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Abstract. This paper presents a method of solving initial value pnoisieus-
ing Euler's method, based on the domain of interval valuetttions of a real
variable. In contrast to other interval based techniques,aictual computation
of enclosures to the solution is not based on the code lish(tepresentation)
of the vector field that defines the equation, but assumesaddhat the vector
field is approximated to an arbitrary degree of accuracy. 8ggiapproximations
defined over rational or dyadic numbers, we obtain propea tigites for approxi-
mating both the vector field and the solution. As a consecgieme can guarantee
the speed of convergence also for an implementation of thieodeFurthermore,
we give estimates on the algebraic complexity for compuéipgroximate solu-
tions.

1 Introduction

We consider initial value problems given by a system of défgial equations

where the vector field : [-K, K]" — [-M, M]™ is continuous in a rectangle con-
taining the origin. Our goal is to compute a functign= (y1,...,y») : [0,a] — R”

which satisfies (1), up to any given degree of accuracy.

Standard numerical packages usually compute approxingtm a solution with
good precision, but there is no guarantee on the correctofets® computed values;
indeed it is easy to find examples where they output inaceuegults [7]. Interval
Analysis [13,14] provides a method for computing guarathtegper and lower enclo-
sures of the solution of initial value problems, see e.d,R9,11] and the references
therein for a survey of current interval techniques.

In the approach of interval analysis based on the Euler ndetteal numbers are
represented as intervals and outward rounding is appliiieifresult of an operation
is not machine representable. For many practical appticafithese methods produce
good enclosures, but one has no control over widening ofvatg, which can make
the result unduly large. As a consequence, implementatibiméerval methods are not
guaranteed to produce approximations which actually cgeveo the solution of the
problem, or satisfy aa priori estimate on the actual convergence speed.

These questions are addressed in the present paper usifngrttesvork of domain
theory [1,6]. Based on the domain of interval valued funtsiof a real variable, we con-
struct enclosures of the solutions of an IVP with an a priaagnteed width. Moreover,
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our construction gives rise to proper data types, which eaditectly implemented on a
digital computer. This allows us to guarantee the speedmf@gence also for existing
implementations.

Our new approach is based on a sequence of successively fimexanations to
the vector field. Using these approximations, we obtaina@neks of the solution of the
problem, which are then shown to converge to the solutionth&sapproximations of
the vector field can be defined using rational (or dyadic) neirsno loss of precision
is incurred, and we can therefore guarantee the converggresal also for an imple-
mentation of our techniques. These new techniques for tker Enethod follow closely
those for the Picard method as developed recently in [5].

The main contributions of the paper are (i) to show that weaanpute arbitrary
tight enclosures of the solution using approximations & Wector field, and (ii) to
show that these computations can be carried out on data, tygfsed over the rational
or dyadic numbers. Furthermore, we give an estimate on teedspf convergence to
the solution and an estimate of the algebraic complexityoaijguting approximations
for two different realisations of Euler’s technique.

Plan of the paper: We recall basic notions from domain théor8ection 2, and
introduce two realisations of Euler’s technique in Secnvhich are shown to pro-
duce approximations to the solution of the problem. We trdehapproximations of the
vector field that defines the IVP (Section 4), and give an egtran the speed of conver-
gence of our method. Section 5 shows how our techniques taallyde implemented
on a digital computer and gives the promised estimates omltfebraic complexity.
Finally, the last section puts our results into perspeatiite related research.

2 Preliminaries and Notation

First note that the continuity assumption orentails thaw attains its maximum, and
we can therefore restrict the rangewdto [— M, M|™ without loss of generality. For the
expression (1) to be well defined, we make the standard aggamap/ < K.

Our investigations are based on théerval domain(IR, C) whereIR = {[a,q] |
a < @andg,a € R} U {R} ordered by reverse inclusion, i.e.C §if 3 C «. Fora
compact rectangl® C R, the sub-domain of compact intervads@] C R is denoted
by IR with inherited order relation.

Note that botHIR andIR, for R C R a compact interval, ardirected complete
For a directed seD C IR of intervals, the least upper boupdlD always exists and
is given by D. In interval terms, suprema of a directed subsel®fcorrespond to
Moore’s principle of nested convergence of [13].

The order on an arbitrary directed complete partial ordep@ for short)(D, C)
induces a topology oW, the so calledcott topologyWe call a seD C D open if

1. itisupward closedi.e.d € O andd C e impliese € O
2. itisinaccessible by directed suprema. if A C D is directed andl | A € O, then
a € O for somea € A.

In the case of the interval domaiR, a base of the Scott topology is given by
subsets of the formla € IR | o C 5°} foranyg € IR, wheres° is the interior ofg. It
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can easily be seen that the Scott topologyigsand convergence in the Scott topology
implies convergence in the metric topology, used by Moo#,[tiut not vice versa. In
the sequel of the paper, we always consider a dcpo, or a spatemwals, as equipped
with the Scott topology.

Given an arbitrary seX, every functionf : X — IR can be represented by a
pair (f, f) representing the upper and the lower interval boundarg; dfiat is, f (z) =
[f(z), f(x)] for all z € X. We write this asf = [f, f]. We often make use of the
following crucial fact [1]: B

Fact 1. Supposef = [f, f] : R — IR. Thenf is Scott continuous iff is lower andf
is upper semi continuous.

If the domain of a function is also a dcpo (topologised with 8cott topology), we
have the following alternative characterisation of couitiyx

Fact 2. SupposéD,C) and(FE, C) are dcpos. Then a monotone functipn D — E
is continuousiiff |, , f(a) = f(|] A) for all directedA C D.

We also note that the spacé = D of continuous functions of typ& — D,
for a topological spac& and a dcpdD, is again a dcpo in the pointwise order: given
fig: X — D,weputf C gif f(z) C g(x) forall z € X. Hence we can view the
space of continuous functiod§ — D as a topological space w.r.t. the Scott topology
on X = D.IncaseX = {1,...,n} with the discrete topology, we writ®" for
X = D and obtain the:-fold cartesian product of the dcgdo with itself. In the special
caseD C IR is a sub-dcpaD™ is canonically isomorphic to the dcpoefdimensional
compact rectangles, and we will use this isomorphism witffitther mention.

For our purposes, the following spaces of functions are diqa4ar interest:

1. The spaceS = [0,a] = I|—K, K|™ (with the Euclidean topology of, a]) for
constructing solutions of (1)
2. The spac® = I[-K, K|" = I|—M, M]" of interval vector fields.

We use the notion ofvidth to measure the quality of an approximation. Given-
([ag, o), - - - [a,,an]) € IR™, we putw(a) = max{a; —a; | 1 < i < n}, and for a
function f : X — IR™ we letw(f) = sup{w(f(z)) | x € X} and callf real valued
if w(f) = 0and identifyf with the induced functiodk’ — R™.

The relation between vector fields in the classical senserdadval vector fields
is given by the notion oExtensionwe say thatu € V extendsv : [—-K, K|" —
[—M,M]" if u({z}) = {v(z)} for all z € [—-K, K]". In the sequel, we assume
thatu € V is an extension of the classical vector fieldNote that every continuous
v=(v1,...,vn) : [-K,K|™ — [-M, M] has an extension, thenonical extension
can, whosei-th component is given b¥[—K, K|* 5 a — {v;i(z) | = € a}. We
emphasise that our framework does not force us to work wighcmonical extension
of the classical vector field.

Finally, we introduce integrals of interval valued funet& which we use in the
construction of solutions of the IVP. Suppose< g and f : [p,q] — IR. Then the
integral of f = [f, f] is defined asf f(t)dt = [[) f(t)dt, [ F(t)dt]. The existence
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of the integrals follows from lower (resp. upper) semi cantty of f (resp.f). If f =

(fisoosfn) o [poa] — IR, we let [T f(t)dt = ([ fi(t)dt, ..., [} fu(t)dt). The
following property follows easily from the monotone congence theorem:

Fact 3. The integration operatof; : ([p,q] = IR™) — ([p,q] = IR™), defined by
f . f; f(t)dt, is monotone and continuous.

3 Euler's Operator in Domain Theory

We use a formulation of Euler’s operator similar to the onggiby Moore. The results
of this section are in essence standard [14] and are repeddhere in the framework of
domain theory for the reader’s convenience.

The formalisation of Euler's method for solving initial ved problems relies on the
notion ofpartitionsof the interval[0, a:

Definition 1 (Partitions).

1. Apartitionof [0, a] is a finite sequendgyo, . . ., ;) of real numberg = ¢o < --- <
qr = a; the set of partitions of0, a] is denoted byP.

2. Thenorm|Q| of a partition@ = (qo, - . . , gx) IS given by Q| = maxi<i<k ¢;i—gi—1
and itsminimal widthis m(Q) = min; <;<x ¢; — ¢i—1. We denote the ratio between
maximal and minimal width by(Q) = |Q|/m(Q).

3. Apartition@ = (qo, - . -, qx) refinesa partition P = (po, ..., p) if {po,...,pi} C
{qo, - ., q}; this is denoted by? C Q.

We now introduce two different realisations of Euler’s teitfue for solving IVPs.
The first has better convergence properties whereas congpwith the second turns
out to be more efficient.

For the remainder of the paper, we fix an extensiorl[- K, K" — I[-M, M]"
of the classical vector field. If « = ([ay, @], ..., [a,,as]) € IR™ andr € R, we
writea @ r = ([ag — r,a1 +71,...,[a, — r,a, + r]) for the symmetric expansion of
the interval vectory with the real constant.

Definition 2. Suppos&? = (qo,---,qn) € P. Then theEuler operator with linear
expansionE! : P x V — [0,a] = I[- K, K|" is defined by

0,...,0) x=0

l —

for z € [0, a]. TheEuler operator with constant expansisrgiven similarly by

0,...,0) z=0

whereAq; = ¢;4+1 — g;. In the sequelF stands for eithe>! or E¢
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The operator with constant expansion represents an inteeraion of Euler's
method for constructing solutions of differential equagpas described by Moore [14].
An equivalent definition could also be given without the usentegration. However,
our definition allows us to treat both operators in the saraenéwork, and therefore
enables us to use the same proof techniques for both.

We collect some basic facts on the operatBfsand E'. First, note that?,, is (i.e.
E! andE¢ are) well defined, monotone and computes enclosures of théso

Proposition 4. E,, is well defined, monotoné&,(Q)) € S andE, (P) C E,(Q) when-
everP C @) and satisfie€,, (Q) C z for any solutionz of (1).

Using the fact that every initial value problem of the form (ks at least one solu-
tion, it is easy to see that if the supremum of the Euler itexdt real valued, it solves

().

Corollary 5. SupposéP is a directed set of partitions angd= [y, 7] = | |,cp Eu(Q)
andy =7y. Theny = 3 is a solution of (1).

In order to be able to compute arbitrarily tight enclosuréthe solution, we need
to impose a Lipschitz condition on the vector field; this isrethe classical theory. The
following definition translates this into an interval seyi

Definition 3 (Interval Lipschitz Condition). The functionu : I[-K,K]* —
I[-M, M]™ satisfies aninterval Lipschitz conditionwith Lipschitz constantL if
w(u(a)) < L-w(a)forall a € I[-K, K|".

For the rest of the paper, we assume thdas an extension o), which satisfies
an interval Lipschitz condition with Lipschitz constaht The assumption that is
interval Lipschitz is actually equivalent tosatisfying a Lipschitz condition [5], hence
our assumption is in accordance with the classical theory.

Assuming a Lipschitz condition, we can give guarantees ensffeed of conver-
gence. We begin with an auxiliary lemma which helps to shaat th this case, the
approximations converge to a real valued function. In paldr, this lemma also shows
that £' has better convergence properties tizn

Lemma 6. Suppos€) = (qo, - - -, g) is @ partition. Then
w(E;(Q)(x)) < w(E(Q)(¢:)(1+1Q|- L) + C|QIP LM
for « € [qi, gi+1], whereC = 1 for « = andC = 2 for x = c.

Based on the previous lemma, we can now give an estimate apésa of conver-
gence; recall from Definition 1 tha(Q) is the ratio of the largest and smallest distance
between two partition points.

Proposition 7. SupposeP is a partition of[0, a]. Then
w(EL(P)) < C - |Q|M (@ — 1)

whereC = 1for« =l andC = 2 for x = c.
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By suitably modifying non-equidistant partitions, thenter(Q) can be eliminated.
Corollary 8 (Speed of Convergence).

1. If Q is equidistant, them (E? (Q)) < C - |Q|M (et — 1),
2. If Q is arbitrary, thenw(E; (Q)) < 20|Q|M - (e**X —1).

where, in both caseg; = 1 for x = andC = 2 for x = c.
Our main result is thus:

Theorem 9. Suppose (Q,)nen iS an increasing sequence of partitions with
lim, oo |@Qn] = 0andy = [ |, .y Eu(Qn). Thenw(y,) < C - [Q,| for someC > 0
and| |,y ¥n is real valued and a solution of (1).

4  Approximation of the Vector Field

We have seen in the previous section how to construct appaiions for the solution
of an IVPdirectly in terms of the interval extension of the classical vectddfitself.
From a computational point of view, this is unrealistic. hagtice, only approximations
to the vector field up to an arbitrary degree of accuracy asd@ve for computation.
In this section, we show that Euler’s operafoy is continuous in:, which will allow
us to use approximations of the vector field for computinggbleition of the IVP up
to an arbitrary degree of accuracy. Instead of assuminghleatector field is given as
a term involving certain basic functions like arithmeticepgtions and trigonometric
functions, we assume that the vector field is given as a supreaf simple functions,
each of which takes only finitely many values. As we will se¢hie next section, the
use of simple functions allows us to compute the solutioheuit loss of accuracy, and
we can therefore guarantee the convergence also for anrmeplation of the method.
We follow the convention of the previous section and #geto stand for boths!, and
E¢.

Lemma 10. Suppose:;, us : I[- K, K|" — I[-M, M|™ with u; C ug. ThenE,,, C
E,,, i.e.E, (Q) C E,,(Q) for all partitions Q.

Informally speaking, ifu; contains more information tham,, the operator associ-
ated withuy produces a better enclosure of the solution than that; ofVe show that
E, is actually continuous im, allowing us to use approximations offor computing
approximations of the solution.

Proposition 11. Suppose(u;)jes is a directed collection of vector fields;
I-K,K]|" — I[-M, M]" withu = |_|jej uj. Thenk, = |_|j6, Ey;.

As an immediate consequence, we deduce that continuity allows us to use
approximations of. for computing solutions.

Corollary 12. Supposéu,,).cn is a sequence i with v = | |, . un and (Qn)nen
is a sequence of partitions withn,, .. [@,| = 0. Then| | . F., (Q~) is real valued
and satisfies the IVP (1).
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In presence of approximatiomsg of u, the speed of convergence will clearly depend
on the speed of convergence of the sequenc u. We now introduce the measure
which we use to express the convergence rate,ab u.

Definition 4. If o = (ay,...,an) @and g = (61,...,8,) € IR, we letd(a, §) =
max{|a; — b;|,|a; — b;|,i = 1,...,n} wherea; = [a;,a;] and 5; = [b;,b;]. For
u,u’ €V, we putd(u, u') = sup,er— i, k] d(u(a), v'(a)).

Note thatd(«a, 3) is the Hausdorff distance for compact intervals, alreadydusy
Moore [14]. The following Lemma is the key for obtaining a uéson the speed of
convergence in presence of approximations of the vectat.fiel

Lemma 13. Suppose’ C uw and@ = (qo, - .., qr) € P. Then
w(Ey (Q)(x)) < w(Ey (Q)(p:)(1 + Q|- L) + CIQIP LM + |Qld(u, u")
for « € [qi, gi+1], whereC = 1 for « = andC = 2 for x = c.

Similar to the development in the previous section, we obtiaé following global
estimate.

Proposition 14. Suppose) is a partition of[0, a] andv’ C . Then

w(E(@) < € (QIM + XD eurr@

whereC = 1for« =l andC = 2 for x = c.

Modifying the partitions which are used to obtain the abostengate, we can elim-
inate the termr(Q) and obtain the following global estimate.

Corollary 15 (Speed of Convergence).
1. If Q is equidistant, them (E?, (Q)) < C - (|Q|M + ‘““Tﬂj))(ed —1).
2. If Q is arbitrary, thenw(E?, (Q)) < C - (2|Q|M + 4%ty . (dal _ 1),
where, in both caseg; = 1 forx =l andC = 2 for x = c.

In summary, we see that adding approximations to the veetlor dioes not destroy
the order of convergence speed, given that the approximatbthe vector field con-
verge as fast as the partitions decrease in width.

Theorem 16. Suppos€Q., )ren iS @ monotone sequence of partitions[0fa] with
limy, oo |@Qn] = 0, u = | ], cpy Un With d(u, u,) < Co - |Qy| for some constanty > 0
andy, = E,,(Q,). Thenw(y,) < C - |Q,| for someC; > 0 and| |,y y» is real
valued and solves the IVP (1).

The next section shows, how we can implement the proposdthahas to guarantee
the speed of convergence also for actual implementatiotieeahethod.
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5 Implementation of the Domain Theoretic Method

In this section, we demonstrate how the domain theoreticagmh to solving initial
value problems can be implemented on a digital computeréh suway that the esti-
mates on the speed of convergence can be guaranteed for Emiengation. The key
concept here is that oftzase Informally speaking, a base of a directed complete partial
D order is a collectior3 C D of elements which generate all &f by means of di-
rected suprema. For the interval domain, it is easy to sdettihantervals with rational
(or dyadic) endpoints for a base, and we introduce suitasded for the spacésand
S later. The main point about these bases is that (i) base atsrfeem a proper data
type and (ii) can be manipulated without any loss of preaisio

The main contribution of this section is the proof thaty ifs approximated by base
elements E,(Q) is also an element of the corresponding base. Furthermeargjive
estimates on the algebraic complexity of computing Q) both for E¢ and E...

We refer the reader to [1, Section 2.2.2] for the formal défni of a base, and
instead introduce the bases we work with in the sequel.

Definition 5. Let D C R be a dense subset witha € D and assume thdt = ag <

- < ar = aWwithag,...,ax € D, Bo,...,0r € I[-K,K|}, andvyy,...,v, €
I[-M, M)}, whereRp denotes the set of rectangles, which are containe& iand
whose endpoints lie iD™. We write3, for the vector representing the upper endpoints
of the interval vecto; with ﬂi given similarly. We consider the following classes of
functions, wheres® is the interior of 3:

1. The classSp of piecewiseD-linear functiond0, a] — I[—- K, K",
f: (a0a"'7a'k) \« (ﬂ(%'"aﬁk)
wheref(z) = Bj71+(::i,f:l (Bj_ﬁjfl) andf(z) = ﬁj_l‘f' ,,i:?:l (ﬁj _ﬁj_l)
forz € [a;_1, a;]. Every component of B-linear function is piecewise linear and

takes values D atag, a; ..., ag.
2. The seVp, of finite sups of step functiods- K, K" — I[-M, M]",

=1 5j\vjwhere5\ﬂ(w):{W x C [0

<<k [-M,M]™ otherwise

3. For anyf as above, we puV/(f) = k and call it thecomplexity of representation

of f.

The set of partition§) with partition pointsinD is denoted byPp; we write V'(Q) = &
if @ = (qo,---,qr) hask + 1 partition points.

Itis easy to see th&p and)p are bases of the dcpdsandV, respectively.

Fact17. If D C R is a dense subset, thétn andVp are bases of and V.
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For a particular dense subsbt C R, such as the rational or dyadic numbers, the
elements oS andVp are data types, the elements of which can be manipulated with
out loss of precision. This allows us to guarantee the caamse speed also for an
implementation of our method. We now show that in the contpriaf £, (Q) these
data types are actually preserved.

Proposition 18. Supposé) C R is dense.

1. If Disaring andu € Vp, Q € Pp, thenES(Q) € Sp and ES(Q) can be
computed irO(N(Q) - V' (u)) algebraic steps.

2. If Dis afield andu € Vp, Q € Pp, thenE!(Q) € Sp and can be computed in
O(N(Q) - N(u)?)) algebraic steps.

This proposition in particular highlights the differencetiveen the two operators
E° and E': computing withE' yields a better speed of convergence to the solution
(Corollary 15), at the cost of a higher complexity of the cartgtion of the approximate
solution. Furthermore, we have to work with rational (as aggd to dyadic numbers)
when implementing the method using the operatras the base we need to work with
is constructed using a dense subfield of the real numbers.

As we have seen, our methods for computing solutions ofainitalue problems
hinges on the fact that we can actually produce approximsatiq to u of the form
Lli<;<1 85 \ ;- Foraclassical vector field: [- K, K|" — [-M, M]", such approx-
imations can be produced given a functiotihat computes rational approximationsof
up to any desired degree of accuracy,i.e[— K, K]"NQ" xQ — [—M, M|"NQ™ for
which |v(z) — 9(z, €)| < e. For many functions, e.g. polynomials or analytic funcsipn
such approximating functions are both known and easy toeémpht.

Givend as above, we can use the Lipschitz consfanf v and the error bound to
approximate an interval extension @by finite suprema of step functions of the form
({b} @ 0) \, {0(b,€)} ® (e + L), whered ande vary over positive real numbers and
be[-K,K]|" Intheterm{®(b,e)} ® (e + dL), e is needed to accommodate the error
of v and expanding further withZ uses the Lipschitz constantoto give a guaranteed
enclosure of the values ofon the intervalb} @ 6. This is developed in the full version
of this paper.

6 Conclusions and Further Work

We have presented a domain theoretic method for solvin@inilue problems, with

the domain of intervals at the heart of our approach. The rddfarence to other in-

terval methods [3,9] is that we use approximations of theaorefield in the process
of computing solutions. As these approximations are elésngimproper data types, no
loss of precision is incurred when working with these apprations, allowing us to

guarantee convergence also for implementations.

From the perspective of domain theory, differential equaihave been studied in
[4,5], using a Picard operator. This requires us to store@pmative solutions in mem-
ory before being able to compute a further iterate. In conspar the method outlined
in this paper is more memory effective.
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Differential equations have also been considered in thadwmork of exact compu-
tation, e.g. [15,10], but to our knowledge, this not has legaractical implementations
of methods for solving IVPs with guaranteed error bounds.

Finally, we remark that this is only part of a first investigat for using domain
theoretic methods in the context of ODE solving. Furtherkniemeeded to be able to
exploitinformation about the derivatives of the vectordieAlso, our approach does not
include any control over the step size (distance betweetesgo/e partition points), but
we believe that the standard techniques developed in mtanalysis fit in smoothly
to our framework. On the practical side, our next task is tmpare implementations
of our method to traditional interval based approached) sisd_ohner's AWA [12] and
Nedialkov’s VNODE [16].
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