence, weak structural congruence and logical equivalence coincide.

7 Conclusions and Related Work

We have presented a coordination approach to mobile components: the Basic-
Sail calculus and two extensions LocalSail and MultipleSail. The main novelty
of our approach lies in the fact that our calculus strictly distinguishes between
the computational and the spatial aspects of distributed computation. Com-
pared to other coordination models, the main novelty of our approach is the
spatial structure, where we assume that locations are hierarchically organised.
Our main result is that logical equivalence, structural congruence and spatial
congruence agree; this indicates that our framework allows to add mobility to
components in a transparent way.

The study of mobility goes back to Milner’s w-calculus [27|. Further calculi are

28

the Fusion calculus [33], Nomadic Pict [45] and the distributed coordination
language KLAIM [29]. The study of hierarchical re-configurable administrative
domains was introduced by the Ambient |16] and the Seal calculus |44]. Ba-
sicSail follows these lines but distinguishes processes and configurations in an
a priori way and concentrates on a even simpler set of operations for changing
the topological structure.

The basic calculus and its variations were inspired by the Seal-Calculus. [44].
However, the Seal-Calculus is quite involved syntactically; the present calculus
is a simplification in order to study the effect of the separation of dynamics
from the underlying topological structure, which is also present in Seal. The
second source of inspiration was the calculus of mobile ambients [16], from
which we have borrowed the primitives in, out and open. As we have pointed
out before, our principal design decisions do not allow to embed the full am-
bient calculus into our framework.

The clear separation of spatial and computational aspects allows for the in-
troduction of an additional layer which monitors the actions performed by the
programs controlling the individual components to enforce security policies
in the style of edit automata [25]. This allows for even more modularity, as
security policies are added independently from the concrete realisation of the
components and the mobility layer. The enforcement of security policies by
means of an extra layer of control has also been studied in a single calculus; we
mention box-7 [42] and ambients with guardians [19]. Our notion of control-
ling process differs from the guardians of [19] as a guardian controls mobility,
whereas our controlling process initiate a movement.

Separation of concerns has always been an important aspect of software archi-
tecture, and the glue which allows for the inter-operability between different
components is studied in the context of coordination languages (see [32,2| for
an overview). The language KLAIM 29| provides an integration between co-
ordination and mobility. Based on the notion of tuple spaces in the style of
Linda [18,21] it allows for modelling of distributed systems in the style of the
m-calculus; in particular, the hierarchical structure of locations cannot be rep-
resented directly. Our approach of combining component is similar in spirit to
that of [1,30| (which does not cater for mobility). There the authors differen-
tiate between components, which provide certain services, and an additional
layer, which describes the composition of components.

Spatial logics were studied by Cardelli and Caires [11,12|, although to our
knowledge not w.r.t. a clear characterisation of the expressive power. Such
a characterisation (called “intensional bisimulation”) was considered by San-

giorgi for a variant of the ambient calculus [38,39].

Our work on the comparison between different equivalences on mobile process

29

has to be seen in the context of the work of Merro and Hennessy [26] and
Sangiori, Hirschkoff, Lozes [38,39|. Their results were obtained in an untyped
setting, i.e. where one does not distinguish between processes and locations.
Our results show, that similar comparisons can also be made in a typed setting,
where furthermore one is independent of the underlying process calculus.

The clear distinction between process and location, enforced by our two-
layered approach, can of course also be enforced by adding type system a
posteriori. Existing type systems [9,17,14] do not account for this distinction,
as they are designed with a different goal: In general, each type corresponds
to a certain property of a process, and the type system allows for the deriva-
tion of these properties. Moreover, typing is only meaningful when the source
code of the individual components is available, whereas we have assumed in-
dependence from the underlying language by just using a labelled transition
semantics; see [40| for a discussion of this dichtonomy. We see partial typing
[36] and the work on the box-m calculus and local subtyping [42,41], where un-
trusted components are put inside a wrapper, as steps towards the integration
of both aspects. Finally, we remark that our approach of modelling mobile
components and their connections is a special case of the bigraph models of
Jensen and Milner [22]: The bigraphs corresponding to our setup are quite
specialised, as our basic calculus does not directly allow to model connections
between the different components.

Of course, there remains a wealth of open problems: Most pressingly, we have
investigated neither the logical nor the algebraic theory of the calculus with
name passing or multiple names, nor a variant which includes dynamic recon-
figuration.

A preliminary version of this work has already appeared as [34]. The present
paper differs from [oc.cit. in the choice of the reduction relations which define
spatial bisimulation. The present approach, resulting in a hybrid of separation
logic and modal logic, is closer to the logics already discussed in an untyped
setting. Also, the comparison of the different reduction relations follows a more
standard pattern and uses standard proof principles, where available.

References

[1] F. Arbab. Abstract behavior types: A foundation model for components and
their composition. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever,
editors, Proc. FMCO 2002 (Revised Lectures), volume 2852 of Lect. Notes in
Comp. Sci., pages 33-70. Springer, 2003.

[2] F. Arbab. What do you mean, coordination? Bulletin of the Dutch Association
for Theoretical Computer Science, March 1998.

30

[3] F. Arbab, I. Herman, and P. Spilling. An overview of manifold and its
implementation. Concurrencey: Practice and Experience, 5(1):23-70, 1993.

[4] J. Baumann, F. Hohl, M. Strafer, and K. Rothermel. Mole - concepts of a
mobile agent system. World Wide Web, 1(3):123-137, 1998.

[5] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
jade. In Cristiano Castelfranchi and Yves Lespérance, editors, Proc. ATAL 2000,
volume 1986 of Lect. Notes in Comp. Sci., pages 89—-103. Springer, 2001.

[6] F. Bellifemine, A. Poggi, G. Rimassa, and P. Turci. An object oriented
framework to realize agent systems. In Proceedings of WOA 2000 Workshop,
pages 52-57, 2000.

[7] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

[8] M. Bonsangue, F. Arbab, J. W. de Bakker, J. J. M. M. Rutten, A. Secutella, and
G. Zavattaro. A transition system semantics for the control-driven coordination
language MANIFOLD. Theor. Comp. Sci., 240(1):3-34, 2000.

[9] M. Bugliesi and G. Castagna. Behavioural typing for safe ambients. Computer
Languages, 28(1):61-99, 2002.

[10] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In N. Kobayashi and
B. Pierce, editors, Proc. TACS 2001, number 2215 in Lect. Notes in Comp. Sci.,
pages 38—63. Springer, 2001.

[11] L. Caires and L. Cardelli. A spatial logic for concurrency (part i). In
N. Kobayashi and B. Pierce, editors, Proc. TACS 2001, volume 2215 of Lecture
Notes in Computer Science, pages 1-37. Springer, 2001.

[12| L. Caires and L. Cardelli. A spatial logic for concurrency (part ii). In L. Brim,
P. Jantar, M. Kietinsky, and A. Kutera, editors, Proc. CONCUR 2002, volume
2421 of Lecture Notes in Computer Science, pages 209-225. Springer, 2002.

[13] L. Cardelli and G. Ghelli. A query language based on the ambient logic. In
David Sands, editor, Proc. ESOP 2001, volume 2028 of Lect. Notes in Comp.
Sci., pages 1-22. Springer, 2001.

[14] L. Cardelli, G. Ghelli, and A. Gordon. Types for the ambient calculus.
Information and Computation, 177(2):160-194, 2002.

[15] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In Proc. POPL 2000, pages 365-377. ACM, 2000.

[16] L. Cardelli and A. Gordon. Mobile ambients. Theor. Comp. Sci., 240(1):177—
213, 2000.

[17] L. Cardelli, A. Gordon, and G. Ghelli. Mobility types for mobile ambients. In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Proc. I[CALP 1999,
volume 1644 of Lect. Notes in Comp. Sci., pages 230-239. Springer, 1999.

31

[18] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444 458, 1989.

[19] G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based monitoring.
In V. Sassone, editor, Proc. FWAN 2002, volume 66.3 of Electr. Notes in
Theoret. Comp. Sci., 2002.

[20] D. Gabbay and A. Pitts. A new approach to abstract syntax involving binders.
In 14th IEEE Symposium on Logic in Computer Science (LICS 1999), pages
214-224. IEEE Computer Society, 1999.

[21] D. Gelernter. Generative communication in linda. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, 1985.

[22] O. Jensen and R. Milner. Bigraph models for mobile processes. Technical Report
UCAM-CL-TR-580, University of Cambridge Computer Laboratory, 2004.

[23] T. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan, S. Landis,
P. Davis, B. Khavar, and P. Bowman. Hitting the distributed computing sweet
spot with tspaces. Computer Networks, 35(4), 2001.

[24] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proc. POPL
2000, pages 352-364. ACM, 2000.

[25] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms

for run-time security policies. International Journal of Information Security,
2003. Submitted for Publication.

[26] M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. In Proc.
POPL 2002, pages 352-364. ACM, 2002.

[27] R. Milner. Communicating and Mobile Systems: the m-Calculus. Cambridge
University Press, 1999.

[28] U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation
for CCS. Fundamenta Informaticae, 16(2):171-199, 1992.

[29] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents
interaction and mobility. IEEE Trans. Software Engineering, 24(5):315-330,
1998.

[30] O. Nierstrasz and F. Achermann. A calculus for modeling software components.
In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever, editors, Proc. FMCO
2002 (Revised Lectures), volume 2852 of Lect. Notes in Comp. Sci., pages 339—
360. Springer, 2003.

[31] P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2), 1999.

[32] G.A. Papadopoulos and F. Arbab. Coordination models and languages.
Advances in Computers, 46, 1998.

32

[33] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry
in mobile processes. In Thirteenth Annual Symposium on Logic in Computer
Science (LICS 1998), pages 176-185. IEEE, IEEE Computer Society, 1998.

[34] D. Pattinson and M. Wirsing. Making components move: A separation of
concerns approach. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever,
editors, Proc. FMCO 2002 (Revised Lectures), volume 2852 of Lect. Notes in
Comp. Sci., pages 487-507. Springer, 2003.

[35] D. Pym, P. O’'Hearn, and H. Yang. Possible worlds and resources: The semantics
of BL. Theoretical Computer Science, 2003. to appear.

[36] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile
agents. In Proc. POPL 1999, pages 93-104. ACM, 1999.

[37] D. Sangiorgi. A theory of bisimulation for m-calculus. Acta Informatica, 33,
1996.

[38] D. Sangiorgi. Extensionality and intensionality of the ambient logics. In Proc.
POPL 2001, pages 4-13. ACM, 2001.

[39] D. Sangiorgi. Separability, expressiveness, and decidability in the ambient logic.
In 17th IEEE Symposium on Logic in Computer Science (LICS 2002). IEEE
Computer Society, 2002.

[40] F. Schneider, G. Morrisett, and R. Harper. A language-based approach to
security. In R. Wilhelm, editor, Informatics — 10 Years Back, 10 Years Ahead,
volume 2000 of Lect. Notes in Comp. Sci., pages 86—101. Springer, 2000.

[41] P. Sewell. Global/local subtyping and capability inference for a distributed pi-
calculus. In K. Larsen, S. Skyum, and G. Winskel, editors, Proc. ICALP 1998,
volume 1443 of Lect. Notes in Comp. Sci., pages 695-706. Springer, 1998.

[42] P. Sewell and J. Vitek. Secure composition of insecure components. In
PCSFW: Proceedings of The 12th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1999.

[43] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer
Science. Springer, 2001.

[44] J. Vitek and G. Castagna. Seal: A framework for secure mobile computation.
Internet Programming, 1999.

[45] P. Wojciechowski and P. Sewell. Nomadic pict: Language and infrastructure
design for mobile agents. IEEE Concurrency, 8(2):42-52, 2000.

33

