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tWe present a 
al
ulus for mobile systems, the main novel feature of whi
h is theseparation between dynami
 and topologi
al aspe
ts of distributed 
omputations.Our 
al
ulus realises the following basi
 assumptions: (1) every 
omputation exe
utesin a uniquely determined lo
ation (2) pro
esses modify the distributed stru
ture bymeans of prede�ned operations, (3) the underlying programming language 
an be
hanged easily, and (4) lo
ations are hierar
hi
ally organised. This paper introdu
esour 
al
ulus, and shows, that this separation of 
on
erns leads to a perfe
t mat
hbetween the logi
al, synta
ti
al and algebrai
 theory. We dis
uss a 
ore 
al
ulus, andextensions with lo
al names and with multiple names.Key words: mobile 
omponents, 
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tionWith the su

ess of the Internet, mobile 
omputation has presented itself asa new 
omputing paradigm. Over the Internet, distributed 
omputation 
anbe highly dynami
, with a network, whi
h is hierar
hi
ally organised intoadministrative domains and 
onstantly 
hanging.In pra
ti
e, distributed systems pose many 
hallenges: users fear se
urity prob-lems or, more generally, problems with 
ontrolling the behaviour of mobilesystems. The designer of a system has to integrate many di�erent platformsand programming languages.
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Pro
ess 
al
uli and asso
iated formal logi
s have been studied to deal withproblems of the �rst kind, whereas 
oordination languages have been provensu

essful for integrating di�erent 
omputing platforms and languages.The present paper studies a 
al
ulus whi
h allows to address both issues in auniform framework: we investigate a 
oordination model for mobile systems,whi
h expli
itely allows to model the hierar
hi
al stru
ture of network lo
a-tions. We study the synta
ti
, logi
al and algebrai
 theory of the 
al
ulus andobtain a perfe
t mat
h between the 
orresponding equivalen
es. This shows,that our framework allows to add mobility to software 
omponents in a trans-parent way.On the side of pro
ess 
al
uli, the ambient 
al
ulus [16℄ was the �rst frameworkwhi
h dire
tly allowed to represent the hierar
hi
al stru
ture of lo
ations. This
al
ulus has been extended in many ways and dire
tions to a

ommodate dif-ferent 
omputational me
hanism; we mention se
ure ambients [24℄, where the
ommuni
ation is syn
hronous, boxed ambients [10℄, whi
h adopts a di�erent
ommuni
ation s
heme (parents 
ommuni
ate with 
hildren), whi
h is similarto the s
heme employed by the Seal 
al
ulus [44℄.On a programming and more pra
ti
al level, 
oordination languages [32℄ havebeen used to provide the glue needed to build distributed appli
ations from aset of stand alone 
omponents. Several su
h languages have been implementedand are being used in real-world appli
ations [23,3℄. On a foundational level,the language KLAIM [29℄ has been investigated as language where lo
alitiesare �rst 
lass 
itizens, and 
an be manipulated by a KLAIM programme.The 
ommon feature found in all 
oordination approa
hes of distributed 
om-puting is the separation of 
on
erns between the distributed aspe
ts and the
omputation whi
h are 
arried out at the individual nodes.In this paper, we present and study a framework, whi
h allows for dire
t mod-elling of hierar
hi
ally stru
tured lo
ations while providing a basi
 separationof 
on
erns between the dynami
 and topologi
al aspe
ts of 
omputations inthe style of 
oordination models. We 
onsider the hierar
hi
al stru
ture of lo-
ations to be an essential ingredient in any approa
h to mobile 
omputation:the Internet provides the glue between di�erent sites, whi
h themselves aredivided into a hierar
hi
al 
olle
tion of subnets, ea
h of whi
h with their ownadministrative poli
y.From a 
oordination point of view, this is the main novelty of our approa
h:apart from standard 
oordination prin
iples, we assume that lo
alities havea hierar
hi
al stru
ture: Our basi
 model provides the glue between 
on
ur-rent 
omputations, ea
h of whi
h performed in distin
t lo
ations, whi
h 
an
ommuni
ate and a
tively 
hange the topologi
al stru
ture.In more detail, we 
onsider lo
ations, where ea
h lo
ation has a name, a 
on-2



trolling pro
ess and a (possibly empty) set of sub-lo
ations. We abstra
t fromthe 
on
rete realisation of the 
ontrolling pro
esses by not assuming a par-ti
ular 
al
ulus or language, and instead assume the 
ontrolling pro
esses tobe given in form of a labelled transition system. The pro
esses intera
t withtheir environment via a set of designated labels, whi
h allow them to 
hangethe topologi
al stru
ture of the lo
ations to whi
h they are atta
hed.The hierar
hi
al stru
ture of lo
ations is similar in spirit to the ambient 
al-
ulus; in 
ontrast to other approa
hes we aim at a 
lear separation betweenpro
esses and 
on�gurations: pro
esses show behaviour, whereas the 
on�g-urations provide the topologi
al stru
ture. The separation between pro
essesand lo
ations is also present in KLAIM [29℄, with the main di�eren
e thatlo
ations in KLAIM are not nested.In view of appli
ations of mobility to programming te
hnology, this seemsmost realisti
: keeping the mobility primitives separate from the programminglanguages whi
h are using them allows for mu
h greater re-use and in
reasesportability of 
ode. The introdu
tion of this additional abstra
tion layer asprovides a programming framework for mobile appli
ations. Existing frame-works typi
ally implement this idea. Our 
on
ept of lo
ation is very similarto that of a pla
e in Mole [4℄ and to Jade's 
ontainers [6,5℄. The assumptionswhi
h lead to our parti
ular model are guided by the 
oordination approa
hto distributed systems, whi
h we extend by postulating that lo
ations have ahierar
hi
al stru
ture. We brie�y dis
uss our postulates below.Assumption 1 Every 
omputation takes pla
e in a uniquely determined lo-
ation.This assumption in parti
ular for
es a two-sorted approa
h: We need to dis-tinguish between elements whi
h relate to the spatial stru
ture and those,whi
h drive the 
omputation pro
ess. Sin
e our primary interest is the studyof mobile 
omputation, we would like to be as independent as possible fromthe 
on
rete realisation of pro
esses, and therefore make:Assumption 2 The distributed part of the 
al
ulus is independent of the un-derlying programming language or pro
ess 
al
ulus.However, a 
omputation needs some means to 
hange the distributed andspatial stru
ture. That is, we need a 
lean me
hanism, through whi
h thedistributed stru
ture 
an be manipulated:Assumption 3 Pro
esses modify the distributed stru
ture of the 
omputationthrough interfa
es only.Finally, in order to model hierar
hi
ally stru
tured administrative domains, orsub-networks with di�erent administrative or se
urity poli
ies, we postulate3



that lo
ations are stru
tured; this is the main novelty of our approa
h, whi
his not present in other 
oordination approa
hes to mobile systems.Assumption 4 Lo
ations are hierar
hi
ally stru
tured, that is, ea
h lo
ationhas a �nite (possibly empty) set of sub-lo
ations.Our 
al
ulus is modelled after these assumptions. Regarding independen
e ofthe underlying programming language, we assume that the pro
esses, whi
h
ontrol the 
omputations, already 
ome with a (�xed) operational semanti
s,in terms of a labelled transition system; this allows us to realise interfa
esas a parti
ular set of distinguished labels. As already mentioned before, theseparation between pro
esses and lo
ations is taken 
are of by using a twosorted approa
h. In parti
ular, this enables us to work with strong pro
essequivalen
es only, sin
e assume that 
omputation steps that do not a�e
t thetopologi
al stru
ture are already taken 
are of on the level of pro
esses.The main te
hni
al 
ontribution of the paper is the study of the algebrai
 andlogi
al properties of the basi
 
al
ulus, and its extension with lo
al names andmultiple names. We introdu
e the notion of spatial bisimulation and give analgebrai
 and a logi
al 
hara
terisation of the indu
ed 
ongruen
e. Our mainresult here is, that if one abstra
ts from the 
on
rete realisation of the 
om-putations, we obtain a perfe
t mat
h between stru
tural 
ongruen
e, logi
alequivalen
e and spatial 
ongruen
e. Methodologi
ally, we want to advo
atethe separation between the 
on
epts �mobility� and �
omputation� on a foun-dational basis; we take our results as an indi
ation that our framework trans-parently allows to in
orporate 
omponent mobility. Te
hni
ally, we use 
losureproperties to de�ne bisimulations and bisimulation 
ongruen
es. Our equiv-alen
es a

ount for the spatial stru
ture of 
omputations, and we 
omparethe algebrai
, logi
al and synta
ti
al theory of our 
al
ulus. Both in the basi

al
ulus and its extensions, we dis
uss whi
h observations allow to 
apturespatial bisimulation 
ongruen
e: In the basi
 
al
ulus, we need to observe thetransitions of the pro
esses 
ontrolling the 
omponent movement. Extendingthe 
al
ulus with lo
al names, we have to add name revelation as an observa-tion while a 
al
ulus with multiple names requires to observe behaviour aftername 
hanges.Stru
ture of the paper: we introdu
e the basi
 
al
ulus, that is, the 
al
uluswithout lo
al names, in Se
tion 1. The algebrai
 theory of he 
al
ulus is in-vestigated in Se
tion 2 and Se
tion 3, and Se
tion 4 transfers these results toa logi
al setting. We then extend the 
al
ulus with lo
al names (Se
tion 5).We dis
uss one more extension, the possibility for a lo
ation to have multiplenames, in Se
tion 6. Finally, Se
tion 7 
ompares our approa
h to other 
al
ulifound in the literature. 4



1 Basi
 Sail: The Basi
 Cal
ulusThis se
tion introdu
es Basi
Sail, our testbed for studying mobile 
omponents.In order to ensure independen
e from the underlying programming language(
f. Assumption 2), Basi
Sail 
onsists of two layers. The lower layer (whi
h weassume as given) represents the programming language, whi
h is used on the
omponent level. The upper level represents the distributed stru
ture, whi
his manipulated through programs (residing on the lower level) by means ofpre-de�ned interfa
es. Te
hni
ally, we assume that the underlying program-ming language 
omes with a labelled transition system semanti
s, whi
h ma-nipulates the distributed stru
ture (on the upper level) by means of a set ofdistinguished labels.This is similar to the semanti
s of the 
oordination language MANIFOLD[8℄; the main di�eren
e is that our 
ontrolling pro
esses already 
ome with alabelled transition system semanti
s, whi
h allows us to 
on
entrate on thedistributed stru
ture. Our basi
 setup is as follows:Notation Unless stated otherwise, we �x a set N of names and the set L =
{in , out , open }×N of labels and a transition system (P,−→), where ∅ 6= Pis a set (of pro
esses) and −→⊆ P×L×P. We assume that (P,−→) is image�nite, that is, for every (P, l) ∈ P × L, the set {P ′ | P

l
−→ P ′} is �nite.We 
all two pro
esses P,Q pro
ess bisimilar, if they are bisimilar as elementsof the labelled transition system (P,−→).We write inn for the pair (in , n) ∈ L and similarly for out , open and 
allthe elements of L basi
 labels. The set P is the set of basi
 pro
esses.The prototypi
al example of transition systems, whi
h 
an be used to instan-tiate our framework, are of 
ourse pro
ess 
al
uli. Note that we 
onsider onlytransitions with mobility primitives as labels, that is, we assume that internaltransitions are already a

ounted for in the semanti
s of pro
esses. One su
hpro
ess 
al
ulus, whi
h we use in our example, is the following:Example 1 Take P to be given as the least set a

ording to the followinggrammar:

P ∋ P,Q ::= 0 | P ‖ Q | α.P |!Pwhere α ∈ L ranges over the basi
 labels. The transition relation −→ is gen-erated by the following rules
α.P

α
−→ P

P
α

−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
,modulo stru
tural 
ongruen
e ≡, given by the axioms P ‖ Q ≡ Q ‖ P , P ‖5



0 ≡ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R and !P ≡ P ‖!P . For 
onvenien
e, weoften omit a trailing inert pro
ess and write α for α.0.Intuitively, α.P is a pro
ess whi
h 
an perform an α a
tion and 
ontinue as
P ; the term P ‖ Q represents the pro
esses P and Q running 
on
urrentlyand !P represents a 
ountable number of 
opies of P .Although we have in
luded the repli
ation operator in the 
ore 
al
ulus above,it is still image �nite, sin
e we 
onsider pro
esses only up to stru
tural 
on-gruen
e. Note that we use this 
on
rete syntax for pro
esses just in order toillustrate our approa
h; the general theory is independent of the synta
ti
alpresentation and just assumes that pro
esses form a set and 
ome with atransition system over the set L of labels.Given su
h a transition system (P,−→), the distributed stru
ture (whi
h isour primary interest) is built on top of (P,−→) as follows:De�nition 2 The set C of basi
 
on�gurations is the least set a

ording tothe grammar

C ∋ A,B ::= 0 | n〈P 〉[A] | A,Bwhere P ∈ P is a pro
ess and n ∈ N is a name. We 
onsider 
on�gurationsup to stru
tural equivalen
e ≡, given by the equations
A,B ≡ B,A A, 0 ≡ A A, (B,C) ≡ (A,B), CThe 
on�guration building operator �,� is 
alled spatial 
omposition, and werefer to 〈P 〉[ · ] as tree 
onstru
tion.In the above, 0 is the empty 
on�guration, n〈P 〉[A] is a 
on�guration withname n, whi
h is 
ontrolled by the pro
ess P and has the sub
on�guration

A. Finally, A,B are two 
on�gurations, whi
h exe
ute 
on
urrently. The nextde�nition lays down the formal semanti
s of our 
al
ulus, whi
h is given interms of the redu
tion semanti
s −→ of the underlying pro
ess 
al
ulus:De�nition 3 The operational semanti
s of Basi
Sail is the relation given bythe rea
tion rules
P

inn
−→ P ′

m〈P 〉[A],n〈Q〉[B] =⇒ n〈Q〉[m〈P ′〉[A],B]

P
outn
−→ P ′

n〈Q〉[m〈P 〉[A],B] =⇒ m〈P ′〉[A],n〈Q〉[B]

P
openn
−→ P ′

m〈P 〉[A], n〈Q〉[B] =⇒ m〈P ′〉[A], B6



together with the 
ongruen
e rules
A =⇒ A′

A,B =⇒ A′, B

A =⇒ A′

n〈P 〉[A] =⇒ n〈P 〉[A′]

A ≡ A′ A′ =⇒ B′ B′ ≡ B

A =⇒ B.The relation =⇒ is 
alled spatial redu
tion.The last rule 
aptures that we do not distinguish between stru
turally 
ongru-ent 
on�gurations. In the examples, we often omit the empty 
on�guration,and write n〈P 〉[] instead of n〈P 〉[0]. Using the above de�nition, we 
an studyphenomena, whi
h arise in a distributed setting, without making a 
ommit-ment to any kind of underlying language. In parti
ular, we do not have to takeinternal a
tions of pro
esses into a

ount; these are assumed to be in
orpo-rated into the redu
tion relation −→ on the level of pro
esses.We 
annot expe
t to be able to embed the full ambient 
al
ulus [16℄ intoour setting, sin
e we have to distinguish between the 
omputational and thedistributed 
omponents, whereas the ambient 
al
ulus follows an untyped ap-proa
h. However, we 
an nevertheless treat many examples:Example 4 We use the set of basi
 pro
esses from Example 1.(1) An agent, whi
h has the 
apability to enter and exit its home lo
ation totransport 
lients inside 
an be modelled as follows: Put
agent = a〈P 〉[] client = c〈Q〉[] home = h〈0〉[agent]where P =!(outh.inh.0) and Q = in a.out a.0. In the 
on�guration

home, client, we have the following 
hain of redu
tions (where P ′ = inh.0 ‖
P and Q′ = out a.0):

home, client

=⇒ h〈0〉[], a〈P ′〉[], c〈Q〉[]

=⇒ h〈0〉[], a〈P ′〉[c〈Q′〉[]]

=⇒ h〈0〉[a〈P 〉[c〈Q′〉[]]

=⇒ h〈0〉[a〈P 〉[], c〈0〉[]].This sequen
e of redu
tions shows a guarded form of entry into h: The
lient has to enter the mediating agent a, whi
h then transports it into
h, where the 
lient then exits. Note that in the basi
 
al
ulus, c 
ouldenter h dire
tly, if c's 
ontrolling pro
ess were di�erent. This 
an be madeimpossible if one adds lo
al names, as we will see later.(2) We model an agent, whi
h repeatedly visits two network nodes, as follows:

agent ≡ a〈P 〉[]with P =!(inn1.outn1.0) ‖!(inn2.outn2.0). The a
tivity of a on
e it is7



at either n1 or n2 is not modelled (but imagine a 
he
ks, whether a nodehas been 
orrupted or is otherwise non-fun
tional). In the presen
e of twonodes n1 and n2, we have the (spatial) redu
tions, where we write N1 and
N2 for the 
ontrolling pro
esses of n1 and n2:

n1〈N1〉[], n2〈N2〉[], a〈P 〉[]

=⇒n1〈N1〉[a〈P1〉[]], n2〈N2〉[]

=⇒n1〈N1〉[], n2〈N2〉[], a〈P 〉[]

=⇒n1〈N1〉[], n2〈N2〉[a〈P2〉[]]

=⇒ . . .In the above, we have abbreviated P1 = outn1.0 ‖ P and P2 = out n2.0 ‖
P . Here, the program P 
ontrolling a does not for
e a to visit n1 and n2in any parti
ular order, and a 
ould for example 
hoose to enter and leave
n1 
ontinuously, without ever setting foot into n2.2 Spatial Bisimulation and Spatial Congruen
eThis se
tion introdu
es spatial bisimulation and spatial 
ongruen
e, the basi
equivalen
es we will be 
on
erned with for the remainder of the paper. Theequivalen
es are introdu
ed for the basi
 
al
ulus. We dis
uss an extension ofthe equivalen
es to a 
al
ulus with lo
al names in Se
tion 5 and to a 
al
uluswhi
h allows multiple names in Se
tion 6.We introdu
e spatial bisimulation as binary relation on 
on�gurations, subje
tto a set of 
losure properties. We take �
losure property� as formal term, themeaning of whi
h is given as follows:Terminology Suppose R ⊆ A × A is a binary relation on a set A and S ⊆

A×· · ·×A is n+1-ary. We say that R is 
losed under S, if, whenever (a, b) ∈ Rand (a, a1, . . . , an) ∈ S, there are b1, . . . , bn ∈ A with (b, b1, . . . , bn) ∈ S and
(ai, bi) ∈ R for i = 1, . . . , n.If R is 
losed under S, it is often helpful to think of R as an equivalen
e onpro
esses and of S as a redu
tion relation. In this setting, R is 
losed under
S if, whenever a and b are equivalent (i.e. (a, b) ∈ R) and a redu
es to a′(i.e. (a, a′) ∈ S), there is some b′ su
h that a′ and b′ are again equivalent (i.e.
(a′, b′) ∈ R) and b redu
es to b′ (that is, (b, b′) ∈ S). So if R is 
losed under
S, we think of R as being some bisimulation relation and S the 
orrespondingnotion of redu
tion.De�nition 5 (Spatial Bisimulation, Spatial Congruen
e) Consider thefollowing relations on C: 8



(1) Subtree redu
tion ↓⊆ C × C, given by C ↓ D if ∃E ∈ C, n ∈ N , P ∈
P.C ≡ n〈P 〉[D], E.(2) Forest redu
tion �⊆ C × C × C, given by C � (D,E) if C ≡ D,E.(3) Top-level names @n ⊆ C, given by C ∈ @n if ∃D,E ∈ C, P ∈ P.C ≡
n〈P 〉[D], E.(4) The inert relation 0 ⊆ C, where C ∈ 0 if C ≡ 0.We take spatial bisimulation ≃ (resp. spatial 
ongruen
e ∼=) to be the largestsymmetri
 (resp. 
ongruen
e) relation, whi
h is 
losed under spatial redu
tionand the relation (1 - 4).Note that forest redu
tion is the ternary relation asso
iated to spatial 
om-position in the sense of [31,35℄. For spatial 
ongruen
e, we just require the
ongruen
e property w.r.t. the 
onstru
tion of 
on�gurations, that is we re-quire(1) A0

∼= A1, B0
∼= B1 =⇒ A0, A1

∼= B0, B1 and(2) A ∼= B, n ∈ N , P ∈ P =⇒ n〈P 〉[A] ∼= n〈P 〉[B].This not only justi�es the name spatial 
ongruen
e � it furthermore allowsus to study the evolution of the tree stru
ture of (a set of) mobile pro
esseswithout referen
e to the underlying pro
ess 
al
ulus. Note that the spatial
ongruen
e is not the largest 
ongruen
e 
ontained in the spatial bisimulation(this relation is not a bisimulation in general). Our notion of spatial 
ongruen
efollows the approa
h of dynami
 
ongruen
e[28℄ to ensure that the resultingequivalen
e retains the bisimulation property.Remark Our de�nition of spatial 
ongruen
e is given in two steps: �rst wede�ne spatial bisimulation, and then 
onsider the largest 
ongruen
e, whi
h isa spatial bisimulation at the same time. The original paper [28℄ suggests thefollowing di�erent de�nition: spatial 
ongruen
e is the largest relation, whi
his 
ontext 
losed under the relations (1) - (4) in De�nition 5. Here, we 
all abinary relationR ⊆ C×C 
ontext 
losed under a n+1-ary relation S ⊆ C×· · ·×
C, if for all 
ontexts C[ · ] and all (a, b) ∈ R, whenever (C[a], a1, . . . , an) ∈ S,there are (b1, . . . , bn) ∈ Cn with (C[b], b1, . . . , bn) ∈ S. One 
an obtain the sameresults using this de�nition; we prefer to work with De�nition 5 as it dire
tlyhighlights the important features of spatial 
ongruen
e: being a bisimulationand a 
ongruen
e at the same time.In a nutshell, two 
on�gurations are spatially bisimilar, if they have bisimilarredu
ts, bisimilar subtrees, and the same top-level names. Spatial 
ongruen
eis taken to be the largest spatial bisimulation, whi
h is a 
ongruen
e w.r.t.spatial 
omposition and tree 
onstru
tion.These 
losure properties already allow us to distinguish pro
esses, whi
h 
on-sist of two ore more 
omponents running 
on
urrently, from pro
esses whi
h9



have a single top level lo
ation.De�nition 6 A 
on�guration C ∈ C is 
alled a singleton, if C ≡ n〈P 〉[D] forsome n ∈ N , P ∈ P and D ∈ C. This is denoted by st(C).In the next lemma, we show that spatial bisimulation is already strong enoughto distinguish singleton 
on�gurations from 
on�gurations whi
h are not.Lemma 7 Suppose C,D ∈ C with C ≃ D and st(C). Then st(D).Proof: Suppose not. Then either D ≡ 0 (in whi
h 
ase C ≡ 0, 
ontradi
tion)or D ≡ D1, D2 with both D1, D2 6≡ 0. Then D � (D1, D2), and sin
e C ≃ D,
C ≡ C1, C2 with both C1, C2 6≡ 0, 
ontradi
tion. 2If two 
on�gurations are spatially 
ongruent, they 
an be substituted for oneanother, yielding again spatially 
ongruent 
on�gurations. The next exampleshows, that spatial 
ongruen
e is properly 
ontained in spatial bisimulation.Example 8 Take n,m ∈ N with n 6= m and let A ≡ n〈inm.0〉[] and B ≡
n〈0〉[]. Then A ≃ B (sin
e neither A nor B 
an perform a spatial redu
tion),but A 6∼= B, sin
e A,m〈0〉[] 
an redu
e, whereas B,m〈0〉[] 
annot.Sin
e we 
learly want equivalent 
on�gurations to be substitutable for one an-other (whi
h allows us to build large systems in a 
ompositional way), spatial
ongruen
e is the notion of equivalen
e we are interested in. By de�nition,spatial 
ongruen
e involves the 
losure under all 
on�guration 
onstru
tingoperators, and is therefore not easy to verify.Our �rst goal is therefore an alternative 
hara
terisation of spatial 
ongruen
e.As it turns out, we only need to add one 
losure property to the de�nition ofspatial bisimulation in order to obtain spatial 
ongruen
e.3 Labelled BisimulationIn this se
tion, we des
ribe the relation between spatial 
ongruen
e and la-belled bisimulation, a notion whi
h we will introdu
e shortly.This addresses the problem of 
he
king that two 
on�gurations are spatiallybisimilar � the de�nition of spatial 
ongruen
e requires 
losure under all 
on-texts. This 
an be avoided if one 
onsiders labelled bisimulation, whi
h is anextension of spatial bisimulation with respe
t to one more 
losure property. Inthis se
tion we take the �rst step towards a 
hara
terisation of spatial 
ongru-en
e by showing that labelled bisimulation is 
ontained in spatial 
ongruen
e.10



De�nition 9 Let l ∈ L. De�ne the relation l
=⇒⊆ C × C by the rules

P
l

−→ P ′

n〈P 〉[A]
l

=⇒ n〈P ′〉[A]

C
l

=⇒ C ′

C,D
l

=⇒ C ′, Dand 
all a relation B ⊆ C × C 
losed under labelled redu
tion, if B is 
losedunder l
=⇒ for all l ∈ L. We take labelled bisimulation - to be the largestsymmetri
 relation, whi
h is 
losed under labelled redu
tion, spatial redu
tionand the relations (1 - 4) of De�nition 5.In order to be able to 
ompare spatial 
ongruen
e and labelled bisimulation, weneed a proof prin
iple, whi
h allows us to reason about labelled bisimulationusing indu
tion on redu
tions. This prin
iple works for image �nite relationsonly:Lemma 10 The relations =⇒, �, ↓ and l

=⇒ (for all l ∈ L) are image �nite.Proof: By stru
tural indu
tion using the respe
tive de�nitions using the fa
tthat (P,→) is image �nite. 2The last lemma puts us into the position to use indu
tion on the number of(labelled) redu
tion steps as a proof prin
iple. To make our reasoning expli
it,we use a sequen
e of relations ∼i, ea
h of whi
h 
apturing the behaviour upto and in
luding i labelled redu
tion steps.De�nition 11 De�ne a sequen
e of relations ∼i⊆ C×C indu
tively as follows:(1) ∼0 is the largest symmetri
 relation su
h that for all C ∼0 D
• st(C) implies st(D).
• C ∈ @n implies D ∈ @n for all n ∈ N .
• C

l
=⇒ C ′ implies ∃D′.D

l
=⇒ D′ and C ′ ∼0 D

′ for all l ∈ L.(2) C ∼i+1 D is the largest symmetri
 relation s.t. for all C ∼i+1 D
• st(C) implies st(D)
• C ∈ @n implies D ∈ @n
• (C,C ′) ∈ R implies ∃D′.(D,D′) ∈ R and C ′ ∼i D

′ for R ∈ {=⇒, ↓}.
• C � (C1C2) implies ∃D1, D2.D � (D1, D2) and Cj ∼i Dj, j = 1, 2.
• C

l
=⇒ C ′ implies ∃D′.D

l
=⇒ D′ and C ′ ∼i+1 D

′ for l ∈ LNote that in the above de�nition, the relations ∼i are required to be 
losedunder labelled redu
tion; this is expressed in the last 
lause, where we do notrefer to the previously de�ned relation.The proof prin
iple, whi
h we use toshow that labelled bisimulation is a 
ongruen
e, 
an now be formulated asfollows:Proposition 12 (1) ∼i+1⊆∼i for all i ∈ N.11



(2) For all C,D ∈ C, C - D i� C ∼i D for all i ∈ N.Proof: The �rst 
laim is immediate from the de�nition. For the se
ond, weabbreviate ∼=
⋂

i∈N ∼i.To see that ∼⊆- it su�
es to show that ∼ is a labelled bisimulation. We onlytreat 
losure under forest redu
tion, the remaining 
ases are even easier. Sosuppose that C ∼ D and C � (C1, C2). Sin
e C ∼ D, there are, for all i ∈ N,
Di

1 and Di
2 ∈ C su
h that D � (Di

1, D
i
2) and Di

j ∼ Ci
j for j = 1, 2. Sin
e � isimage �nite and ∼i+1⊆∼i for all i, we 
an �nd (D1, D2) with D � (D1, D2)and Dj ∼ Cj for j = 1, 2.The 
onverse in
lusion -⊆

⋂

i∈N ∼i follows from -⊆∼i for all i ∈ N, whi
his readily established using indu
tion on i and the fa
t ∼i+1⊆∼i. Lemma 7establishes the 
lause dealing with singleton 
on�gurations. 2The next lemma is needed to 
ompare labelled bisimulation and spatial 
on-gruen
e.Lemma 13 Suppose P,Q ∈ P, C,D ∈ C , n ∈ N and ∼i is de�ned asProposition 12.(1) If n〈P 〉[C] ∼i n〈Q〉[D] for some i ∈ N, then P and Q are pro
ess bisim-ilar.(2) If P and Q are pro
ess bisimilar, then n〈P 〉[C] ∼i n〈Q〉[C] for all i ∈ N.The last lemma allows us to 
onsider the pro
esses of the underlying labelledtransition system (P,−→) up to pro
ess bisimilarity. With this, plus the proofprin
iple established in Proposition 12, we 
an now show that labelled bisim-ulation is a 
ongruen
e; this in parti
ular implies that labelled bisimulation is
ontained in spatial 
ongruen
e, whi
h establishes a �rst relationship betweenlabelled bisimulation and spatial 
ongruen
e. se
tion.Proposition 14 Labelled bisimulation is 
ontained in spatial 
ongruen
e.Proof: We show that ea
h ∼i is a 
ongruen
e; the 
laim then follows fromProposition 12 and the de�nition of spatial 
ongruen
e. The 
ase i = 0 iseasy, so suppose 0 < i. Note that we have to establish the 
ongruen
e propertyw.r.t. spatial 
omposition and tree 
onstru
tion(1) Congruen
e w.r.t. spatial 
omposition: Suppose C,D ∈ C with C ∼i Dand E ∈ C. We show that C,E ∼i D,E. It is easy to see that C,E have thesame labelled redu
tions, top level names and subtrees. We only show thatthey have 
ompatible spatial redu
tions.Assume C,E =⇒ C ′. We have to show that D,E =⇒ D′ with C ′ ∼i−1 D
′. We12



distinguish the di�erent 
ases 
orresponding to the di�erent redu
tion rules.Throughout, we assume C ≡ n〈P 〉[C0], C1 and E ≡ m〈Q〉[E0], E1. The 
aseswhere C =⇒ C̃ and C ′ ≡ C̃, E or E =⇒ Ẽ and C ′ ≡ C, Ẽ are trivial, hen
eomitted.Case 1: C enters E. Formally C,E =⇒ C ′ where P
inm
−→ P ′ and C ′ ≡

C1, m〈Q〉[n〈P ′〉[C0], E0], E1.Then C � (n〈P 〉[C0], C1). Hen
e D � (n〈R〉[D0], D1) with n〈R〉[D0] ∼i−1

n〈P 〉[C0] and C1 ∼i−1 D1. Note that X ∼j Y only if both are singletonsor both are not singletons for all j ∈ N. Sin
e n〈R〉[D0] ∼i−1 n〈P 〉[C0]and n〈P 〉[C0]
l

=⇒ n〈P ′〉[C0], there is R′ with n〈R〉[D0]
inm
=⇒ n〈R′〉[D0] and

n〈P ′〉[C0] ∼i−1 n〈R′〉[D0]. By the operational semanti
s of the basi
 
al
ulus,we have that D −→ D′ for D′ ≡ D1, m〈Q〉[n〈R′〉[D0], E0], E1. Sin
e ∼i−1 is a
ongruen
e, �nally C ′ ∼i−1 D
′ by Lemma 13.Case 2: E enters C. Formally C,E =⇒ C ′ where Q

inn
−→ Q′ and C ′ ≡

n〈P 〉[C0, m〈Q′〉[E0]], E1: Similar.Case 3: C opens E. Formally C,E =⇒ C ′ and C ′ ≡ n〈P ′〉[C0], C1, E1 with
P

openm
−→ P ′. As above, D � (n〈R〉[D0], D1) with n〈R〉[D0] ∼i−1 n〈P 〉[C0] and

D1 ∼i−1 C1. Sin
e n〈P 〉[C0]
openm
=⇒ n〈P ′〉[C0], there isR′ su
h that n〈R〉[D0]

openm
=⇒

n〈R′〉[D0] and n〈P ′〉[C0] ∼i−1 n〈R′〉[D0]. By the operational semanti
s,D,E =⇒
D′ with D′ ≡ n〈R′〉[D0], D1, E1. We have D′ ∼i−1 C

′ by Lemma 13, sin
e ∼i−1is a 
ongruen
e.Case 4: E opens C. Formally C,E =⇒ C ′ and C ′ ≡ C1, m〈Q′〉[E0], E1 with
Q

openn
−→ Q′: Similar.The remaining 
ases, where the redu
tion has been triggered by the out-rule,are trivial.(2) Congruen
e w.r.t. tree 
onstru
tion: Suppose C ∼i D; we show that

k〈S〉[C] ∼i k〈S〉[D] for arbitrary k ∈ N and S ∈ P.Again, it is straightforward to verify all 
lauses in the de�nition of ∼i save the
lause 
on
erning spatial redu
tion. We treat the following 
ases:Case 1: C redu
es. Formally k〈S〉[C] =⇒ k〈S〉[C ′]. Then C =⇒ C ′, hen
e
D =⇒ D′ for some D′ ∼i−1 C

′. Then n〈S〉[D] =⇒ D′ for D′ ≡ k〈S〉[D′] and
k〈S〉[C ′] ∼i−1 k〈S〉[D′] sin
e ∼i−1 is a 
ongruen
e.Case 2: C leaves k. Formally, for C ≡ n〈P 〉[C0], C1 we have k〈S〉[C] =⇒ C ′with C ′ ≡ n〈P ′〉[C0], k〈S〉[C1] and P out k

−→ P ′. Then C � (n〈P 〉[C0], C1), hen
e
D � (n〈R〉[D0], D1) with n〈P 〉[C0] ∼i−1 n〈R〉[D0] and C1 ∼i−1 D1.13



Hen
e n〈R〉[D0]
out k
=⇒ n〈R′〉[D0] and n〈P ′〉[C0] ∼i−1 n〈R

′〉[D0]. By the opera-tional semanti
s, k〈S〉[D] =⇒ D′ for D′ ≡ n〈R′〉[D0], k〈S〉[D1]. Sin
e ∼i−1 isa 
ongruen
e, we 
on
lude C ′ ∼i−1 D
′.The remaining 
ases are straightforward. 2We 
ontinue the 
omparison of equivalen
es on the set of 
on�guration byrelating spatial 
ongruen
e with stru
tural 
ongruen
e. Note that it makesno sense to 
ompare spatial 
ongruen
e and stru
tural 
ongruen
e dire
tly: if

P,Q ∈ P are bisimilar but not equal, then n〈P 〉[] and n〈Q〉[] are 
ertainlyspatially 
ongruent, not stru
turally 
ongruent. For this reason, we introdu
eweak stru
tural 
ongruen
e, whi
h extends stru
tural 
ongruen
e to 
onsider
on�gurations as 
ongruent, whose 
ontrolling pro
esses are bisimilar. Theformal de�nition is as follows:De�nition 15 Weak stru
tural 
ongruen
e is the least relation R generatedby the rules of De�nition 2, plus the rule
C ≡ D P,Q pro
ess bisimilar

n〈P 〉[C] ≡ n〈Q〉[D]where n ∈ N , C,D ∈ C and P,Q ∈ P.Thus weak stru
tural 
ongruen
e not only identi�es stru
turally 
ongruent
on�gurations, but also 
on�gurations with bisimilar 
ontrolling pro
esses. Wethink of weak stru
tural 
ongruen
e as stru
tural 
ongruen
e up to pro
essbisimilarity.Coming ba
k to the example at the beginning of the se
tion, note that n〈P 〉[]and n〈Q〉[] are weakly stru
turally 
ongruent for P,Q pro
ess bisimilar. Wehave argued that this is an example of a pair of 
on�gurations, whi
h are spa-tially 
ongruent, but not stru
turally 
ongruent. Extending stru
tural 
on-gruen
e to in
lude those 
on�gurations, whi
h only di�er in the 
ontrollingpro
ess, we 
an show that spatial 
ongruen
e implies stru
tural 
ongruen
e.This result hinges on the following lemma, whi
h demonstrates that spatial
ongruen
e is 
losed under labelled redu
tions.Lemma 16 Spatial 
ongruen
e is 
losed under labelled redu
tion.Proof: Suppose n ∈ N and C,D ∈ C are spatially 
ongruent with C l
=⇒ C ′′.Then C is of the form C ≡ C0, C1 with C0 ≡ m〈P 〉[E] and P l

−→ P ′ for some
P ′ ∈ P and E ∈ C. We pro
eed by 
ase distin
tion on l ∈ L, where we use afresh name k ∈ N , i.e. k does not o

ur as the name of a lo
ation either in Cor in D, and some arbitrary R ∈ P.Case l = inn: Consider the 
ontext K[_] = n〈R〉[k〈R〉[]],_. Then K[C] =⇒14



C ′ with C ′ ≡ C1, n〈R〉[m〈P ′〉[E], k〈R〉[]]. Sin
e C ∼= D, we have K[D] =⇒ D′with C ′ ∼= D′. Sin
e spatial 
ongruen
e is 
losed under forest redu
tion andtop-level names, we 
an split D′ ≡ D1, n〈R′〉[F ] for some R′ ∈ P and F ∈ C,where D1
∼= C1 and n〈R′〉[F ] ∼= n〈R〉[m〈P ′〉[E], k〈R〉[]]. Using 
losure undersubtree redu
tion, we obtain F ∼= m〈Q′〉[E ′], k〈R〉[] (sin
e k is fresh) with

m〈Q′〉[E ′] ∼= m〈P ′〉[E]. Again using that k is fresh, we have D ≡ D1, m〈Q〉[E ′]for someQ ∈ P withQ inn
−→ Q′ withD1

∼= C1 andm〈P ′〉[E] ∼= m〈Q′〉[E ′]; sin
espatial 
ongruen
e is a 
ongruen
e we �nally obtain D inn
=⇒ D1, m〈Q′〉[E ′] ∼=

C1, m〈P ′〉[E].Case l = outn: Similar, using the 
ontext n〈R〉[_, k〈R〉[]].Case l = openn: Similar, using the 
ontext n〈R〉[k〈R〉[]],_. 2We are now ready to state and prove the main result of this se
tion:Proposition 17 Spatial 
ongruen
e and weak stru
tural 
ongruen
e 
oin
ide.Proof: It follows dire
tly from the de�nitions that weak stru
tural 
ongruen
e(whi
h we denote by ≡ for the purpose of this proof) is 
ontained in spatial
ongruen
e. We prove the 
onverse in
lusion by 
ontradi
tion: assume thatthe set F = {(C,D) ∈ C × C | C ∼= D,C 6≡ D} of felons is non empty. For
C ∈ C, we de�ne the size of C, size(C), by indu
tion as follows: size(0) =
0, size(C,D) = size(C) + size(D), size(n〈P 〉[C ′]) = 1 + size(C ′).Sin
e the standard ordering on natural numbers is a well-ordering, there is apair (C,D) of felons, su
h that size(C) is minimal, that is, for all (C ′, D′) ∈ Fwe have size(C ′) ≥ size(C). We dis
uss the di�erent possibilities for C.Case C ≡ C0, C1 with C0 6≡ 0 6≡ C1: Using forest redu
tion, we 
an split
D ≡ D0, D1 withDj

∼= Cj for j = 0, 1. Sin
e size(C0) < size(C) and size(C1) <
size(C), neither (C0, D0) nor (C1, D1) are felons, that is, C0 ≡ D0 and C1 ≡ D1,hen
e C ≡ C0, C1 ≡ D0, D1 ≡ D, 
ontradi
ting (C,D) ∈ F .Case C ≡ n〈P 〉[C0]: By subtree redu
tion, D ≡ m〈Q〉[D0] with C0

∼= D0.Sin
e size(C0) < size(C), the pair (C0, D0) is not a felon, hen
e C0 ≡ D0.By 
losure under top-level names, furthermore n = m, and 
losure underlabelled redu
tion (Lemma 16) implies that P and Q are pro
ess bisimilar.Hen
e n〈P 〉[C0] and m〈Q〉[D0] are weakly 
ongruent, 
ontradi
ting (C,D) ∈
F .Case C ≡ 0: From C ∼= D we 
on
lude D ≡ 0, 
ontradi
ting C 6≡ D. 2So far, we have shown that labelled bisimulation is 
ontained in spatial 
on-gruen
e, whi
h is in turn 
ontained in stru
tural 
ongruen
e. In the following15



se
tion, we introdu
e a spatial logi
 and des
ribe the relationship betweenstru
tural 
ongruen
e and logi
al equivalen
e.
4 A Spatial Logi
 for Basi
SailIn the previous se
tion, we have shown a 
hain of impli
ations between dif-ferent equivalen
es on the set of 
on�gurations: labelled bisimilarity impliesspatial 
ongruen
e, whi
h in turn implies weak stru
tural 
ongruen
e. Thisse
tion adopts a logi
al view and 
loses the 
hain of impli
ations by show-ing that weak stru
tural 
ongruen
e implies logi
al equivalen
e, whi
h is thenproven to 
ontain labelled bisimilarity. Using the setup from the previous se
-tion, this hinges on the fa
t that that the underlying pro
esses are image �nite.Our logi
 is very similar in style to modal logi
s used to reason about the poweralgebra asso
iated with an algebrai
 stru
ture: we obtain a hybrid of modallogi
 and separation logi
 [31,35℄. In style, this logi
 is very similar the logi
sdis
ussed in [15,11℄ ex
ept for the absen
e of linear impli
ation. However, aswe shall see later, linear impli
ation 
an be added at no extra 
ost.As before, our de�nitions and results are parametri
 in a set N of names andthe asso
iated set L of labels. We now introdu
e the logi
 we are going towork with.De�nition 18 (Spatial Logi
: Syntax) The language L of spatial logi
 isthe least set of formulas a

ording to the grammar

L ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | 〈R〉φ | 〈�〉φψwhere n ∈ N , l ∈ L and R ranges over the relations ↓,=⇒ and l
=⇒ for l ∈ L.Intuitively, the formula ǫ allows us to speak about the empty 
ontext and @nallows us to observe the names of lo
ations. Formulas of type 〈R〉φ allow us(as in standard modal logi
) to reason about the behaviour of a pro
ess afterevolving a

ording to the relation R. In our 
ase, we 
an spe
ify properties ofsub-
on�gurations (using ↓), transitions (using =⇒) and labelled redu
tions(using l

=⇒). Finally, a formula of type 〈�〉φψ asserts that the 
urrent 
on�g-uration 
an be split into two sub
on�gurations, the �rst satisfying φ and these
ond ψ.De�nition 19 (Spatial Logi
: Semanti
s) The semanti
s of propositional16




onne
tives is as usual. For the modal operators, we put, for C ∈ C:
C |= ǫ i� C ≡ 0

C |= @n i� C ∈ @n

C |= 〈R〉φ i� ∃C ′.(C,C ′) ∈ R and C ′ |= φ

C |= 〈�〉φψ i� ∃C ′, C ′′.C � (C ′, C ′′) and C ′ |= φ, C ′′ |= ψwhere R ranges over =⇒, ↓ and l
=⇒ for l ∈ L as above. As usual, Th(C) =

{φ ∈ L | C |= φ} denotes the logi
al theory of C ∈ C. Two 
on�gurations C,Dare logi
ally equivalent, if Th(C) = Th(D); this is denoted by C =L D.Note that we use the expression �@n� above both as an atomi
 formula of thelogi
 and as a unary relation. In this se
tion, we show that logi
al equivalen
eis invariant under stru
tural 
ongruen
e, adding one more item to our 
hainof impli
ations:Lemma 20 Weak stru
tural 
ongruen
e is 
ontained in logi
al equivalen
e.Proof: Straightforward by indu
tion on the de�nition of weak stru
tural 
on-gruen
e. The 
ase of two bisimilar 
ontrolling pro
esses uses the standard fa
tthat bisimulation implies logi
al equivalen
e in pro
ess 
al
uli (see e.g. [7,43℄).
2We now 
lose the 
hain of relation between the di�erent relation on 
on�gu-rations by showing that logi
al equivalen
e implies labelled bisimulation; theproof uses standard te
hniques in modal logi
, see e.g. [7℄.Proposition 21 Logi
al Equivalen
e is 
ontained in labelled bisimulation.Proof: We show that

=L= {(C,D) ∈ C | C, D logi
ally equivalent}is a labelled bisimulation. Using Lemma 10, 
losure under =⇒, ↓, l
=⇒, 0 and

@n are straightforward, see e.g. [7℄. We just demonstrate that =L is 
losedunder forest redu
tion.To this end, suppose that C,D ∈ C with C =L D and C � (C0, C1). Supposefor a 
ontradi
tion that for all D0, D1 with D � (D0, D1) we have D0 6=L C0or D1 6=L C1.Thus for all (D0, D1) with D � (D0, D1) there is i = i(D0, D1) ∈ {0, 1} and
φi(D0,D1) with Ci |= φi but Di 6|= φi. Now, for
φ =

∧

{φi(D0,D1) | i(D0, D1) = 0} and ψ =
∧

{φi(D0,D1) | i(D0, D1) = 1}17



we have that C |= 〈�〉(φ, ψ) but D 6|= 〈�〉(φ, ψ), 
ontradi
ting Th(C) =
Th(D). 2We now 
on
lude the investigation of the basi
 
al
ulus by a 
omparison ofthe di�erent forms of equivalen
e we have dis
ussed so far.Theorem 22 In the Basi
Sail 
al
ulus, labelled bisimilarity, spatial 
ongru-en
e, logi
al equivalen
e and weak stru
tural 
ongruen
e 
oin
ide.The above equivalen
es all apply to the basi
 
al
ulus, that is, the 
al
uluswithout lo
al names. Before extending our results to the 
al
ulus with lo
alnames, dis
uss the impa
t of adding linear impli
ation to our logi
.Typi
ally, spatial logi
s for reasoning about mobile pro
esses, for example[15,11,12℄ 
ontain linear impli
ation � as further 
onne
tive. We have 
hosennot to in
lude linear impli
ation into the spatial logi
 for the basi
 
al
ulus,sin
e the main 
hara
terisation result, Theorem 22, 
an be proved withouthaving linear impli
ation available. Our logi
 is thus more similar in nature tothat of [13℄. This se
tion shows, that linear impli
ation 
an be added withoutdestroying invarian
e under stru
tural 
ongruen
e.De�nition 23 The language L

� of spatial logi
 with linear impli
ation is theleast set of formulas a

ording to the grammar
L

� ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | φ� ψ | 〈R〉φ | 〈�〉φψwhere the semanti
s is given as in De�nition 18, plus the 
lause
C |= φ� ψ i� ∀D.D |= φ =⇒ D,C |= ψfor C ∈ C. If Th(C) = Th(D) for C,D ∈ C, we 
all C and D logi
allyequivalent, whi
h we denote by =�

L .The 
onne
tive � is 
alled linear impli
ation: it stipulates that the formula ψholds in presen
e of all 
on�gurations satisfying φ. It is sometimes helpful tothink of φ as a property that needs to be guaranteed to hold in presen
e of allpossible atta
kers whi
h satisfy ψ.It is immediately 
lear from the de�nition of the semanti
s of � that lin-ear impli
ation does not allow to distinguish between stru
turally 
ongruent
on�gurations.Lemma 24 Suppose C ≡ D are weakly stru
turally 
ongruent and φ ∈ L
�.Then C |= φ i� D |= φ.Proof: It follows from Theorem 22 that the statement holds for formulas not
ontaining �. It follows dire
tly from the de�nition of � that this result 
arries18



over to L
�. 2Using Theorem 22, we immediately obtain that linear impli
ation does nothelp to distinguish 
on�gurations whi
h are labelled bisimilar (or spatially
ongruent, for that matter).Corollary 25 Suppose C ∼= D are spatially 
ongruent. Then C =�

L D.5 Lo
alSail: A Cal
ulus with Lo
al NamesIn the 
al
ulus of mobile ambients, lo
al names are essential for many exam-ples. The treatment of lo
al names is derived from the π-
al
ulus, i.e. governedby stru
tural rule of s
ope extrusion (νnP ) | Q ≡ νn(P | Q) whenever n isnot a freely o

urring name of Q. In the ambient 
al
ulus, lo
al names 
uta
ross dynami
s and spatial stru
ture, by adopting a se
ond stru
tural rule:
νn(k[P ]) ≡ k[νnP ] if n 6= k, whi
h allows to move the restri
tion operator upand down the tree stru
ture, indu
ed by the nesting of the ambient bra
kets.If we want to remain independent from the underlying pro
ess 
al
ulus, we
annot adopt the latter rule, as we do not have name restri
tion avaliable atthe pro
ess level. However, we 
an look at a 
al
ulus with lo
al names, wherelo
al names obey s
ope extrusion a la π-
al
ulus.The next de�nition extends the syntax as to in
orporate lo
al names. In orderto deal with s
ope extrusion, we also have to introdu
e the 
on
ept of freenames.De�nition 26 (Lo
alSail) The set C of 
on�gurations in Lo
alSail is givenby

C ∋ C,D ::= 0 | n〈P 〉[C] | C,D | (νn)Cfor n ∈ N and P ∈ P. If ~n = (n1, . . . , nk), we write (ν~n) for (νn1) . . . (νnk).Given P ∈ P and n ∈ N , we say that n is free in P , if there are l1, . . . , lk and
P1, . . . , Pk su
h that P l1−→ P1

l2−→ · · ·
lk−→ Pk

l
−→ Q, where l is one of in n,

outn and openn. We let fn(P ) = {n ∈ N | n free in P}.For C ∈ C, the set fn(C) is de�ned by indu
tion on the stru
ture of C asfollows:
• fn(ǫ) = ∅
• fn(C,D) = fn(C) ∪ fn(D)
• fn(n〈P 〉[C]) = {n} ∪ fn(P ) ∪ fn(C)
• fn((νn)C) = fn(C) \ {n} 19



where stru
tural 
ongruen
e is as in De�nition 2, augmented with α-equivalen
eand the rules (νn)(A,B) ≡ ((νn)A), B whenever n does not o

ur freely in Band the axiom (νn)0 ≡ 0.The operational semanti
s is given as in De�nition 2, augmented with the rule
C =⇒ C ′

(νn)C =⇒ (νn)C ′for C,C ′ ∈ C and n ∈ N . The extension of Basi
Sail with lo
al names is 
alledLo
alSail.Note that, in order to be able to state the rule for α-equivalen
e, we needa notion of substitution on the underlying pro
esses, whi
h needs to assumethat the set of pro
esses is 
losed under substitution. Formally, we have thefollowing 
oindu
tive de�nition:De�nition 27 Let l = opm ∈ L with op ∈ {in , open , out }. If n, k ∈ N , weput l[n/k] = l, if m 6= k, and l[n/k] = opn if m = k.Suppose P,Q ∈ P and n, k ∈ N . We say that Q is [n/k]- bisimilar to P ,denoted by Q ∼ P [n/k], if
• P

α
→ P ′ =⇒ ∃Q′.Q

α[n/k]
→ Q′ and P ′ ∼ Q′[n/k].

• Q
α[n/k]
→ Q′ =⇒ ∃P ′.P

α
→ P ′ and P ′ ∼ Q′[n/k].We say that P is substitution 
losed, if, for all P ∈ P and all n, k ∈ N , thereis Q ∈ P with Q ∼ P [k/n]. If this is the 
ase, we put

m〈P 〉[C][k/n] ≡







k〈P [k/n]〉[C[k/n]] if m = n and Q ∼ P [k/n]

n〈P [k/n]〉[C[k/n]] if m 6= n and Q ∼ P [k/n]and extend this de�nition to the whole of C by putting
0[k/n] ≡ 0 (C,D)[k/n] ≡ C[k/n], D[k/n]where C,D ∈ C, P ∈ P and n,m, k ∈ N .In order to be able to deal with α-equivalen
e, we therefore assume for theremainder of the se
tion that P is substitution 
losed; this 
an always bea
hieved by adding the missing substitution instan
es to P. Despite of itsname, 
losure under substitutions is not a synta
ti
 notion: it applies to anarbitrary labelled transition system. Using this notion of substitution on thepro
ess level, the indu
tive extension to 
on�gurations is standard.Before investigating the logi
al and algebrai
 theory of the 
al
ulus with lo
alnames, we 
ontinue the dis
ussion of Example 4. Re
all that we had an agent20



in a home lo
ation, whose sole purpose was to transport 
lients inside home.However, as we remarked when dis
ussing this example, nothing prevents the
lient pro
ess to enter the home-lo
ation dire
tly. This short
oming 
an nowbe remedied in the 
al
ulus with lo
al names.Example 28 We 
an now model an agent, whi
h has the 
apability to enterand exit its home lo
ation and to transport 
lients inside with lo
al names asfollows: We let �
lient� and �agent� as in Example 4 and put
home = (νh)h〈0〉[agent]Using s
ope extrusion, we have the same 
hain of redu
tions as in Example4. However, sin
e h is a private name now, the 
lient 
annot enter �home�without the help of �agent�.The next issue we are going to dis
uss is the algebrai
 and the logi
al theoryof the 
al
ulus with lo
al names. If we simply transfer the de�nition of spatial
ongruen
e to the setting with lo
al names, we 
an not expe
t to obtain thesame mat
h between the logi
al, synta
ti
al and algebrai
 theory. Considerfor example C ≡ 0 and D ≡ (νn)n〈0〉[]. Clearly C 6≡ D, but it is easy to seethat C and D are stru
turally 
ongruent.In order to obtain a similar 
hara
terisation as in the 
al
ulus without lo
alnames, we therefore have to extend the de�nition of spatial bisimulation, anddemand 
losure under name revelations. We think of name revelation as anadditional experiment whi
h we 
an perform on 
on�gurations: for two 
on�g-urations to be equivalent, they have to behave equivalently even if we exposeone of their hidden names.De�nition 29 Suppose C ∈ C and n, k ∈ N . We put

C
revn
=⇒ C ′ i� C ≡ (νk)C ′′ and C ′ ≡ C ′′[n/k]whenever n /∈ fn(C) (free names 
annot be revealed � they are not se
ret). We
onsider the following equivalen
es:

• spatial bisimulation (resp. spatial 
ongruen
e) is the largest symmetri
 (resp.
ongruen
e) relation whi
h is 
losed under spatial redu
tion =⇒, forest re-du
tion �, subtree redu
tion ↓, top level names @n and under revelation
revn
=⇒ (for all n ∈ N ).

• labelled bisimulation is the largest spatial bisimulation, whi
h is 
losed underlabelled redu
tion (De�nition 9).
• weak stru
tural 
ongruen
e is the least relation whi
h 
ontains stru
tural
ongruen
e and all pairs of the form (n〈P 〉[C], n〈Q〉[C]) for P,Q ∈ P pro-
ess bisimilar.In spite of the synta
ti
 similarities, our de�nition is only super�
ially related21



to Sangiorgi's open bisimulation [37℄ and the equivalen
es used in the fusion
al
ulus [33℄. The use of substitution in the above de�nition is solely used to
onsistently rename a hidden name, whereas open bisimilarity uses substitu-tion to deal with the syn
hronous 
ommuni
ation of names. Moreover, openbisimilarity is also meaningful in absen
e of lo
al names.We now turn to the impa
t of lo
al names on the equivalen
es, whi
h wehave dis
ussed previously. Sin
e we make revelation an expli
it part of spatialbisimulation, everything goes through as before, on
e the equivalen
es aretransferred (without 
hanges) to the 
al
ulus with lo
al names. We obtain:Proposition 30 The following hold in the Lo
alSail 
al
ulus:(1) Labelled bisimulation 
ontains spatial 
ongruen
e(2) spatial 
ongruen
e 
ontains weak stru
tural 
ongruen
eProof: To show that labelled bisimulation is 
ontained in spatial 
ongruen
e,we extend the proof of Proposition 14 and show, that labelled bisimulationis a 
ongruen
e. We need to deal with three 
on�guration-forming opera-tions: Spatial Composition, tree 
onstru
tion and name restri
tion. Note thatLemma 10 and Proposition 12 are also valid for the set L = {opn | op ∈
{in , out , open , rev } and n ∈ N} of labels; we hen
e have to show that ea
hrelation ∼i, as de�ned in De�nition 11 is a 
ongruen
e, for every i ∈ N.(1) Congruen
e w.r.t. spatial 
omposition: Suppose C ∼i D and E ∈ C. Wehave to show that C,E ∼i D,E. Again we fo
us only on the nontrivial 
lausesin the de�nition of ∼i and only treat the 
ase of spatial redu
tions. The 
ase
C =⇒ C̃ and C ′ ≡ C̃, E and E =⇒ Ẽ with C ′ ≡ C, Ẽ are trivial. For theother 
ases, we assume that C ≡ (ν~n)C0 and E ≡ (ν ~m)E0 where there isno o

urren
e of ν at the top level of either C0 or E0. In order for C and
D to intera
t, both must perform s
ope extrusion, that is, we must have
C,E ≡ (ν~n)(ν ~m), C0, E0 =⇒ C ′ and C,E =⇒ (ν~n)(ν ~m)C ′. Sin
e C - E, wehave D revn1=⇒ . . .

revnk=⇒ D0 - C0 where D0 has no o

urren
e of name restri
tionat the top level. As C0 - E0 and both have no name restri
tion at their toplevel, we 
an pro
eed as in Proposition 12.(2) Congruen
e w.r.t. tree 
onstru
tion: As in the proof of Proposition 12.(3) Congruen
e w.r.t. name restri
tion: Suppose C ∼i D; we have to show that
(νn)C ∼i (νn)D. Clearly (νn)C and (νn)D have the same spatial redu
tions,as their only redu
tions 
an be performed under the ν-binder (De�nition 26).The only labelled redu
tions either C or E 
an perform are the revelation ofthe bound name n, whi
h 
an be mat
hed sin
e C ∼i D.For the se
ond impli
ation, the minimal witness argument used in Proposition17 has to me modi�ed as follows: We put size(νn)C = size(C) and 
onsider22



the set F = {(C,D) ∈ C × C | C ∼= D,C 6≡ D} of felons. If (C,D) ∈ Fsu
h that size(C) is minimal, we have to 
onsider the additional 
ase that
C ≡ (ν~n)C0 with ~n = (n0, . . . , nk). In this 
ase, C revn0=⇒ . . .

revnk=⇒ C ′, where
C ′ 6≡ (νm)C ′′ for all m,C ′′. Hen
e D revn0=⇒ . . .

revnk=⇒ D′ with C ′ ∼= D′. Now
(C ′, D′) ∈ F , whi
h redu
es this 
ase to one of the two 
ases dis
ussed in theproof of Proposition 17. 2In order to transfer the 
hara
terisation result to a logi
al setting, we introdu
ea hidden name quanti�er in the style of Gabbay and Pitts [20℄:De�nition 31 The language of spatial logi
 with lo
al names is the least seta

ording to the following grammar

L ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | 〈R〉φ | 〈�〉φψ | Hn.φGiven C ∈ C and φ ∈ L, satisfa
tion C |= φ is as in De�nition 18, plus the
lause
C |= Hn.φ i� there is C ′ ∈ C s.t. C revn

=⇒ C ′ and C ′ |= φfor the hidden name quanti�er. As before, Th(C) = {φ ∈ L | C |= φ} for
C ∈ C, and C,D ∈ C are 
alled logi
ally equivalent, denoted by C =L D, if
Th(C) = Th(D).Sin
e the relation revn

=⇒ (for n ∈ N ) are image-�nite, Lemma 10 and Proposition12 remain valid in the 
al
ulus with lo
al names. We thus obtainProposition 32 In the Lo
alSail 
al
ulus:(1) weak stru
tural 
ongruen
e is 
ontained in logi
al equivalen
e.(2) logi
al equivalen
e is 
ontained in labelled bisimulation.Proof: The �rst 
laim is immediate from the de�nition of weak stru
tural 
on-gruen
e in the 
al
ulus with lo
al names. Note that the relations revn
=⇒ are image�nite for all n ∈ N . This allows us to pre
eed as in the proof of Proposition21 for the se
ond 
laim, whi
h we extend by showing that logi
al equivalen
e

=L is 
losed under revelation. Assume for a 
ontradi
tion that C,D ∈ C with
C =L D, C revn

=⇒ C ′ but we have C ′ 6=L D
′ for all D′ with D revn

=⇒ D′. Sin
e theset R = {D′ ∈ C | D
revn
=⇒ D′} of redu
ts is �nite by assumption, we have a for-mula φD′ for every D′ ∈ R s.t. C ′ |= φD′ but D′ 6|= φD′. Hen
e C |=

∧

D′∈R φD′but D 6|=
∧

D′∈R φD′, whi
h 
ontradi
ts C =L D. 2As a 
orollary, we obtain that the 
hara
terisation of Theorem 22 
arries overto the 
al
ulus with lo
al names.Theorem 33 The notions of labelled bisimulation, spatial 
ongruen
e, weakstru
tural 
ongruen
e and logi
al equivalen
e 
oin
ide for the Lo
alSail 
al
u-lus. 23



6 MultipleSail: A Cal
ulus with Multiple NamesIn this se
tion, we dis
uss a se
ond extension of the Basi
Sail 
al
ulus andallow ea
h lo
ation to have multiple names. Multiple names 
an be used tomodel network devi
es with more than one network interfa
e; we allow forthese interfa
es to be swit
hed on or o� independently of ea
h other. Thisfeature 
an be used for example to model �rewalls, whi
h have one interfa
e tothe outside and a se
ond network 
onne
tion to a (prote
ted) internal network.While this is a very realisti
 assumption, it is � to the best of our knowledge �not present in other 
al
uli whi
h 
an be used to model mobile 
omputation.Due to the layered stru
ture of Basi
Sail, every a
tion of a 
ontrolling pro-
ess takes pla
e in a unique lo
ation. Therefore, it is straightforward to allowpro
esses to manipulate the names of the lo
ations whi
h they 
ontrol. We
an therefore easily model the addition and deletion of names using two extraprimitives upn (add the name n to the names of the present lo
ation) and
down n (remove the name n from the set of names of the present lo
ation).These a
tions 
orrespond to swit
hing network interfa
es on and o�, sin
e ev-ery network interfa
e 
omes with a unique name. This in parti
ular 
overs the
ase where a lo
ation has more than one network interfa
e � or none at all.If we extend the syntax of 
on�gurations to in
lude multiple names, a typi
alsingleton 
on�guration has the form ~n〈P 〉[C], where ~n = (n1, . . . , nk) is a listof names.In 
ontrast to the extension of Basi
Sail with lo
al names, whi
h amounts toadding extra 
apabilities in the 
onstru
tion of 
on�gurations, multiple namesrequire to add new 
apabilities to the underlying pro
esses. More pre
isely,we need to assume that (P,−→) is an image �nite labelled transition system,where the labels in
orporate upn and down n. The following 
onvention makesthis pre
ise.Notation Throughout the se
tion, we �x a set N of names and 
onsider theset L = {opn | op ∈ {in , out , open , up , down } and n ∈ N}. Furthermore,we �x a labelled transition system (P,−→), where P 6= ∅ and −→⊆ P×L×Pis image �nite.Based on a set of pro
esses that 
an exer
ise 
ontrol over the names of alo
ation, the MultipleSail 
al
ulus is given as follows:De�nition 34 (MultipleSail) The set of 
on�gurations of MultipleSail isthe least set a

ording to the grammar

C ∋ A,B ::= 0 | ~n〈P 〉[A] | A,Bwhere P ∈ P is a pro
ess and ~n = (n1, . . . , nk) ∈ N ∗ is a list of names. As24



before, 
on�gurations are 
onsidered up to stru
tural 
ongruen
e ≡ given bythe axioms of De�nition 2, augmented with
(n1, . . . , nk) < P > [C] ≡ (nσ(1), . . . , nσ(k))〈P 〉[C]where σ is a permutation of {1, . . . , k}.In the sequel, we write n ∈ (n1, . . . , nk) i� n = nj for some 1 ≤ j ≤ k. Theoperational semanti
s is now given by extending the rules given in De�nition3 with the rules
P

upn
−→ P ′ n /∈ ~n

~n〈P 〉[A] −→ ~n⊕ n(P ′)[A]

P
downn
−→ P ′ n ∈ ~n

~n〈P 〉[A] −→ ~n⊖ n(P ′)[A]where
(n1, . . . , nk) ⊕ n =







(n1, . . . , nk, n) n 6= nj for all j = 1, . . . , n

(n1, . . . , nk) otherwiseand similarly
(n1, . . . , nk) ⊖ n =







(n1, . . . , nj−1, nj+1, . . . , nk) 1 ≤ j ≤ k and n = nj

(n1, . . . , nk) otherwiseThe resulting extension of Basi
Sail is 
alled MultipleSail.The idea of a term (n,m)〈P 〉[A] is that of a lo
ation with two names, n and
m, running the programme P and whi
h has A as sub-lo
ations. Note thata
tivating a new name (via up n) at a lo
ation where the name is already inuse has no e�e
t. Similarly, removing a name from a lo
ation whi
h is notpresent will not 
hange the spatial stru
ture.In parti
ular, a lo
ation 
an have no name at all. The following example
ontrasts this with hidden names.Example 35 (1) The e�e
t of having no name at all 
annot be 
apturedwith lo
al names, sin
e nameless lo
ations are also nameless for lo
ationsfrom within. Take for example ()〈P 〉[A] for P ∈ P and A ∈ C. Notethat anonymous lo
ations are anonymous also for pro
esses from within,that is, the same e�e
t 
annot be a
hieved using lo
al names. Indeed,the pro
esses (νn)(n)〈P 〉[k〈outn〉[]] and ()〈P 〉[k〈outn〉[]] di�er in thatthe former 
an perform a redu
tion under the name binder, whereas thelatter 
annot.(2) Unnamed lo
ations are by no means immobile. Consider the 
on�gura-tion (n)〈downn.0〉[A], ()〈inn.0〉[B]. This example also illustrates that themovement only su

eeds, if the unnamed agent is lu
ky enough to enterinto his partner before the name disappears.25



In the MultipleSail 
al
ulus, we 
annot expe
t that spatially 
ongruent pro-
esses (in the sense of De�nition 5) to 
ontain stru
tural 
ongruen
e. Thereason is that the 
ontrolling pro
esses of two spatially 
ongruent pro
essesare not pro
ess bisimilar. This o

urs for example, if the 
ontrolling pro
essallows for de-a
tivating a name, whi
h is not present in the 
on�guration, ase.g. for ()〈downn.O〉[] and 〈down k.0〉[]. In order to a
hieve a mat
h betweenthe di�erent pro
ess equivalen
es, we therefore have to allow for an additionalobservation: The 
hanging of names. The formal de�nition of spatial bisimu-lation and 
ongruen
e in MultipleSail is as follows:De�nition 36 Suppose C ∈ C and n ∈ N . We put
C

⊕n
=⇒ C ′ i� C ≡ ~n〈P 〉[C0] and C ′ ≡ ~n⊕ n〈P 〉[C0]and analogously

C
⊖n
=⇒ C ′ i� C ≡ ~n〈P 〉[C0] and C ′ ≡ ~n⊖ n〈P 〉[C0].We say that a relation is 
losed under name 
hanges, if it is 
losed under ⊕n

=⇒and ⊖n
=⇒ for all n ∈ N .We 
onsider the following equivalen
es:

• spatial bisimulation ≃ (resp. spatial 
ongruen
e ∼=) is the largest symmetri
(resp. 
ongruen
e) relation that is 
losed under spatial redu
tion =⇒, forestredu
tion �, subtree redu
tion ↓, top level names @n and name 
hanges
⊕n
=⇒,

⊖n
=⇒ (for all n ∈ N ).

• labelled bisimulation is the largest spatial bisimulation whi
h is 
losed underlabelled redu
tion (see De�nition 9).
• weak stru
tural 
ongruen
e is the least relation whi
h 
ontains stru
tural
ongruen
e and all pairs of the form (n〈P 〉[C], n〈Q〉[C]) for P,Q ∈ P pro-
ess bisimilar.We think of 
losure under name 
hanges as an experiment, whi
h we 
anperform on a singleton 
on�guration. For two (singleton) 
on�gurating to beequivalent, we require that they exhibit the same behaviour even when we
hange the names of their top level lo
ations. This additional observationensures that labelled bisimulation is a 
ongruen
e, and that spatial 
ongruen
eimplies weak stru
tural 
ongruen
e.Proposition 37 The following hold for the MultipleSail 
al
ulus:(1) Labelled bisimulation 
ontains spatial 
ongruen
e.(2) Spatial 
ongruen
e 
ontains weak stru
tural 
ongruen
e.Proof: We extend the 
orresponding results for the basi
 
al
ulus. For the �rst26




laim, we extend the proof of Proposition 14 and show, that labelled bisimula-tion is a 
ongruen
e. As for the Lo
alSail 
al
ulus, we note that 10 and Proposi-tion 12 remain valid for the set L = {opn | op ∈ {in , out , open , up , down ,⊕,⊖} and n ∈
N}. We thus have to show that ∼i (De�nition 11) is a 
ongruen
e w.r.t. spatial
omposition and tree 
onstru
tion.(1) Congruen
e w.r.t. spatial 
omposition: Assume that C ≡ ~n〈P 〉[C0], C1and C ∼i D. We �x E ∈ C and show that C,E ∼i D,E, where we only treatspatial redu
tions indu
ed by (de)a
tivating a name.Case 1: C a
tivates a new name. Formally C,E =⇒ C ′ with P up k

−→ P ′ and
C ′ ≡ ~n ⊕ k〈P ′〉[C0], C1, E. Using forest redu
tion and Lemma 7, we 
an as-sume that D ≡ ~n〈Q〉[D0], D1 where ~n〈P 〉[C0] ∼i−1 ~n〈Q〉[D0] and C1 ∼i−1

D1. Now ~n〈P 〉
up k
=⇒ ~n〈P ′〉[C0]. By 
losure under labelled redu
tion, we have

~n〈Q〉[D0]
upn
=⇒ ~n〈Q′〉[D0] with ~n〈P ′〉[C0] ∼i−1 ~n〈Q

′〉[D0]. As ∼i−1 is 
losed un-der name 
hanges, also ~n⊕k〈P ′〉[C0] ∼i−1 ~n⊕k〈Q′〉[D0], and the 
laim follows,sin
e ∼i−1 is a 
ongruen
e.Case 2: C de-a
tivates a new name. Formally C,E =⇒ C ′ with P
down k
−→ P ′and C ′ ≡ ~n⊖ k〈P ′〉[C0], C1, E: Similar.The 
ases, where E a
tivates or de-a
tivates a new name, are straightforward.(2) Closure w.r.t. tree 
onstru
tion: Immediate.For the se
ond 
laim we use the minimal witness argument of Proposition17, whi
h applies on
e we have established that spatial 
ongruen
e is 
losedunder labelled redu
tion. To this end, assume C ∼= D are 
on�gurations and

C
opn
=⇒ C ′. We have to exhibit D′ ∼= C ′ su
h that D opn

=⇒ D′. We only treatthe new 
ases op ∈ {up , down }. So suppose C ∼= D and C opn
=⇒ C ′. Then we
an assume that C ≡ ~n〈P 〉[C0], C1 and C ′ ≡ ~n′〈P ′〉[C0], C1. By 
losure underforest redu
tion �, we have D ∼= ~n〈Q〉[D0], D1 with ~n〈Q〉[D0] ∼= ~n〈P 〉[C0] and

D1
∼= C1.Case 1: op = up . We 
an assume without loss of generality that k /∈ ~n;otherwise we use 
losure under name 
hanges and repla
e ~n with ~n⊖ k. Sin
e

n〈P 〉[C0] =⇒ ~n ⊕ k〈P ′〉[C0], there is D′

0
∼= ~n ⊕ k〈P ′〉[C0] with ~n〈Q〉[D0] =⇒

D′

0. Again by 
losure under forest redu
tion and top level names, we have
D′

0 ≡ ~n⊕ k〈Q′〉[D′′

0 ]. But this 
an only happen if Q up k
−→ Q′ and D′′

0 ∈ @k, wehave D′′

0 ≡ D0. The 
laim follows, sin
e ∼= is a 
ongruen
e.Case 2: op = down : Similar. 2We now take a logi
al point of view and give a logi
al 
hara
terisation ofspatial 
ongruen
e, whi
h is very similar to the logi
al 
hara
terisation in the27



setting with lo
al names (Se
tion 5). Similar to the hidden name quanti�er,we introdu
e a new logi
al operator, whi
h deals with name 
hanges.De�nition 38 The language of spatial logi
 with multiple names is the leastset a

ording to the following grammar
L ∋ φ, ψ ::= ǫ | @n | � | φ→ ψ | 〈R〉φ | 〈�〉φψ | ⊕n.φ | ⊖n.φGiven C ∈ C and φ ∈ L, satisfa
tion C |= φ is as in De�nition 18, plus the
lause

C |= ⊕n.φ i� C ≡ ~k〈P 〉[C ′] and ~n⊕ k〈P 〉[C ′] |= φ,and a

ordingly for ⊖. As before, Th(C) = {φ ∈ L | C |= φ} for C ∈ C,and C,D ∈ C are 
alled logi
ally equivalent, denoted by C =L D, if Th(C) =
Th(D).As in the 
al
ulus with lo
al names, we have the following result:Proposition 39 The following hold in the MultipleSail 
al
ulus:(1) weak stru
tural 
ongruen
e is 
ontained in logi
al equivalen
e.(2) logi
al equivalen
e is 
ontained in labelled bisimulation.Proof: As for Proposition 32. 2Using name 
hanges as additional observation, we a
hieve a perfe
t mat
hbetween the synta
ti
al, logi
al and algebrai
 theory also for the MultipleSail
al
ulus:Theorem 40 In the MultipleSail 
al
ulus, labelled bisimulation, spatial 
on-gruen
e, weak stru
tural 
ongruen
e and logi
al equivalen
e 
oin
ide.7 Con
lusions and Related WorkWe have presented a 
oordination approa
h to mobile 
omponents: the Basi
-Sail 
al
ulus and two extensions Lo
alSail and MultipleSail. The main noveltyof our approa
h lies in the fa
t that our 
al
ulus stri
tly distinguishes betweenthe 
omputational and the spatial aspe
ts of distributed 
omputation. Com-pared to other 
oordination models, the main novelty of our approa
h is thespatial stru
ture, where we assume that lo
ations are hierar
hi
ally organised.Our main result is that logi
al equivalen
e, stru
tural 
ongruen
e and spatial
ongruen
e agree; this indi
ates that our framework allows to add mobility to
omponents in a transparent way.The study of mobility goes ba
k to Milner's π-
al
ulus [27℄. Further 
al
uli are28



the Fusion 
al
ulus [33℄, Nomadi
 Pi
t [45℄ and the distributed 
oordinationlanguage KLAIM [29℄. The study of hierar
hi
al re-
on�gurable administrativedomains was introdu
ed by the Ambient [16℄ and the Seal 
al
ulus [44℄. Ba-si
Sail follows these lines but distinguishes pro
esses and 
on�gurations in ana priori way and 
on
entrates on a even simpler set of operations for 
hangingthe topologi
al stru
ture.The basi
 
al
ulus and its variations were inspired by the Seal-Cal
ulus. [44℄.However, the Seal-Cal
ulus is quite involved synta
ti
ally; the present 
al
ulusis a simpli�
ation in order to study the e�e
t of the separation of dynami
sfrom the underlying topologi
al stru
ture, whi
h is also present in Seal. These
ond sour
e of inspiration was the 
al
ulus of mobile ambients [16℄, fromwhi
h we have borrowed the primitives in, out and open. As we have pointedout before, our prin
ipal design de
isions do not allow to embed the full am-bient 
al
ulus into our framework.The 
lear separation of spatial and 
omputational aspe
ts allows for the in-trodu
tion of an additional layer whi
h monitors the a
tions performed by theprograms 
ontrolling the individual 
omponents to enfor
e se
urity poli
iesin the style of edit automata [25℄. This allows for even more modularity, asse
urity poli
ies are added independently from the 
on
rete realisation of the
omponents and the mobility layer. The enfor
ement of se
urity poli
ies bymeans of an extra layer of 
ontrol has also been studied in a single 
al
ulus; wemention box-π [42℄ and ambients with guardians [19℄. Our notion of 
ontrol-ling pro
ess di�ers from the guardians of [19℄ as a guardian 
ontrols mobility,whereas our 
ontrolling pro
ess initiate a movement.Separation of 
on
erns has always been an important aspe
t of software ar
hi-te
ture, and the glue whi
h allows for the inter-operability between di�erent
omponents is studied in the 
ontext of 
oordination languages (see [32,2℄ foran overview). The language KLAIM [29℄ provides an integration between 
o-ordination and mobility. Based on the notion of tuple spa
es in the style ofLinda [18,21℄ it allows for modelling of distributed systems in the style of the
π-
al
ulus; in parti
ular, the hierar
hi
al stru
ture of lo
ations 
annot be rep-resented dire
tly. Our approa
h of 
ombining 
omponent is similar in spirit tothat of [1,30℄ (whi
h does not 
ater for mobility). There the authors di�eren-tiate between 
omponents, whi
h provide 
ertain servi
es, and an additionallayer, whi
h des
ribes the 
omposition of 
omponents.Spatial logi
s were studied by Cardelli and Caires [11,12℄, although to ourknowledge not w.r.t. a 
lear 
hara
terisation of the expressive power. Su
ha 
hara
terisation (
alled �intensional bisimulation�) was 
onsidered by San-giorgi for a variant of the ambient 
al
ulus [38,39℄.Our work on the 
omparison between di�erent equivalen
es on mobile pro
ess29



has to be seen in the 
ontext of the work of Merro and Hennessy [26℄ andSangiori, Hirs
hko�, Lozes [38,39℄. Their results were obtained in an untypedsetting, i.e. where one does not distinguish between pro
esses and lo
ations.Our results show, that similar 
omparisons 
an also be made in a typed setting,where furthermore one is independent of the underlying pro
ess 
al
ulus.The 
lear distin
tion between pro
ess and lo
ation, enfor
ed by our two-layered approa
h, 
an of 
ourse also be enfor
ed by adding type system aposteriori. Existing type systems [9,17,14℄ do not a

ount for this distin
tion,as they are designed with a di�erent goal: In general, ea
h type 
orrespondsto a 
ertain property of a pro
ess, and the type system allows for the deriva-tion of these properties. Moreover, typing is only meaningful when the sour
e
ode of the individual 
omponents is available, whereas we have assumed in-dependen
e from the underlying language by just using a labelled transitionsemanti
s; see [40℄ for a dis
ussion of this di
htonomy. We see partial typing[36℄ and the work on the box-π 
al
ulus and lo
al subtyping [42,41℄, where un-trusted 
omponents are put inside a wrapper, as steps towards the integrationof both aspe
ts. Finally, we remark that our approa
h of modelling mobile
omponents and their 
onne
tions is a spe
ial 
ase of the bigraph models ofJensen and Milner [22℄: The bigraphs 
orresponding to our setup are quitespe
ialised, as our basi
 
al
ulus does not dire
tly allow to model 
onne
tionsbetween the di�erent 
omponents.Of 
ourse, there remains a wealth of open problems: Most pressingly, we haveinvestigated neither the logi
al nor the algebrai
 theory of the 
al
ulus withname passing or multiple names, nor a variant whi
h in
ludes dynami
 re
on-�guration.A preliminary version of this work has already appeared as [34℄. The presentpaper di�ers from lo
.
it. in the 
hoi
e of the redu
tion relations whi
h de�nespatial bisimulation. The present approa
h, resulting in a hybrid of separationlogi
 and modal logi
, is 
loser to the logi
s already dis
ussed in an untypedsetting. Also, the 
omparison of the di�erent redu
tion relations follows a morestandard pattern and uses standard proof prin
iples, where available.Referen
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