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tThis paper presents a logi
al 
hara
terisation of 
oalgebrai
 be-havioural equivalen
e. The 
hara
terisation is given in terms of 
oal-gebrai
 modal logi
, an abstra
t framework for reasoning about, andspe
ifying properties of, 
oalgebras, for an endofun
tor on the 
ategoryof sets. Its main feature is the use of predi
ate liftings, whi
h give riseto the interpretation of modal operators on 
oalgebras.We show that 
oalgebrai
 modal logi
 is adequate for reasoningabout 
oalgebras, that is, behaviourally equivalent states 
annot bedistinguished by formulas of the logi
. Subsequently, we isolate prop-erties whi
h also ensure expressiveness of the logi
, that is, logi
al andbehavioural equivalen
e 
oin
ide.1 Introdu
tionCoalgebras for an endofun
tor on the 
ategory of sets 
an be used to modela large 
lass of state based systems, in
luding Kripke models, labelled tran-sition systems, Moore and Mealy ma
hines and deterministi
 automata (see[18℄ for an overview). This raises the question of a uniform logi
al framework,whi
h 
an be used to reason about, and spe
ify properties of, 
oalgebrai
allymodelled systems. 1



It was Moss [13℄, who �rst suggested to use modal logi
 as language forreasoning about 
oalgebras. In his 
oalgebrai
 logi
, one expresses assertionsabout su

essor states using fun
tor appli
ation. This has the advantage ofbeing appli
able to a large 
lass of endofun
tors, at the expense of a language,whi
h is non-standard, as it la
ks the usual modal operators, and instead usesfun
tor appli
ation to formulate assertions about su

essor states. Otherapproa
hes, in
luding [7, 10, 16, 17℄, restri
t attention to a synta
ti
allyde�ned 
lass of endofun
tors. This has the advantage of providing a standardlanguage, at the expense of being appli
able only to an a priori restri
ted
lass of fun
tors.By investigating semanti
al stru
tures, whi
h generalise the interpretation ofmultimodal logi
 from Kripke models to arbitrary 
oalgebras, our approa
htries to bridge the gap between the two previously mentioned frameworks:
oalgebrai
 modal logi
 is based on the observation that predi
ate liftings
an be used to interpret both modal operators and atomi
 propositions on
oalgebras. If T is an endofun
tor on the 
ategory of sets, a predi
ate liftingfor T maps predi
ates on (subsets of) a set X to predi
ates on the set TX,uniformly in X. If we think of TX as the observations, whi
h 
an be madeof a system with 
arrier set X after one transition step, predi
ate liftingsthus allow us to formulate properties of su

essor states. We demonstrateby means of example, that predi
ate liftings generalise modal operators andatomi
 propositions from Kripke models to 
oalgebras for arbitrary endo-fun
tors.After having settled the preliminaries, we introdu
e the framework of 
oal-gebrai
 modal logi
, along with two 
onstru
tion prin
iples for predi
ateliftings. We show that 
oalgebrai
 modal logi
 is adequate, that is, be-haviourally equivalent states 
annot be distinguished by formulas of thelogi
 (Theorem 3.10). For the 
onverse, we need to analyse the notion ofbehavioural equivalen
e in detail. This is done in Se
tion 4, where the proofprin
iple of terminal sequen
e indu
tion is dis
ussed. This prin
iple (The-orem 4.1, due to Worrell [19℄) asserts that � if the underlying signaturefun
tor is κ-a

essible � two states are behaviourally equivalent if and onlyif they have the same α-step behaviour for all α < κ. Formally, this meansthat their proje
tions into the terminal sequen
e, de�ned by the underlyingendofun
tor, 
oin
ide for all ordinals α < κ.In the sequel, this proof prin
iple is exploited to establish 
onditions on theset of modal operators (given by a set of predi
ate liftings), whi
h ensureexpressiveness of 
oalgebrai
 modal logi
. That is, any two states with thesame logi
al theory are indeed behaviourally equivalent. This is the 
ontent2



of Theorem 5.9, whi
h is proved by terminal sequen
e indu
tion: Given anystate, one asso
iates to ea
h ordinal α less than the a

essibility degree ofthe underlying endofun
tor a formula whi
h is satis�ed by all states with thesame α-step behaviour.2 Preliminaries and NotationThroughout the paper, T denotes an endofun
tor on the 
ategory Set of setsand fun
tions. We often require T to be a

essible. That is, the a
tion of Ton a set X is determined by the a
tion of T on subsets of X whi
h are of
ardinality < κ for some regular 
ardinal κ.Formally, a fun
tor is a

essible, if it preserves κ-�ltered 
olimits for someregular 
ardinal κ. In this situation, the 
ardinal κ is the a

essibility degreeof T and T is 
alled κ-a

essible. Two standard referen
es for a

essibilityare [4, 12℄. The 
lass of a

essible fun
tors is an attra
tive 
lass of (signature)fun
tors for 
oalgebras, sin
e it 
ontains nearly all of the signature fun
tors
onsidered in the literature (with the ex
eption of the unbounded powersetfun
tor) and enjoys numerous 
losure properties: the 
lass of κ-a

essiblefun
tors is 
losed under 
omposition, 
olimits, limits of 
ardinality less than κand 
ontains all κ′-a

essible fun
tors for κ′ < κ. In parti
ular, the boundedpowerset fun
tor Pκ, de�ned by Pκ(X) = {x ⊆ X | card(x) < κ} is κ-a

essible. These 
losure properties are proved for example in [4℄ and 
anbe used to show that � in the terminology of Rutten [18℄ � all polynomialfun
tors with �nite exponents are ω-a

essible.Given a (not ne
essarily a

essible) endofun
tor T : Set → Set, the de�nitionof T -
oalgebras dualises that of algebras for an endofun
tor:De�nition 2.1. A T -
oalgebra is a pair (C, γ) where C is a set and γ : C →
TC is a fun
tion. A morphism of 
oalgebras f : (C, γ) → (D, δ) is a fun
tion
f : C → D su
h that Tf ◦ γ = δ ◦ f .It is easy to see that T -
oalgebras, together with their morphisms, form a
ategory, whi
h we denote by CoAlg(T ). Given a T -
oalgebra (C, γ) we oftenrefer to C as the 
arrier set and to γ as its transition stru
ture.The generality of the above de�nition (a
hieved through the parametri
ityin the endofun
tor T ) allows to model a large variety of systems in the 
oal-gebrai
 framework. We give some examples of stru
tures, whi
h naturallyarise as 
oalgebras, and whi
h we will use as examples later; more examples
an be found in [18℄. 3



Example 2.2. 1. Suppose L is a set (of labels) and TX = L×X. Thenevery T -
oalgebra (C, γ) de�nes a set of streams: If γ = 〈hd, tl〉 : C → L×C,we asso
iate the in�nite stream (hd(c), hd◦tl(c), hd◦tl◦tl(c), . . . ) to an element
c ∈ C.2. Suppose I and O are sets and TX = (X × O)I is the set of fun
tionsfrom I to X × O. A T -
oalgebra (C, γ) is a deterministi
 Mealy Ma
hinewith input set I and output set O: given a state c ∈ C and an input i ∈ I,the transition fun
tion γ provides us with a new state (the �rst 
omponentof γ(c)(i)) and an output (the se
ond 
omponent of γ(c)(i)).3. Consider TX = P(X)×P(A), where A is a set (of atomi
 propositions)and P denotes the 
ovariant powerset fun
tor. Every T -
oalgebra (C, γ :
C → P(C) × P(A)) gives rise to a Kripke model (see [3, 5℄) by putting
K(C, γ) = (C,R, V ) where C is the 
arrier (set of worlds) of the model, R isthe su

essor relation, given by

(c, c′) ∈ R ⇐⇒ c′ ∈ π1 ◦ γ(c)and V : A→ P(C) is the valuation of the propositional variables, de�ned by
V (a) = {c ∈ C | a ∈ π2 ◦ γ(c)}.In the above, π1 (resp. π2) denotes the �rst (resp. se
ond) proje
tion. Sin
ethe 
onstru
tion 
an be reversed, T -
oalgebras are in one-to-one 
orrespon-den
e with Kripke models for TX = P(X) ×P(A).As has been observed in Rutten [18℄, the morphisms of 
oalgebras for TX =

P(X) × P(A) are pre
isely the p-morphisms (bounded morphisms in theterminology of [3℄) known from modal logi
.Thinking of morphisms between 
oalgebras as preserving the observable be-haviour, it is natural to 
onsider elements of the 
arrier of 
oalgebras asbehaviourally equivalent if they 
an be identi�ed by means of behaviour pre-serving fun
tions. This notion of behavioural equivalen
e, formally de�nedbelow, was �rst studied by Kurz [9℄.De�nition 2.3. Suppose (C, γ) and (D, δ) are T -
oalgebras and (c, d) ∈ C×
D. We 
all c and d behaviourally equivalent, if there exists (E, ǫ) ∈ CoAlg(T )and two 
oalgebra morphisms f : (C, γ) → (E, ǫ) and g : (D, δ) → (E, ǫ),su
h that f(c) = g(d).Some remarks 
on
erning the de�nition of behavioural equivalen
e are in or-der. Rutten [18℄ has studied bisimulation, as de�ned by A
zel and Mendler4



[1℄, as the fundamental notion of equivalen
e. It is immediate that bisimi-larity always implies behavioural equivalen
e. For fun
tors preserving weakpullba
ks, it 
an be shown that bisimilarity and behavioural equivalen
e 
o-in
ide. For fun
tors that do not have this property, su
h as TX = {(x, y, z) ∈
X3 | card({x, y, z}) ≤ 2} (the example from [1℄), it 
an easily be seen that,for any T -
oalgebra (C, γ), any two points c0, c1 are behaviourally equivalent.It is, however not the 
ase than any pair (c0, c1) is bisimilar. Sin
e T does notallow for any observations (other than the existen
e of a su

essor state), weintuitively regard all states (c0, c1) as behaviourally equivalent and thereforetake behavioural equivalen
e as the more fundamental notion. The follow-ing se
tions are devoted to a 
hara
terisation of behavioural equivalen
e interms of modal logi
s.3 Coalgebrai
 Modal Logi
This se
tion introdu
es the framework of 
oalgebrai
 modal logi
, whi
h is anextension of multimodal logi
, interpreted over 
oalgebras. Compared withMoss' 
oalgebrai
 logi
 [13℄, 
oalgebrai
 modal logi
 
an still be used for alarge 
lass of endofun
tors, but has the advantage of a standard (multimodal)language.This is a
hieved by using predi
ate liftings to formulate assertions aboutsu

essor states. Informally, if T is an endofun
tor, a predi
ate liftings for
T map subsets of a set X to subsets of TX. This allows to use predi
ateliftings to assert properties of su

essor states, and hen
e to interpret modaloperators on 
oalgebras. The present se
tion introdu
es the framework of
oalgebrai
 modal logi
 and shows its adequa
y, that is, behaviourally equiv-alent points 
annot be distinguished by logi
al formulas.De�nition 3.1. A predi
ate lifting λ for T is an order-preserving naturaltransformation λ : 2 → 2 ◦ T , where 2 is the 
ontravariant powerset fun
tor.Spelling out this de�nition, a predi
ate lifting for T is an indexed family ofmaps λ(C) : P(C) → P(TC), su
h that for all fun
tions f : C → D wehave that λ(C) ◦ f−1 = (Tf)−1 ◦ λ(D) (we write P(C) for the obje
t partof the 
ontravariant powerset fun
tor). Predi
ate liftings were �rst used byHermida and Ja
obs [8℄ in the 
ontext of (
o-)indu
tion prin
iples and laterby Röÿiger [16℄ and Ja
obs [7℄ in the 
ontext of modal logi
. There, as well asin the related paper [16℄, predi
ate liftings are synta
ti
ally de�ned entities,and naturality, whi
h we take as our de�ning property, is derived.5



In a logi
al 
ontext, predi
ate liftings allows us reason about the state of asystem after a transition has been performed. Order preservation thus allowsus to infer formulas involving su

essor states only from the 
orrespondingjudgements, interpreted in the 
urrent state. This 
orresponds to the rule
φ⊢ψ =⇒ 2φ⊢2ψ of modal logi
.We illustrate the 
on
ept of predi
ate liftings by showing that they generalisethe interpretation of the 2-operator from Kripke models (see eg. [3, 5℄) to
oalgebras of arbitrary signature fun
tors.Example 3.2. Suppose TX = P(X) × P(A) as in Example 2.2. Considerthe operation λ(C) : P(C) → P(TC) de�ned by

λ(C)(c) = {(a, c′) ∈ TC | c′ ⊆ c}.An easy 
al
ulation shows, that this de�nes a predi
ate lifting λ. Now 
on-sider a T -
oalgebra (C, γ) and a subset c ⊆ C, whi
h we think of as thesemanti
s of a modal formula φ. Then
γ−1 ◦ λ(C)(c) = {c ∈ C | π1 ◦ γ(c) ∈ c}(where π1 : P(C)×P(A) → P(C) denotes �rst proje
tion) 
orresponds to theinterpretation of the modal formula 2φ under the 
orresponden
e outlinedin Example 2.2.The de�nition of λ(C) given in the last example 
an be rewritten (using the�rst proje
tion π1 : TC → P(C)) as λ(C)(c) = {t ∈ TC | π1(t) ⊆ c}, and thenaturality of λ follows immediately from the naturality of π1. Repla
ing π1by an arbitrary natural transformation, we obtain a 
onstru
tion prin
iplefor predi
ate liftings:Proposition 3.3. Suppose µ : T → P is a natural transformation. Thenthe operation λ(C) : P(C) → P(TC), given by
λ(C)(c) = {c ∈ TC | µ(C)(c) ⊆ c}de�nes a predi
ate lifting λ for T .Proof. Let f : C → D. We have to show that λ(C) ◦ f−1 = (Tf)−1 ◦ λ(D),given that µ is natural, i.e. Pf ◦ µ(C) = µ(D) ◦ Tf . If d ⊆ D, we have

λ(C) ◦ f−1(d) = {c ∈ TC | µ(C)(c) ⊆ f−1(d)} = {c ∈ TC | Pf ◦ µ(C)(c) ⊆
d} = {c ∈ TC | µ(D) ◦ Tf(c) ⊆ d} = (Tf)−1 ◦ λ(D)(d), showing that λ isnatural. It is immediate from the de�nition that λ preserves order.6



Continuing Example 2.2, we now show that predi
ate liftings 
an also beused to interpret atomi
 propositions of Kripke models.Example 3.4. Again, let TX = P(X) × P(A). For some �xed a ∈ A,
onsider the (
onstant) operation λa(C) : P(C) → P(TC), given by
λa(C)(c) = {(c′, a) ∈ TC | a ∈ a}.Given an arbitrary subset c ⊆ C, we obtain

γ−1 ◦ λa(C)(c) = {c ∈ C | a ∈ π2 ◦ γ(c)},that is, the set of worlds satisfying proposition a under the 
orresponden
eoutlined in Example 2.2.Again, there is a more general prin
iple underlying the 
onstru
tion of the(
onstant) lifting of the last example. In the following, we write 1 = {0}and, if X is a set, !X : X → 1 for the uniquely de�ned surje
tion.Proposition 3.5. Suppose a ⊆ T1. Then the operation λ(C) : P(C) →
P(TC), given by

λ(C)(c) = {c ∈ TC | (T !C)(c) ∈ a}de�nes a (
onstant) predi
ate lifting λ for T .Proof. Note that λ(C)(c) = (T !C)−1(a), where !C : C → 1 is the uniquemorphism. Given f : C → D, we have to show that λ(C) ◦ f−1 = (Tf)−1 ◦
λ(D). If d ⊆ D, this follows from (Tf)−1 ◦λ(D)(d) = (Tf)−1 ◦(T !D)−1(a) =
(T !C)−1(a) = λ(C)(f−1(d)). Clearly λ preserves order.The following example shows, how Proposition 3.3 and Proposition 3.5 
anbe used to 
onstru
t predi
ate liftings, whi
h make assertions about deter-ministi
 automata.Example 3.6. Suppose TX = (X × O)I , where I and O are sets. Wehave demonstrated in Example 2.2 that T -
oalgebras are deterministi
 Mealyautomata with input set I, produ
ing elements of O as outputs.Given an input i ∈ I, the natural transformation ρ : T → P, de�ned by
ρ(C)(f) = {π1(f(i))} for f ∈ (C × O)I = TC, gives rise to a predi
atelifting λi by Proposition 3.3. Intuitively, λi allows us to formulate propertiesabout the su

essor state after 
onsuming input i ∈ I.7



If (i, o) ∈ I×O, then the subset {f ∈ (1×O)I | π2(f(i)) = o} gives rise to alifting µ(i,o) by Proposition 3.5. The lifting µ(i,o) 
an be used to assert thatthe 
urrent state is su
h that pro
essing of input i yields output o.In 
lassi
al modal logi
, one often de�nes the operator 3 by putting 3φ =
¬2¬φ. We 
on
lude this se
tion by showing that this 
an already be a

om-plished on the level of predi
ate liftings.Proposition 3.7. Suppose λ is a predi
ate lifting for T . Then the operation
λ¬(C), de�ned by

λ¬(C)(c) = TC \ λ(C)(C \ c)is a predi
ate lifting for T .Proof. Be
ause negation preserves inverse images.For the remainder of this exposition, Λ denotes a set of predi
ate liftings andwe put Λ¬ = {λ¬ | λ ∈ Λ}.As we have seen, predi
ate liftings 
an be used to interpret both modalitiesand atomi
 propositions. We are thus lead to study propositional logi
,enri
hed with predi
ate lifting operators, as a logi
 for 
oalgebras.Sin
e the expressiveness and de�nability results require in�nitary logi
s inthe general 
ase, the de�nition is parametri
 in a 
ardinal number κ. Notethat atomi
 propositions also arise through predi
ate liftings (Example 3.4),hen
e we do not need to in
lude atomi
 propositions in the de�nition.De�nition 3.8. Suppose κ is a 
ardinal number. The language Lκ(Λ) as-so
iated with Λ is the least set with grammar
φ ::=

∧
Φ | ¬φ | [λ]φ (Φ ⊆ Lκ(Λ) with card(Φ) < κ and λ ∈ Λ)Given (C, γ) ∈ CoAlg(T ), the semanti
s [[φ]]γ ⊆ C is given indu
tively by the
lauses

[[
∧

Φ]]γ =
⋂

φ∈Φ

[[φ]]γ [[¬φ]]γ = C \ [[φ]]γ [[[λ]φ]]γ = γ−1 ◦ λ(C)([[φ]]γ).Note that Lκ(Λ) 
ontains the formula tt =
∧

∅ (with [[tt]]γ = C) and that
Lκ(Λ) is �nitary if κ = ω. If we want to emphasise that a formula φ ∈ Lκ(Λ)holds at a spe
i�
 state c ∈ C of a 
oalgebra (C, γ), we write c |=γ φ for8



c ∈ [[φ]]γ . As usual Th(c) = {φ ∈ Lκ(Λ) | c |=γ φ} denotes the logi
al theoryasso
iated to a state c ∈ C.Given syntax and semanti
s of 
oalgebrai
 modal logi
, we now begin thestudy of the relationship between logi
al and behavioural equivalen
e. Sin
ebehavioural equivalen
e is de�ned in terms of 
oalgebra morphisms (De�ni-tion 2.3), we �rst study the relation between logi
al formulas and morphismsof 
oalgebras.Lemma 3.9. If f : (C, γ) → (D, δ) ∈ CoAlg(T ), then
[[φ]]γ = f−1([[φ]]δ)for all φ ∈ Lκ(Λ).Proof. We pro
eed by indu
tion on the stru
ture of φ. For 
onjun
tions andnegations, the 
laim is evident. So suppose φ ∈ Lκ(Λ) and [[φ]]γ = f−1([[φ]]δ).By naturality of λ and using f ∈ CoAlg(T ), we obtain f−1([[[λ]φ]]δ) = (δ ◦

f)−1 ◦ λ(D)([[φ]]δ) = (Tf ◦ γ)−1 ◦ λ(D)([[φ]]δ) = γ−1 ◦ λ(C) ◦ f−1([[φ]]δ) =
[[[λ]φ]]γ , whi
h proves the 
laim.The importan
e of Lemma 3.9 is that it allows us to 
on
lude that 
oalgebrai
modal logi
 is invariant under behavioural equivalen
e, that is, behaviourallyequivalent points 
annot be distinguished by logi
al formulas.Theorem 3.10. Let (C, γ), (D, δ) ∈ CoAlg(T ) and φ ∈ Lκ(Λ). Then Th(c) =
Th(d) whenever (c, d) ∈ C ×D are behaviourally equivalent.Proof. If (c, d) are behaviourally equivalent, there are (E, ǫ) ∈ CoAlg(T ) anda pair of 
oalgebra morphisms f : (C, γ) → (E, ǫ), g : (D, δ) → (E, ǫ) su
hthat f(c) = g(d). By Lemma 3.9 we have c |=γ φ i� c ∈ [[φ]]γ i� f(c) ∈ [[φ]]ǫ.Sin
e f(c) = g(d), this is the 
ase i� g(d) ∈ [[φ]]ǫ i� g ∈ [[φ]]δ i� d |=δ φ.The pre
eding theorem states, that behavioural equivalen
e implies logi
alequivalen
e. The remainder of this paper is 
on
erned with 
onditions on
Λ that also ensure the 
onverse. Note that 
oalgebrai
 modal logi
 is ingeneral not strong enough to separate non-equivalent states: 
onsider forexample the logi
 given by the empty set of liftings. In order to ta
kle theproblem of giving a logi
al 
hara
terisation of behavioural equivalen
e, weneed a detailed analysis of behavioural equivalen
e, whi
h is given in thenext se
tion. 9



4 Terminal Sequen
e Indu
tionThis se
tion dis
usses the proof prin
iple of terminal sequen
e indu
tion,due to Worrell [19℄. It provides an indu
tive 
hara
terisation of behaviouralequivalen
e, and hen
e allows us to use trans�nite indu
tion to show thattwo states are behaviourally equivalent. We 
on
entrate on appli
ations ofthe proof prin
iple; the reader is referred to [19℄ for full details.We begin with a brief dis
ussion of the terminal sequen
e, whi
h is bestthought of as a sequen
e of approximants to the �nal 
oalgebra (that is, the�nal obje
t in the 
ategory CoAlg(T )).The terminal sequen
e asso
iated with T is an ordinal indexed sequen
e ofsets (Zα) together with a family (pα
β) of fun
tions pα

β : Zα → Zβ for allordinals β ≤ α su
h that
• Zα+1 = TZα and pα+1

β+1 = Tpα
β for all β ≤ α

• pα
α = idZα and pα

γ = pβ
γ ◦ pα

β for γ ≤ β ≤ α

• The 
one (Zα, (p
α
β)β<α) is limiting whenever α is a limit ordinal.(See [11℄ for more on limiting 
ones.) Thinking of Zα as the α-fold appli
ationof T to the limit 1 of the empty diagram, we sometimes write Zα = Tα1 inthe sequel. With this notation, the terminal sequen
e of T is the 
ontinuationof the sequen
e

1 T1
!

T 21
T !

T 31
T 2! . . .through the 
lass of all ordinal numbers, with 0 
onsidered as limit ordinal.Intuitively, Tα1 represents behaviours whi
h 
an be exhibited in α steps.For example, if TX = D × X and n ∈ N, then T n1 ∼= Dn 
ontains alllists of length n. It has been shown in [19℄, that the terminal sequen
e ofa κ-a

essible endofun
tor 
onverges to a �nal 
oalgebra (Z, ζ). Given any

(C, γ) ∈ CoAlg(T ), we write !γ : (C, γ) → (Z, ζ) for the unique morphismindu
ed by �nality of (Z, ζ).Also note that every 
oalgebra (C, γ) gives rise to a 
one (C, (γα : C → Tα1))over the terminal sequen
e as follows:
• If α = β + 1 is a su

essor ordinal, let γα = Tγβ ◦ γ : C → Tα1.10



• If α is a limit ordinal, γα is the unique map for whi
h γβ = pα
β ◦ γα forall β < α.(This has already been noti
ed by Barr [2℄). Using this notation, terminalsequen
e indu
tion 
an be formulated as follows:Theorem 4.1 (Worrell). Suppose T is κ-a

essible and (C, γ), (D, δ) ∈

CoAlg(T ). The following are equivalent for (c, d) ∈ C ×D:1. c and d are behaviourally equivalent2. !γ(c) =!δ(d)3. For all α < κ: γα(c) = δα(d).For the proof, see [19℄. Intuitively, γα(c) represents the behaviour of c, whi
his observable in at most α transition steps. Thus γα(c) = δα(d) asserts thatthe α-step behaviour of c and d 
oin
ide. The theorem therefore allows us to
on
lude that c and d are behaviourally equivalent if their α-step behaviours
oin
ide for all α less than the a

essibility degree of T . We illustrate thisby means of some examples.Example 4.2. 1. Suppose TX = L×X for some set L of labels. Then Tis polynomial, hen
e ω-a

essible. Note that the elements T n1 ∼= Ln of theterminal sequen
e asso
iated to T are the sequen
es of labels, whi
h havelength n.Given a T -
oalgebra (C, γ), every state c0 ∈ C gives rise to an in�nitesequen
e c0 l1−→ c1
l2−→ c2 . . . by putting c l

−→ c′ i� γ(c) = (l, c′). In thissetup, we have γn(c0) = (l1, . . . , ln), that is, the sequen
e of the �rst n labelsgiven by c0. Theorem 4.1 states that two states c and d of T -
oalgebrasare behaviourally equivalent i� they give rise to the same �nite sequen
es oflabels.2. Suppose TX = Pω(L×X) with L as above. Be
ause Pω is ω-a

essible,
T is ω-a

essible, sin
e ω-a

essible fun
tors are 
losed under 
omposition.A T -
oalgebra (C, γ) is a �nitely bran
hing labelled transition system: put
c

l
−→ c′ i� (l, c′) ∈ γ(c). Given two T -
oalgebras (C, γ) and (D, δ), we de�nea relation ∼n on C × D by indu
tion on n as follows: ∼0= C × D and

c ∼n+1 d i�
• ∀c′.c

l
−→ c′ =⇒ ∃d′.d

l
−→ d′ and c′ ∼n d

′;
• ∀d′.d

l
−→ d′ =⇒ ∃c′.c

l
−→ c′ and c′ ∼n d

′.11



We obtain that c ∼n d if and only if γn(c) = δn(d). The relation ∼n was usedto 
hara
terise bisimilarity for �nitely bran
hing labelled transition systemsin [6℄. Intuitively, c ∼n d if c and d are bisimilar for the �rst n transitionsteps. In this setting, Theorem 4.1 states that c and d are behaviourallyequivalent i� c ∼n d for all n ∈ ω.3. Suppose κ is a regular 
ardinal su
h that κ > ω and 
onsider TX =
Pκ(X). Then T is κ-a

essible.Now take C = ω + 2 and γ(c) = {c′ | c′ ∈ c}. One obtains γα(c) = γα(c′)i� c ∩ α = c′ ∩ α, for c, c′ ∈ C and α < κ. Hen
e γα(ω) = γα(ω + 1) for all
α ≤ ω but γω+1(ω) 6= γω+1(ω+1). Hen
e ω and ω+1 are not behaviourallyequivalent.Writing c→ c′ for c′ ∈ γ(c), this 
an be explained by the fa
t that ω+1 hasa su

essor (namely ω) whi
h allows for arbitrary long sequen
es ω → nk →
· · · → n0 = 0, for n0 < n1 < . . . nk < ω, whereas there is no su

essor of ωwith this property.Note that this also shows that indu
tion up to the a

essibility degree of Tis ne
essary to establish behavioural equivalen
e of two points.The following se
tion uses terminal sequen
e indu
tion to establish a partial
onverse of Theorem 3.10.5 Expressivity of Coalgebrai
 Modal Logi
While behaviourally equivalent states always have the same logi
al theory, aswe have seen in Theorem 3.10, the 
onverse is not ne
essarily true (
onsiderfor example the logi
 given by the empty set of predi
ate liftings). Logi
s,for whi
h the 
onverse of Corollary 3.10 holds, are 
alled expressive:De�nition 5.1. We say that Lκ(Λ) is expressive, if for all T -
oalgebras
(C, γ) and (D, δ) and all (c, d) ∈ C ×D, Th(c) = Th(d) implies that c and
d are behaviourally equivalent.This se
tion introdu
es separation, a 
ondition on sets of predi
ate liftings,and gives a 
hara
terisation of 
oalgebrai
 behavioural equivalen
e in logi
alterms. The proof of the 
hara
terisation theorem uses terminal sequen
eindu
tion as its main tool.The basi
 idea behind separation is the possibility of distinguishing individ-ual points of TX by means of lifted subsets of X. This is formalised asfollows: 12



De�nition 5.2 (Separation). 1. Suppose C is a set and C ⊆ P(C) is asystem of subsets of C. We 
all C separating, if the map s : C → P(C),
s(c) = {c ∈ C | c ∈ c}, is moni
.2. A set Λ of predi
ate liftings for T is 
alled separating, if, for all sets C,the set {λ(C)(c) | λ ∈ Λ, c ⊆ C} is a separating set of subsets of TC.In a separating system of subsets, the system 
ontains enough informationto distinguish the individual elements of the underlying set. The intuitionbehind a separating set of predi
ate liftings is that elements of TC 
an bedistinguished by means of the subsets λ(C)(c) obtained by applying theliftings. Alternatively, one 
an think of s(c) as the logi
al theory of the state
c; the fa
t that s is moni
 then allows us to re
onstru
t a state from itstheory.Many sets of predi
ate liftings are indeed separating, notably the predi
ateliftings giving rise to the interpretation of modalities and atoms in (standard)modal logi
.Example 5.3. Suppose TX = P(X)×P(A) as in Example 2.2 and 
onsider

Λ = {λ} ∪ {λa | a ∈ A},where λ and the λas are given as in Example 3.2 and Example 3.4, re-spe
tively. We show that Λ is separating. Fix some set C and let S =
{µ(C)(c) | µ ∈ Λ and c ⊆ C}. We establish that s : TC → P(S), given by
s(c) = {s ∈ S | c ∈ s} is inje
tive. Note that by de�nition of s, we have
µ(C)(c) ∈ s(c) i� c ∈ µ(C)(c), for all c ∈ C, c ⊆ C and µ ∈ Λ.So suppose s(c0, a0) = s(c1, a1). Then (c0, a0) ∈ λ(C)(c0), hen
e λ(C)(c0) ∈
s(c0, a0) = s(c1, a1). So (c1, a1) ∈ λ(C)(c0), that is, c1 ⊆ c0 by de�nition of λ.Now assume a ∈ a1. Then (c1, a1) ∈ λa(C)(C), thus λa(C)(C) ∈ s(c1, a1) =
s(c0, a0). Therefore (c0, a0) ∈ λa(C)(C), showing a ∈ a0 and, sin
e a wasarbitrary, a1 ⊆ a0. We 
on
lude (c0, a0) = (c1, a1) by symmetry.We now show that, given a separating set of predi
ate liftings, every singletonset {x}, for x ∈ TX, arises as the interse
tion of lifted subsets of X. Inorder to obtain this representation we have to use both liftings λ ∈ Λ andliftings of the form λ¬, as introdu
ed in Proposition 3.7. Re
all the notation
Λ¬ = {λ¬ | λ ∈ Λ} introdu
ed in Se
tion 3.Lemma 5.4. Suppose Λ is separating and X is a set. Then

⋂
{λ(X)(x) | λ ∈ Λ ∪ Λ¬ and x ∈ λ(X)(x)} = {x}for all x ∈ TX. 13



Proof. Fix x ∈ TX and denote the left hand side of the above equation by
LHS. Clearly LHS ⊇ {x}.In order to see that LHS ⊆ {x}, 
onsider the assignmentm(y) =

⋃
λ∈Λ{λ(X)(x) |

y ∈ λ(X)(x)} and pi
k y ∈ LHS. Sin
e Λ is separating, m is moni
 and itsu�
es to show that m(x) = m(y). This follows if, for all λ ∈ Λ and all
x ⊆ X,

x ∈ λ(X)(x) i� y ∈ λ(X)(x).First suppose that x ∈ λ(X)(x) for some λ ∈ Λ and some x ⊆ X. Sin
e y ∈
LHS, 
learly y ∈ λ(X)(x). Conversely, if x /∈ λ(X)(x), we have x ∈ λ¬(X \x).Sin
e y ∈ LHS, we have y ∈ λ¬(X \ x), whi
h amounts to y /∈ λ(X)(x).This lemma provides a �rst handle for isolating a single point x ∈ TX.However, we have to 
onsider the liftings of sets whose 
ardinality is notbounded above (amounting to disjun
tions of unbounded 
ardinality on thelogi
al side). We 
an do better if T is κ-a

essible:Lemma 5.5. Suppose T is κ-a

essible, X is a set and x ∈ TX. Then thereexists x0(x) ⊆ X with card(x0(x)) < κ su
h that

x ∈ λ(X)(x) i� x ∈ λ(X)(x ∩ x0(x))for all x ⊆ X and all predi
ate liftings λ for T .Proof. Sin
e T is κ-a

essible, there exists a subset x0 = x0(x) ⊆ X with
card(x0) < κ su
h that x = (T i)(x0) for some x0 ∈ x0, where i : x0 → Xdenotes the in
lusion.Sin
e predi
ate liftings preserve order by de�nition, we have x ∈ λ(X)(x)whenever x ∈ λ(X)(x ∩ x0). For the other impli
ation, suppose that x ∈
λ(X)(x) for some x ⊆ X and 
onsider the diagram

P(X)
λ(X)

i−1

P(TX)

(T i)−1

P(x0)
λ(x0)

P(T x0)whi
h 
ommutes by the naturality of λ. We obtain
(T i)−1(λ(X)(x ∩ x0)) = λ(x0) ◦ i

−1(x ∩ x0)

= λ(x0) ◦ i
−1(x)

= (T i)−1(λ(X)(x)).14



Sin
e x = (T i)(x0) ∈ λ(X)(x), we have x0 ∈ (T i)−1(λ(X)(x)) = (T i)−1(λ(X)(x∩
x0)), hen
e x = (T i)(x0) ∈ λ(X)(x ∩ x0).Combining the last two lemmas allows us to isolate single points x ∈ TX byliftings of subsets x ⊆ X, whi
h are of 
ardinality less than κ. This is the
ontent of the following 
orollary, whi
h immediately follows from the fa
tthat predi
ate liftings preserve order.Corollary 5.6. Suppose T is κ-a

essible, Λ is separating and X is a set.Then

⋂
{λ(X)(x) | λ ∈ Λ ∪ Λ¬ and x ∈ λ(X)(x), x ⊆ x0(x)} = {x}for x ∈ TX and x0(x) as in Lemma 5.5.The next lemma transfers the pre
eding result to a logi
al setting. We showthat the logi
s indu
ed by a separating set of predi
ate liftings 
an distinguishdistin
t elements z0, z1 ∈ Tα1, for α less than the a

essibility degree of T .For the general 
ase, one has to require that the predi
ate liftings preserveinterse
tions. This is not needed in the 
ase where κ = ω or κ is ina

essible,as we shall see later.De�nition 5.7. We say that Λ is interse
tion preserving, if

λ(X)(
⋂

X) =
⋂

{λ(X)(x) | x ∈ X}for all λ ∈ Λ, whenever X is a set and X ⊆ P(X).For example, all predi
ate liftings 
onstru
ted via Proposition 3.3 and Propo-sition 3.5 are interse
tion preserving. The following lemma is the main stepin the proof of the expressiveness theorem:Lemma 5.8. Suppose T is κ-a

essible, Λ is separating and interse
tion-preserving with card(Λ) < κ.Then, for all α < κ and all z ∈ Tα1, there exists a formula φα
z ∈ Lκ(Λ) su
hthat [[φα

z ]]γ = γ−1
α ({z}) for all (C, γ) ∈ CoAlg(T ).Proof. We de�ne φα

z by trans�nite indu
tion. If α is a limit ordinal, let
φα

z =
∧

β<α φ
β
pα

β
(z), where pα

β : Zα → Zβ is the 
onne
ting morphism ofthe terminal sequen
e. We obtain [[φα
z ]](Z,ζ) = ζ−1

α ({z}) using the fa
t that
(Zα, (p

α
β)β<α) is a limiting 
one. 15



Now suppose α = β + 1 is a su

essor ordinal. By Lemma 5.5 there existsa subset z0 = z0(z) ⊆ Zβ with card(z0) < κ su
h that z ∈ λ(Zβ)(z) i�
z ∈ λ(Zβ)(z ∩ z0) for all z ⊆ Zβ and all λ ∈ Λ.We put φα

z = φp ∧ φn where
φp =

∧

λ∈Λ

[λ]
∨

{φβ
z′ | z

′ ∈ d(λ)}for d(λ) =
⋂
{z ⊆ z0 | z ∈ λ(Zβ)(z)}, and

φn =
∧

λ∈Λ

∧
{¬[λ]¬φβ

z′ | z
′ ∈ z0 and z ∈ λ¬(Zβ)({z′})}.Note that both φp and φn ∈ Lκ(Λ). For φp we obtain

[[φp]]γ =
⋂

λ∈Λ

γ−1 ◦ λ(C)(γ−1
β (d(λ)))

=
⋂

λ∈Λ

γ−1
β+1 ◦ λ(Zβ)(d(λ))

= γ−1
β+1(

⋂
{λ(Zβ)(z) | λ ∈ Λ and z ∈ λ(Zβ)(z), z ⊆ z0}),sin
e every λ(Zβ) preserves interse
tions. Regarding φn, we 
al
ulate

[[φn]]γ =
⋂

λ∈Λ

⋂
{γ−1 ◦ λ¬(C)(γ−1

β ({z′})) | z′ ∈ z0 and z ∈ λ¬(Zβ)({z′})}

=
⋂

λ∈Λ

⋂
{γ−1

β+1 ◦ λ
¬(Zβ)({z′}) | z′ ∈ z0 and z ∈ λ¬(Zβ)({z′})}

= γ−1
β+1(

⋂
{λ¬(Zβ)(z) | λ ∈ Λ and z ∈ λ¬(Zβ)(z), z ⊆ z0}, )where the last equation follows from the fa
t that λ¬(Zβ) preserves arbitraryunions. Summing up, we obtain

[[φn∧φp]]γ = γ−1
β+1(

⋂
{λ(Zβ)(z)) | λ ∈ Λ∪Λ¬, z ∈ λ(Zβ)(z), z ⊆ z0} = γ−1

β+1({z})by Corollary 5.6, whi
h proves the lemma.The main theorem is now easy:Theorem 5.9. Suppose T is κ-a

essible and Λ is separating and interse
-tion preserving with card(Λ) < κ. Then Lκ(Λ) is expressive.16



Proof. Suppose (C, γ) and (D, δ) are T -
oalgebras and (c, d) ∈ C ×D havethe same logi
al theory, that is, Th(c) = Th(d). By Theorem 4.1 we haveto show that γα(c) = δα(d) for all α < κ. So �x some α < κ and let
z = γα(c). By the previous lemma, there exists a formula φ = φα

z ∈ Lκ(Λ)with [[φ]]ǫ = ǫ−1
α ({z}) for all T -
oalgebras (E, ǫ). Now [[φ]]γ = γ−1

α ({γα(c)}),that is, φ ∈ Th(c). Sin
e Th(c) = Th(d) by assumption, we obtain d ∈
[[φ]]δ = δ−1

α (z), showing δα(d) = z. The 
laim follows from de�nition of
z.Note that preservation of interse
tions is not needed for κ = ω or κ ina

es-sible:Remark 5.10. Suppose that κ = ω or κ is ina

essible. Then Lemma5.8 and, as a 
onsequen
e also Theorem 5.9 remain valid, if one drops theassumption that Λ is interse
tion-preserving. In the proof of Lemma 5.8,one puts

φp =
∧

λ∈Λ

∧
{[λ]

∨

z′∈z

φβ
z′ | z ⊆ z0 and z ∈ λ(Zβ)(z)}and

φn =
∧

λ∈Λ

∧
{¬[λ]¬

∨

z′∈z

φβ
s′ | z ⊆ z0 and z ∈ (¬λ¬)(Zβ)(z)}.It follows from κ ina

essible (resp. κ = ω) that both φp, φn ∈ Lκ(Λ), andone proves the lemma by appealing to Corollary 5.6.We 
on
lude the se
tion with some examples illustrating the expressivenessresults.Example 5.11. 1. Let TX = Pω(L × X). We have argued in Exam-ple 4.2 that a T -
oalgebra (C, γ) is a �nitely bran
hing labelled transitionsystem.Consider, for l ∈ L, the natural transformation µl(C) : Pω(L× C) → P(C)given by µl(C) = i ◦ Pω(π2), where i : Pω(C) → P(C) is the in
lusion and

π2 : L× C → C is the proje
tion. By Proposition 3.3, every µl gives rise toa predi
ate lifting λl. A 
al
ulation similar to the one in Example 5.3 shows,that the set Λ = {λl | l ∈ L} thus obtained is separating.Given a T -
oalgebra (C, γ), we put c l
−→ c′ if (l, c′) ∈ γ(c). Under this
orresponden
e, we have c |= [λl]φ i� ∀c′.c

l
−→ c′ =⇒ c′ |= φ for c ∈ Cand φ ∈ Lω(Λ). Theorem 5.9 then re-proves the 
hara
terisation result byHennessy and Milner [6℄ in the 
oalgebrai
 framework.17



2. Suppose TX = Pκ(X)×P(A) for some set A (of atomi
 propositions)with card(A) < κ. Consider the predi
ate lifting λ and, for a ∈ A, the liftings
λa, as des
ribed in Example 3.2 and Example 3.4.If Λ = {λ} ∪ {λa | a ∈ A}, then Λ is interse
tion-preserving and, by Theo-rem 5.9, the logi
al equivalen
e indu
ed by Lκ(Λ) 
oin
ides with behaviouralequivalen
e. This amounts to saying that, in Kripke models with bran
h-ing degree less than κ, modal logi
 with 
onjun
tions of size less than κ
hara
terises behavioural equivalen
e.If κ > ω, one 
an use an argument similar to that used in Example 4.2to show that the equivalen
e indu
ed by Lω(Λ) is weaker than behaviouralequivalen
e.3. Suppose I and O are �nite sets and TX = (X ×O)I . We have shownin Example 2.2 that T -
oalgebras are input-output automata. In Example3.6 we have introdu
ed the set Λ = {λi | i ∈ I} ∪ {µ(i,o) | (i, o) ∈ I × O} ofpredi
ate liftings for T . It is easy to see that Λ is separating and interse
tionpreserving. Hen
e Lω(Λ) 
hara
terises states of input output automata upto behavioural equivalen
e.6 Con
lusions and Related WorkThe main result of the paper is the 
hara
terisation of behavioural equiva-len
e as logi
al equivalen
e in the framework of 
oalgebrai
 modal logi
. Inthis framework, modal operators and atomi
 propositions are interpreted bymeans of predi
ate liftings.Compared to the syntax-based approa
hes [7, 10, 16, 17℄, this has the ad-vantage of not restri
ting the 
lass of signature fun
tors a priori. Also, it
an easily be seen that (in the one sorted 
ase) all of the above approa
hes�t into our framework.In 
omparison to Moss' 
oalgebrai
 logi
, our language has the advantage ofhaving a standard syntax (that is, propositional logi
 plus modal operators).However, we only obtain our 
hara
terisation result for separating sets ofpredi
ate liftings. The proof of the expressiveness theorem used terminalsequen
e indu
tion, due to Worrell [19℄, as its main proof prin
iple.A preliminary version of these results has appeared as [14℄. They are ex-tended by the present paper in two major dire
tions: First, we have usedpredi
ate liftings to unify the treatment of modal operators and atomi
18



propositions. Se
ond, our language only needs 
onjun
tions of size less thanthe a

essibility degree of the underlying endofun
tor.The present paper deals with 
oalgebrai
 modal logi
 on a purely semanti
allevel. Proof systems for 
oalgebrai
 modal have been studied in [15℄.A
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