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Abstract

This paper presents a logical characterisation of coalgebraic be-
havioural equivalence. The characterisation is given in terms of coal-
gebraic modal logic, an abstract framework for reasoning about, and
specifying properties of, coalgebras, for an endofunctor on the category
of sets. Its main feature is the use of predicate liftings, which give rise
to the interpretation of modal operators on coalgebras.

We show that coalgebraic modal logic is adequate for reasoning
about coalgebras, that is, behaviourally equivalent states cannot be
distinguished by formulas of the logic. Subsequently, we isolate prop-
erties which also ensure expressiveness of the logic, that is, logical and
behavioural equivalence coincide.

1 Introduction

Coalgebras for an endofunctor on the category of sets can be used to model
a large class of state based systems, including Kripke models, labelled tran-
sition systems, Moore and Mealy machines and deterministic automata (see
[18] for an overview). This raises the question of a uniform logical framework,
which can be used to reason about, and specify properties of, coalgebraically
modelled systems.



It was Moss [13], who first suggested to use modal logic as language for
reasoning about coalgebras. In his coalgebraic logic, one expresses assertions
about successor states using functor application. This has the advantage of
being applicable to a large class of endofunctors, at the expense of a language,
which is non-standard, as it lacks the usual modal operators, and instead uses
functor application to formulate assertions about successor states. Other
approaches, including [7, 10, 16, 17|, restrict attention to a syntactically
defined class of endofunctors. This has the advantage of providing a standard
language, at the expense of being applicable only to an a priori restricted
class of functors.

By investigating semantical structures, which generalise the interpretation of
multimodal logic from Kripke models to arbitrary coalgebras, our approach
tries to bridge the gap between the two previously mentioned frameworks:
coalgebraic modal logic is based on the observation that predicate liftings
can be used to interpret both modal operators and atomic propositions on
coalgebras. If T'is an endofunctor on the category of sets, a predicate lifting
for T" maps predicates on (subsets of) a set X to predicates on the set T'X,
uniformly in X. If we think of TX as the observations, which can be made
of a system with carrier set X after one transition step, predicate liftings
thus allow us to formulate properties of successor states. We demonstrate
by means of example, that predicate liftings generalise modal operators and
atomic propositions from Kripke models to coalgebras for arbitrary endo-
functors.

After having settled the preliminaries, we introduce the framework of coal-
gebraic modal logic, along with two construction principles for predicate
liftings. We show that coalgebraic modal logic is adequate, that is, be-
haviourally equivalent states cannot be distinguished by formulas of the
logic (Theorem 3.10). For the converse, we need to analyse the notion of
behavioural equivalence in detail. This is done in Section 4, where the proof
principle of terminal sequence induction is discussed. This principle (The-
orem 4.1, due to Worrell [19]) asserts that — if the underlying signature
functor is x-accessible — two states are behaviourally equivalent if and only
if they have the same a-step behaviour for all @ < «. Formally, this means
that their projections into the terminal sequence, defined by the underlying
endofunctor, coincide for all ordinals o < k.

In the sequel, this proof principle is exploited to establish conditions on the
set of modal operators (given by a set of predicate liftings), which ensure
expressiveness of coalgebraic modal logic. That is, any two states with the
same logical theory are indeed behaviourally equivalent. This is the content



of Theorem 5.9, which is proved by terminal sequence induction: Given any
state, one associates to each ordinal « less than the accessibility degree of
the underlying endofunctor a formula which is satisfied by all states with the
same a-step behaviour.

2 Preliminaries and Notation

Throughout the paper, T' denotes an endofunctor on the category Set of sets
and functions. We often require T" to be accessible. That is, the action of T
on a set X is determined by the action of T" on subsets of X which are of
cardinality < k for some regular cardinal k.

Formally, a functor is accessible, if it preserves s-filtered colimits for some
regular cardinal . In this situation, the cardinal x is the accessibility degree
of T and T is called k-accessible. Two standard references for accessibility
are [4, 12]. The class of accessible functors is an attractive class of (signature)
functors for coalgebras, since it contains nearly all of the signature functors
considered in the literature (with the exception of the unbounded powerset
functor) and enjoys numerous closure properties: the class of k-accessible
functors is closed under composition, colimits, limits of cardinality less than s
and contains all x’-accessible functors for k¥ < k. In particular, the bounded
powerset functor Py, defined by P.(X) = {r € X | card(x) < Kk} is k-
accessible. These closure properties are proved for example in [4] and can
be used to show that — in the terminology of Rutten [18] — all polynomial
functors with finite exponents are w-accessible.

Given a (not necessarily accessible) endofunctor 7" : Set — Set, the definition
of T-coalgebras dualises that of algebras for an endofunctor:

Definition 2.1. A T-coalgebra is a pair (C,7) where C is a set and v : C' —
TC is a function. A morphism of coalgebras f : (C,v) — (D, J) is a function
f:C — Dsuchthat Tfoy=4do f.

It is easy to see that T-coalgebras, together with their morphisms, form a
category, which we denote by CoAlg(T). Given a T-coalgebra (C, ) we often
refer to C' as the carrier set and to 7y as its transition structure.

The generality of the above definition (achieved through the parametricity
in the endofunctor T') allows to model a large variety of systems in the coal-
gebraic framework. We give some examples of structures, which naturally
arise as coalgebras, and which we will use as examples later; more examples
can be found in [18].



Example 2.2. 1. Suppose L is a set (of labels) and T7X = L x X. Then
every T-coalgebra (C,~) defines a set of streams: If v = (hd,tl) : C — LxC,

we associate the infinite stream (hd(c), hdotl(c), hdotlotl(c), ... ) to an element
ceC.

2. Suppose I and O are sets and TX = (X x O)! is the set of functions
from I to X x O. A T-coalgebra (C,~) is a deterministic Mealy Machine
with input set I and output set O: given a state ¢ € C and an input ¢ € I,
the transition function 7 provides us with a new state (the first component
of v(¢)(7)) and an output (the second component of v(c)(1)).

3. Consider TX = P(X)xP(A), where A is a set (of atomic propositions)
and P denotes the covariant powerset functor. Every T-coalgebra (C,~v :
C — P(C) x P(A)) gives rise to a Kripke model (see [3, 5]) by putting
K(C,~) = (C, R,V) where C is the carrier (set of worlds) of the model, R is
the successor relation, given by

(e,d) e R = ¢ €moylc)
and V' : A — P(C) is the valuation of the propositional variables, defined by
V(a) ={ce C|aecmory(c)}.

In the above, m1 (resp. m2) denotes the first (resp. second) projection. Since
the construction can be reversed, T-coalgebras are in one-to-one correspon-
dence with Kripke models for T7X = P(X) x P(A).

As has been observed in Rutten [18|, the morphisms of coalgebras for TX =
P(X) x P(A) are precisely the p-morphisms (bounded morphisms in the
terminology of |3]) known from modal logic.

Thinking of morphisms between coalgebras as preserving the observable be-
haviour, it is natural to consider elements of the carrier of coalgebras as
behaviourally equivalent if they can be identified by means of behaviour pre-
serving functions. This notion of behavioural equivalence, formally defined
below, was first studied by Kurz [9].

Definition 2.3. Suppose (C,~) and (D, d) are T-coalgebras and (¢, d) € C'x
D. We call ¢ and d behaviourally equivalent, if there exists (E,¢) € CoAlg(T)
and two coalgebra morphisms f : (C,y) — (E,¢) and g : (D,d) — (E,¢),
such that f(c) = g(d).

Some remarks concerning the definition of behavioural equivalence are in or-
der. Rutten [18] has studied bisimulation, as defined by Aczel and Mendler



[1], as the fundamental notion of equivalence. It is immediate that bisimi-
larity always implies behavioural equivalence. For functors preserving weak
pullbacks, it can be shown that bisimilarity and behavioural equivalence co-
incide. For functors that do not have this property, such as TX = {(x,y, 2) €
X3 | card({x,y,2}) < 2} (the example from [1]), it can easily be seen that,
for any T-coalgebra (C, ), any two points cg, ¢; are behaviourally equivalent.
It is, however not the case than any pair (cg, ¢1) is bisimilar. Since T" does not
allow for any observations (other than the existence of a successor state), we
intuitively regard all states (cog, ¢1) as behaviourally equivalent and therefore
take behavioural equivalence as the more fundamental notion. The follow-
ing sections are devoted to a characterisation of behavioural equivalence in
terms of modal logics.

3 Coalgebraic Modal Logic

This section introduces the framework of coalgebraic modal logic, which is an
extension of multimodal logic, interpreted over coalgebras. Compared with
Moss’ coalgebraic logic [13], coalgebraic modal logic can still be used for a
large class of endofunctors, but has the advantage of a standard (multimodal)
language.

This is achieved by using predicate liftings to formulate assertions about
successor states. Informally, if T is an endofunctor, a predicate liftings for
T map subsets of a set X to subsets of T'X. This allows to use predicate
liftings to assert properties of successor states, and hence to interpret modal
operators on coalgebras. The present section introduces the framework of
coalgebraic modal logic and shows its adequacy, that is, behaviourally equiv-
alent points cannot be distinguished by logical formulas.

Definition 3.1. A predicate lifting A for T is an order-preserving natural
transformation A : 2 — 20T, where 2 is the contravariant powerset functor.

Spelling out this definition, a predicate lifting for 7" is an indexed family of
maps A(C) : P(C) — P(TC), such that for all functions f : C — D we
have that A(C) o f=! = (T f)~' o A(D) (we write P(C) for the object part
of the contravariant powerset functor). Predicate liftings were first used by
Hermida and Jacobs [8] in the context of (co-)induction principles and later
by Rofiger [16] and Jacobs |7] in the context of modal logic. There, as well as
in the related paper |16], predicate liftings are syntactically defined entities,
and naturality, which we take as our defining property, is derived.



In a logical context, predicate liftings allows us reason about the state of a
system after a transition has been performed. Order preservation thus allows
us to infer formulas involving successor states only from the corresponding
judgements, interpreted in the current state. This corresponds to the rule
oY = O¢FOy of modal logic.

We illustrate the concept of predicate liftings by showing that they generalise
the interpretation of the O-operator from Kripke models (see eg. |3, 5]) to
coalgebras of arbitrary signature functors.

Example 3.2. Suppose TX = P(X) x P(A) as in Example 2.2. Consider
the operation A\(C) : P(C) — P(T'C) defined by

MC)(¢) ={(a,d') eTC | Cc}.

An easy calculation shows, that this defines a predicate lifting A. Now con-
sider a T-coalgebra (C,~v) and a subset ¢ C C, which we think of as the
semantics of a modal formula ¢. Then

Y o MC)(e) = {ceC|mor(c) € c}

(where 7y : P(C')xP(A) — P(C) denotes first projection) corresponds to the
interpretation of the modal formula O¢ under the correspondence outlined
in Example 2.2.

The definition of A(C') given in the last example can be rewritten (using the
first projection 71 : TC' — P(C)) as A(C)(¢) = {t € TC | m1(t) C ¢}, and the
naturality of A follows immediately from the naturality of 1. Replacing
by an arbitrary natural transformation, we obtain a construction principle
for predicate liftings:

Proposition 3.3. Suppose p : T — P is a natural transformation. Then
the operation \(C) : P(C) — P(TC), given by

AC)(e) ={c e TC| u(C)(c) C ¢}

defines a predicate lifting \ for T.

Proof. Let f: C — D. We have to show that A\(C) o f~1 = (T'f)~t o A(D),
given that p is natural, i.e. Pfou(C) = u(D)oTf. If 0 C D, we have
AC)o f7H0) ={c € TC | w(C)(c) € f'(@)} = {c € TC | Pfou(C)(c) €
0} ={ceTC | uD)oTf(c) Co} = (Tf)!oAD)(), showing that A is
natural. It is immediate from the definition that A\ preserves order. O



Continuing Example 2.2, we now show that predicate liftings can also be
used to interpret atomic propositions of Kripke models.

Example 3.4. Again, let TX = P(X) x P(A). For some fixed a € A,
consider the (constant) operation A\,(C) : P(C) — P(TC), given by

Xa(C)(c) = {(c;a) € TC | a € a}.
Given an arbitrary subset ¢ C C, we obtain
Yo X(C)(e) ={c € C|aemon(c)},

that is, the set of worlds satisfying proposition a under the correspondence
outlined in Example 2.2.

Again, there is a more general principle underlying the construction of the
(constant) lifting of the last example. In the following, we write 1 = {0}
and, if X is a set, !x : X — 1 for the uniquely defined surjection.

Proposition 3.5. Suppose a C T1. Then the operation A\(C) : P(C) —
P(TC), given by

MO () = {c e TC | (Tlc)(c) € a}

defines a (constant) predicate lifting A for T

Proof. Note that A\(C)(¢c) = (T'¢)"(a), where !¢ : C — 1 is the unique
morphism. Given f : C — D, we have to show that A(C)o f~' = (T'f)" ' o
A(D). If o C D, this follows from (T'f)"toA(D)(®) = (Tf) Lo (T!'p) (a) =
(T'c)"Y(a) = MC)(f~1(d)). Clearly ) preserves order. O

The following example shows, how Proposition 3.3 and Proposition 3.5 can
be used to construct predicate liftings, which make assertions about deter-
ministic automata.

Example 3.6. Suppose TX = (X x O)!, where I and O are sets. We
have demonstrated in Example 2.2 that T-coalgebras are deterministic Mealy
automata with input set I, producing elements of O as outputs.

Given an input ¢ € I, the natural transformation p : T — P, defined by
p(C)(f) = {mi(f(i)} for f € (C x O)f = TC, gives rise to a predicate
lifting A; by Proposition 3.3. Intuitively, A; allows us to formulate properties
about the successor state after consuming input ¢ € I.



If (i,0) € I x O, then the subset {f € (1 x O)! | m2(f(i)) = o} gives rise to a
lifting p(; o) by Proposition 3.5. The lifting p1(; o) can be used to assert that
the current state is such that processing of input ¢ yields output o.

In classical modal logic, one often defines the operator & by putting ¢ =
—~0-¢. We conclude this section by showing that this can already be accom-
plished on the level of predicate liftings.

Proposition 3.7. Suppose X is a predicate lifting for T'. Then the operation
X'(C), defined by
A(C)(e) =TC\MC)NC \¢)

15 a predicate lifting for T
Proof. Because negation preserves inverse images. O

For the remainder of this exposition, A denotes a set of predicate liftings and
we put A7 ={X" | A€ A}
As we have seen, predicate liftings can be used to interpret both modalities

and atomic propositions. We are thus lead to study propositional logic,
enriched with predicate lifting operators, as a logic for coalgebras.

Since the expressiveness and definability results require infinitary logics in
the general case, the definition is parametric in a cardinal number . Note
that atomic propositions also arise through predicate liftings (Example 3.4),
hence we do not need to include atomic propositions in the definition.

Definition 3.8. Suppose « is a cardinal number. The language L£"(A) as-
sociated with A is the least set with grammar

¢p:=N\®|-¢|N¢ (P CL(A) with card(®) < & and X € A)

Given (C,~) € CoAlg(T), the semantics [¢], C C is given inductively by the
clauses

[[/\ o], = m [o] [-¢ly = C\ [¢]4 [[A¢], = 7_1 o AMC)([4]4)-

ped

Note that £%(A) contains the formula tt = A0 (with [tt], = C) and that
L%(A) is finitary if kK = w. If we want to emphasise that a formula ¢ € L5(A)
holds at a specific state ¢ € C of a coalgebra (C,~), we write ¢ =, ¢ for



c € [¢],. As usual Th(c) = {¢ € L*(A) | ¢ =, ¢} denotes the logical theory
associated to a state c € C.

Given syntax and semantics of coalgebraic modal logic, we now begin the
study of the relationship between logical and behavioural equivalence. Since
behavioural equivalence is defined in terms of coalgebra morphisms (Defini-
tion 2.3), we first study the relation between logical formulas and morphisms
of coalgebras.

Lemma 3.9. If f: (C,v) — (D,¢) € CoAlg(T), then

[¢1, = £~ ([¢]s)
for all ¢ € L5(A).

Proof. We proceed by induction on the structure of ¢. For conjunctions and
negations, the claim is evident. So suppose ¢ € L%(A) and [¢], = f~1([¢]s).
By naturality of A and using f € CoAlg(T), we obtain f~([[A]¢]s) = (6 o
£ o AD)([9ls) = (TF 0 7)~ o AD)([8l5) = v~ 0 A(C) o F1([6ls)
[[A¢], which proves the claim.

Ol

The importance of Lemma 3.9 is that it allows us to conclude that coalgebraic
modal logic is invariant under behavioural equivalence, that is, behaviourally
equivalent points cannot be distinguished by logical formulas.

Theorem 3.10. Let (C,7),(D,d) € CoAlg(T) and ¢ € L%(A). Then Th(c) =
Th(d) whenever (¢,d) € C x D are behaviourally equivalent.

Proof. 1f (¢, d) are behaviourally equivalent, there are (E, €) € CoAlg(T") and
a pair of coalgebra morphisms f : (C,v) — (E,¢€), g : (D,d) — (E,¢€) such
that f(c) = g(d). By Lemma 3.9 we have ¢ |=, ¢ iff ¢ € [¢], iff f(c) € [¢]..
Since f(c) = g(d), this is the case iff g(d) € [¢]c iff g € [¢]s i d =5 ¢. O

The preceding theorem states, that behavioural equivalence implies logical
equivalence. The remainder of this paper is concerned with conditions on
A that also ensure the converse. Note that coalgebraic modal logic is in
general not strong enough to separate non-equivalent states: consider for
example the logic given by the empty set of liftings. In order to tackle the
problem of giving a logical characterisation of behavioural equivalence, we
need a detailed analysis of behavioural equivalence, which is given in the
next section.



4 Terminal Sequence Induction

This section discusses the proof principle of terminal sequence induction,
due to Worrell [19]. It provides an inductive characterisation of behavioural
equivalence, and hence allows us to use transfinite induction to show that
two states are behaviourally equivalent. We concentrate on applications of
the proof principle; the reader is referred to [19] for full details.

We begin with a brief discussion of the terminal sequence, which is best
thought of as a sequence of approximants to the final coalgebra (that is, the
final object in the category CoAlg(T)).

The terminal sequence associated with T is an ordinal indexed sequence of
sets (Za) together with a family (p§) of functions p§ : Zo, — Zg for all
ordinals 8 < « such that

e Zoi1 =TZ, and pgii =Tpgforall f<a

o p& =idy, andpf;:pgopgfor’ygﬂga

e The cone (Zy, (p§)s<a) is limiting whenever « is a limit ordinal.

(See [11] for more on limiting cones.) Thinking of Z,, as the a-fold application
of T to the limit 1 of the empty diagram, we sometimes write Z, = T“1 in
the sequel. With this notation, the terminal sequence of T is the continuation
of the sequence

! T! T2

1=—T1<=—721

T31

through the class of all ordinal numbers, with 0 considered as limit ordinal.
Intuitively, 71 represents behaviours which can be exhibited in « steps.
For example, if TX = D x X and n € N, then T™1 = D" contains all
lists of length n. It has been shown in [19], that the terminal sequence of
a k-accessible endofunctor converges to a final coalgebra (Z,(). Given any
(C,~) € CoAlg(T), we write !y : (C,v) — (Z,() for the unique morphism
induced by finality of (Z, ().

Also note that every coalgebra (C,~y) gives rise to a cone (C, (74 : C — T°1))
over the terminal sequence as follows:

o If o = B+ 1 is a successor ordinal, let v, = Tygo~y:C — T*1.

10



e If v is a limit ordinal, 7y, is the unique map for which vz = pg 0, for
all 8 < a.

(This has already been noticed by Barr [2]). Using this notation, terminal
sequence induction can be formulated as follows:

Theorem 4.1 (Worrell). Suppose T is k-accessible and (C,7v),(D,d) €
CoAlg(T). The following are equivalent for (¢,d) € C x D:

1. ¢ and d are behaviourally equivalent

2. 1.(c) =l5(d)
3. For all a < k: y4(c) = 64(d).

For the proof, see [19]. Intuitively, 7,(c) represents the behaviour of ¢, which
is observable in at most « transition steps. Thus v,(c) = d,(d) asserts that
the a-step behaviour of ¢ and d coincide. The theorem therefore allows us to
conclude that ¢ and d are behaviourally equivalent if their a-step behaviours
coincide for all « less than the accessibility degree of T'. We illustrate this
by means of some examples.

Example 4.2. 1. Suppose TX = L x X for some set L of labels. Then T'
is polynomial, hence w-accessible. Note that the elements 771 = L™ of the
terminal sequence associated to T are the sequences of labels, which have
length n.

Given a T-coalgebra (C,7), every state ¢ € C gives rise to an infinite
sequence ¢ B 2. by putting ¢ Lo v(c) = (I,d). In this
setup, we have v, (co) = (l1,...,l,), that is, the sequence of the first n labels
given by cg. Theorem 4.1 states that two states ¢ and d of T-coalgebras

are behaviourally equivalent iff they give rise to the same finite sequences of
labels.

2. Suppose TX = P, (LxX) with L as above. Because P,, is w-accessible,
T is w-accessible, since w-accessible functors are closed under composition.
A T-coalgebra (C,7) is a finitely branching labelled transition system: put

c L o iff (1,¢) € v(c). Given two T-coalgebras (C,v) and (D, ¢), we define
a relation ~, on C x D by induction on n as follows: ~g= C x D and
C ~p+1 d iff

o Ve = Idd - d and & ~y, d;

e Vdd-od — 3Idec-nd and ¢ ~p d.

11



We obtain that ¢ ~,, d if and only if v, (¢) = d,,(d). The relation ~,, was used
to characterise bisimilarity for finitely branching labelled transition systems
in [6]. Intuitively, ¢ ~, d if ¢ and d are bisimilar for the first n transition
steps. In this setting, Theorem 4.1 states that ¢ and d are behaviourally
equivalent iff ¢ ~,, d for all n € w.

3. Suppose k is a regular cardinal such that £ > w and consider TX =
Pw(X). Then T is k-accessible.
Now take C'= w + 2 and v(c) = {¢ | ¢ € ¢}. One obtains v,(c) = v4(¢)
iff cna=dNa,for ¢,d € C and a < k. Hence v, (w) = Yo(w + 1) for all
a < w but Yy41(w) # Yo+1(w+1). Hence w and w+ 1 are not behaviourally
equivalent.
Writing ¢ — ¢ for ¢ € v(c), this can be explained by the fact that w+ 1 has
a successor (namely w) which allows for arbitrary long sequences w — nj —
- —mng =0, for ng < n; <...n, <w, whereas there is no successor of w
with this property.
Note that this also shows that induction up to the accessibility degree of T
is necessary to establish behavioural equivalence of two points.

The following section uses terminal sequence induction to establish a partial
converse of Theorem 3.10.

5 Expressivity of Coalgebraic Modal Logic

While behaviourally equivalent states always have the same logical theory, as
we have seen in Theorem 3.10, the converse is not necessarily true (consider
for example the logic given by the empty set of predicate liftings). Logics,
for which the converse of Corollary 3.10 holds, are called expressive:

Definition 5.1. We say that L£%(A) is expressive, if for all T-coalgebras
(C,v) and (D,0) and all (¢,d) € C' x D, Th(c) = Th(d) implies that ¢ and
d are behaviourally equivalent.

This section introduces separation, a condition on sets of predicate liftings,
and gives a characterisation of coalgebraic behavioural equivalence in logical
terms. The proof of the characterisation theorem uses terminal sequence
induction as its main tool.

The basic idea behind separation is the possibility of distinguishing individ-
ual points of T X by means of lifted subsets of X. This is formalised as
follows:

12



Definition 5.2 (Separation). 1. Suppose C is a set and C C P(C) is a
system of subsets of C. We call C separating, if the map s : C — P(C),
s(c) ={c e C|ce c}, is monic.

2. A set A of predicate liftings for T is called separating, if, for all sets C,
the set {\(C)(¢) | A € A,c C C} is a separating set of subsets of T'C'.

In a separating system of subsets, the system contains enough information
to distinguish the individual elements of the underlying set. The intuition
behind a separating set of predicate liftings is that elements of 7'C' can be
distinguished by means of the subsets A(C')(c) obtained by applying the
liftings. Alternatively, one can think of s(c) as the logical theory of the state
c; the fact that s is monic then allows us to reconstruct a state from its
theory.

Many sets of predicate liftings are indeed separating, notably the predicate
liftings giving rise to the interpretation of modalities and atoms in (standard)
modal logic.

Example 5.3. Suppose TX = P(X)xP(A) as in Example 2.2 and consider
A={A}U{\ | ae€ A},

where A and the A\;s are given as in Example 3.2 and Example 3.4, re-
spectively. We show that A is separating. Fix some set C' and let § =
{u(C)(¢) | p € Aand ¢ C C}. We establish that s : TC — P(S), given by
s(c) ={s € S | ¢ € s} is injective. Note that by definition of s, we have
w(C)(c) € s(e) iff c € u(C)(c), forall ce C, ¢ C C and p € A.

So suppose s(cg, ag) = s(cy,a1). Then (co,a09) € A(C)(cp), hence A(C)(cp) €
S(Co, Cl()) = S(Cl, al). So (Cl, al) € )\(C)(Co), that is, ¢; C ¢g by definition of .
Now assume a € a;. Then (c1,a1) € M\ (C)(C), thus A\, (C)(C) € s(¢y,a1) =
s(co,ap). Therefore (co,ap) € A\(C)(C), showing a € ap and, since a was
arbitrary, a; C ap. We conclude (cg, ap) = (¢1,a1) by symmetry.

We now show that, given a separating set of predicate liftings, every singleton
set {x}, for x € TX, arises as the intersection of lifted subsets of X. In
order to obtain this representation we have to use both liftings A € A and
liftings of the form X7, as introduced in Proposition 3.7. Recall the notation
A" ={X"| A € A} introduced in Section 3.

Lemma 5.4. Suppose A is separating and X is a set. Then
NIAX)@ | A€ AUA and 2 € AX)()} = {o}
forallx e TX.

13



Proof. Fix € T X and denote the left hand side of the above equation by
LHS. Clearly LHS D {z}.

In order to see that LHS C {x}, consider the assignment m(y) = (Jyca {A(X)(z) |
y € MX)(r)} and pick y € LHS. Since A is separating, m is monic and it
suffices to show that m(x) = m(y). This follows if, for all A € A and all
rc X,

zeAMX)@) i ye MX)()

First suppose that x € A(X)(r) for some A\ € A and some ¢ C X. Since y €
LHS, clearly y € A\(X)(z). Conversely, if x ¢ A\(X)(r), we have z € X"(X \ ).
Since y € LHS, we have y € X'(X \ r), which amounts to y ¢ A(X)(z). O

This lemma provides a first handle for isolating a single point x € TX.
However, we have to consider the liftings of sets whose cardinality is not
bounded above (amounting to disjunctions of unbounded cardinality on the
logical side). We can do better if T" is k-accessible:

Lemma 5.5. Suppose T' is k-accessible, X is a set and x € TX. Then there
exists ro(x) C X with card(ro(x)) < k such that

z e AMX)@) iff =eMX)(xNro(z))
for all x € X and all predicate liftings X for T.

Proof. Since T' is k-accessible, there exists a subset rg = ro(z) € X with
card(rg) < k such that x = (T%)(xo) for some xg € 1o, where i : rg — X
denotes the inclusion.

Since predicate liftings preserve order by definition, we have =z € A(X)(x)
whenever x € A(X)(x Ngp). For the other implication, suppose that = €
A(X)(x) for some ¢ C X and consider the diagram

P(x) X prx)

o

P(xo) Y] P(Txo)

which commutes by the naturality of A. We obtain
(T3)H(A(X)(x Nx0)) = Aro) 06~ (¥ N 30)
= A(xo) 07~ (x)
= (Ti) " (AX) ()
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Since z = (T)(z0) € AM(X)(x), we have xg € (T7) "L (A(X)(x)) = (T9) "L (A(X) (N
¥o)), hence x = (T')(xo) € AM(X)(x N o) O

Combining the last two lemmas allows us to isolate single points x € T'X by
liftings of subsets ¢ C X, which are of cardinality less than x. This is the
content of the following corollary, which immediately follows from the fact
that predicate liftings preserve order.

Corollary 5.6. Suppose T is k-accessible, A is separating and X is a set.
Then

(MAX)@) [ A€ AUA™ and 2 € A(X)(x).x C po(2)} = {a}

forx € TX and ro(x) as in Lemma 5.5.

The next lemma transfers the preceding result to a logical setting. We show
that the logics induced by a separating set of predicate liftings can distinguish
distinct elements zg, 21 € T™1, for « less than the accessibility degree of T.
For the general case, one has to require that the predicate liftings preserve
intersections. This is not needed in the case where k = w or k is inaccessible,
as we shall see later.

Definition 5.7. We say that A is intersection preserving, if

A %) = A @) |r e x)

for all A € A, whenever X is a set and X C P(X).

For example, all predicate liftings constructed via Proposition 3.3 and Propo-
sition 3.5 are intersection preserving. The following lemma is the main step
in the proof of the expressiveness theorem:

Lemma 5.8. Suppose T is k-accessible, A is separating and intersection-
preserving with card(A) < k.

Then, for all o« < k and all z € T1, there exists a formula ¢ € L"(A) such
that [62], = 72 ({}) for all (C.7) € CoAlg(T).

Proof. We define ¢$ by transfinite induction. If o is a limit ordinal, let
oS = /\ﬁ<a ¢£a(z)> where pG : Zo — Zp is the connecting morphism of
5

the terminal sequence. We obtain [¢2](z¢) = ¢;'({2}) using the fact that
(Zas (PF)p<a) is a limiting cone.
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Now suppose o = 3+ 1 is a successor ordinal. By Lemma 5.5 there exists
a subset 30 = 30(2) C Zg with card(39) < w such that z € \(Z3)(3) iff
z € XZ3)(3N3j0) forall 3 € Zg and all A € A.

We put ¢¢ = ¢, A ¢, where

oo =\ W\VA{eL | 2 € dV)}

AEA

for d(A) = ({3 S 30 | 2 € M(Zp)(3)}, and

dn= N\ N{IN-¢7 | 2 €30 and 2z € X'(Zs)({#})}.
AEA
Note that both ¢, and ¢,, € L*(A). For ¢, we obtain
[eply = [ 7" o MOz (d(N)))

A€A

= [V 7541 © A(Zs)(dN))

AEA
=751 ([ WA(Z5)() | A € A and 2 € A(Z5)(3).5 € 30}),

since every A(Zg) preserves intersections. Regarding ¢, we calculate

[6aly = (Y (" o X (O) (5 ({Z'1) | 2/ € 30 and = € X" (Z5)({2'})}

A€A

= (s o X (Ze){}) | 2 € 30 and 2 € X"(Z5)({='})}

AEA
=51 (X' (Z6)(3) | A € A and = € X'(Z5)(5),5 € 30},)

where the last equation follows from the fact that X7 (Z3) preserves arbitrary
unions. Summing up, we obtain

[6n7dply = 751 ((JMZ5)(3)) | A € AUA™, 2 € A(Z5)(5),3 € 30} = 7514 ({=])

by Corollary 5.6, which proves the lemma. O

The main theorem is now easy:

Theorem 5.9. Suppose T is k-accessible and A is separating and intersec-
tion preserving with card(A) < k. Then L5(A) is expressive.
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Proof. Suppose (C,v) and (D, ) are T-coalgebras and (¢,d) € C' x D have
the same logical theory, that is, Th(c) = Th(d). By Theorem 4.1 we have
to show that v,(c) = du(d) for all @ < k. So fix some a < k and let
2z = 7a(c). By the previous lemma, there exists a formula ¢ = ¢¢ € L"(A)
with [¢]e = €5 ({z}) for all T-coalgebras (E,€). Now [¢], =721 ({7a(0)}),
that is, ¢ € Th(c). Since Th(c) = Th(d) by assumption, we obtain d €
[#]s = 05%(2), showing 0,(d) = z. The claim follows from definition of
z. U

Note that preservation of intersections is not needed for kK = w or k inacces-
sible:

Remark 5.10. Suppose that Kk = w or k is inaccessible. Then Lemma
5.8 and, as a consequence also Theorem 5.9 remain valid, if one drops the
assumption that A is intersection-preserving. In the proof of Lemma 5.8,
one puts

op=\ NNV ¢ |5 Cs0and 2 € M(Z5)(5)}

AEA 2'€;

and
on= N\ NIN-\ 62 5 C 50 and 2 € (-A)(Z5)(5)}-
AEA z'e;
It follows from & inaccessible (resp. k£ = w) that both ¢,, ¢, € L"(A), and
one proves the lemma by appealing to Corollary 5.6.

We conclude the section with some examples illustrating the expressiveness
results.

Example 5.11. 1. Let TX = P, (L x X). We have argued in Exam-
ple 4.2 that a T-coalgebra (C,~) is a finitely branching labelled transition
system.

Consider, for [ € L, the natural transformation 1;(C) : P,(L x C) — P(C)
given by p;(C) = i o P,(m2), where i : P,(C) — P(C) is the inclusion and
mo : L x C'— C' is the projection. By Proposition 3.3, every p; gives rise to
a predicate lifting A;. A calculation similar to the one in Example 5.3 shows,
that the set A = {)\; | [ € L} thus obtained is separating.

Given a T-coalgebra (C,~), we put ¢ Lot (I,d) € v(¢). Under this

correspondence, we have ¢ = [\]¢ iff V' .c L = ¢ E¢forceC
and ¢ € LY(A). Theorem 5.9 then re-proves the characterisation result by
Hennessy and Milner [6] in the coalgebraic framework.
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2. Suppose TX = P, (X) x P(A) for some set A (of atomic propositions)
with card(A) < k. Consider the predicate lifting A and, for a € A, the liftings
Aq, as described in Example 3.2 and Example 3.4.

If A ={A}U{\ | a € A}, then A is intersection-preserving and, by Theo-
rem 5.9, the logical equivalence induced by £%(A) coincides with behavioural
equivalence. This amounts to saying that, in Kripke models with branch-
ing degree less than k, modal logic with conjunctions of size less than k
characterises behavioural equivalence.

If Kk > w, one can use an argument similar to that used in Example 4.2
to show that the equivalence induced by £¥(A) is weaker than behavioural
equivalence.

3. Suppose I and O are finite sets and TX = (X x O)!. We have shown
in Example 2.2 that T-coalgebras are input-output automata. In Example
3.6 we have introduced the set A = {\; [i € I} U{p(,) | (4,0) € I x O} of
predicate liftings for T'. It is easy to see that A is separating and intersection
preserving. Hence L£¥(A) characterises states of input output automata up
to behavioural equivalence.

6 Conclusions and Related Work

The main result of the paper is the characterisation of behavioural equiva-
lence as logical equivalence in the framework of coalgebraic modal logic. In
this framework, modal operators and atomic propositions are interpreted by
means of predicate liftings.

Compared to the syntax-based approaches |7, 10, 16, 17|, this has the ad-
vantage of not restricting the class of signature functors a priori. Also, it
can easily be seen that (in the one sorted case) all of the above approaches
fit into our framework.

In comparison to Moss’ coalgebraic logic, our language has the advantage of
having a standard syntax (that is, propositional logic plus modal operators).
However, we only obtain our characterisation result for separating sets of
predicate liftings. The proof of the expressiveness theorem used terminal
sequence induction, due to Worrell [19], as its main proof principle.

A preliminary version of these results has appeared as [14]. They are ex-
tended by the present paper in two major directions: First, we have used
predicate liftings to unify the treatment of modal operators and atomic
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propositions. Second, our language only needs conjunctions of size less than
the accessibility degree of the underlying endofunctor.

The present paper deals with coalgebraic modal logic on a purely semantical
level. Proof systems for coalgebraic modal have been studied in [15].
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