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It was Moss [13℄, who �rst suggested to use modal logi as language forreasoning about oalgebras. In his oalgebrai logi, one expresses assertionsabout suessor states using funtor appliation. This has the advantage ofbeing appliable to a large lass of endofuntors, at the expense of a language,whih is non-standard, as it laks the usual modal operators, and instead usesfuntor appliation to formulate assertions about suessor states. Otherapproahes, inluding [7, 10, 16, 17℄, restrit attention to a syntatiallyde�ned lass of endofuntors. This has the advantage of providing a standardlanguage, at the expense of being appliable only to an a priori restritedlass of funtors.By investigating semantial strutures, whih generalise the interpretation ofmultimodal logi from Kripke models to arbitrary oalgebras, our approahtries to bridge the gap between the two previously mentioned frameworks:oalgebrai modal logi is based on the observation that prediate liftingsan be used to interpret both modal operators and atomi propositions onoalgebras. If T is an endofuntor on the ategory of sets, a prediate liftingfor T maps prediates on (subsets of) a set X to prediates on the set TX,uniformly in X. If we think of TX as the observations, whih an be madeof a system with arrier set X after one transition step, prediate liftingsthus allow us to formulate properties of suessor states. We demonstrateby means of example, that prediate liftings generalise modal operators andatomi propositions from Kripke models to oalgebras for arbitrary endo-funtors.After having settled the preliminaries, we introdue the framework of oal-gebrai modal logi, along with two onstrution priniples for prediateliftings. We show that oalgebrai modal logi is adequate, that is, be-haviourally equivalent states annot be distinguished by formulas of thelogi (Theorem 3.10). For the onverse, we need to analyse the notion ofbehavioural equivalene in detail. This is done in Setion 4, where the proofpriniple of terminal sequene indution is disussed. This priniple (The-orem 4.1, due to Worrell [19℄) asserts that � if the underlying signaturefuntor is κ-aessible � two states are behaviourally equivalent if and onlyif they have the same α-step behaviour for all α < κ. Formally, this meansthat their projetions into the terminal sequene, de�ned by the underlyingendofuntor, oinide for all ordinals α < κ.In the sequel, this proof priniple is exploited to establish onditions on theset of modal operators (given by a set of prediate liftings), whih ensureexpressiveness of oalgebrai modal logi. That is, any two states with thesame logial theory are indeed behaviourally equivalent. This is the ontent2



of Theorem 5.9, whih is proved by terminal sequene indution: Given anystate, one assoiates to eah ordinal α less than the aessibility degree ofthe underlying endofuntor a formula whih is satis�ed by all states with thesame α-step behaviour.2 Preliminaries and NotationThroughout the paper, T denotes an endofuntor on the ategory Set of setsand funtions. We often require T to be aessible. That is, the ation of Ton a set X is determined by the ation of T on subsets of X whih are ofardinality < κ for some regular ardinal κ.Formally, a funtor is aessible, if it preserves κ-�ltered olimits for someregular ardinal κ. In this situation, the ardinal κ is the aessibility degreeof T and T is alled κ-aessible. Two standard referenes for aessibilityare [4, 12℄. The lass of aessible funtors is an attrative lass of (signature)funtors for oalgebras, sine it ontains nearly all of the signature funtorsonsidered in the literature (with the exeption of the unbounded powersetfuntor) and enjoys numerous losure properties: the lass of κ-aessiblefuntors is losed under omposition, olimits, limits of ardinality less than κand ontains all κ′-aessible funtors for κ′ < κ. In partiular, the boundedpowerset funtor Pκ, de�ned by Pκ(X) = {x ⊆ X | card(x) < κ} is κ-aessible. These losure properties are proved for example in [4℄ and anbe used to show that � in the terminology of Rutten [18℄ � all polynomialfuntors with �nite exponents are ω-aessible.Given a (not neessarily aessible) endofuntor T : Set → Set, the de�nitionof T -oalgebras dualises that of algebras for an endofuntor:De�nition 2.1. A T -oalgebra is a pair (C, γ) where C is a set and γ : C →
TC is a funtion. A morphism of oalgebras f : (C, γ) → (D, δ) is a funtion
f : C → D suh that Tf ◦ γ = δ ◦ f .It is easy to see that T -oalgebras, together with their morphisms, form aategory, whih we denote by CoAlg(T ). Given a T -oalgebra (C, γ) we oftenrefer to C as the arrier set and to γ as its transition struture.The generality of the above de�nition (ahieved through the parametriityin the endofuntor T ) allows to model a large variety of systems in the oal-gebrai framework. We give some examples of strutures, whih naturallyarise as oalgebras, and whih we will use as examples later; more examplesan be found in [18℄. 3



Example 2.2. 1. Suppose L is a set (of labels) and TX = L×X. Thenevery T -oalgebra (C, γ) de�nes a set of streams: If γ = 〈hd, tl〉 : C → L×C,we assoiate the in�nite stream (hd(c), hd◦tl(c), hd◦tl◦tl(c), . . . ) to an element
c ∈ C.2. Suppose I and O are sets and TX = (X × O)I is the set of funtionsfrom I to X × O. A T -oalgebra (C, γ) is a deterministi Mealy Mahinewith input set I and output set O: given a state c ∈ C and an input i ∈ I,the transition funtion γ provides us with a new state (the �rst omponentof γ(c)(i)) and an output (the seond omponent of γ(c)(i)).3. Consider TX = P(X)×P(A), where A is a set (of atomi propositions)and P denotes the ovariant powerset funtor. Every T -oalgebra (C, γ :
C → P(C) × P(A)) gives rise to a Kripke model (see [3, 5℄) by putting
K(C, γ) = (C,R, V ) where C is the arrier (set of worlds) of the model, R isthe suessor relation, given by

(c, c′) ∈ R ⇐⇒ c′ ∈ π1 ◦ γ(c)and V : A→ P(C) is the valuation of the propositional variables, de�ned by
V (a) = {c ∈ C | a ∈ π2 ◦ γ(c)}.In the above, π1 (resp. π2) denotes the �rst (resp. seond) projetion. Sinethe onstrution an be reversed, T -oalgebras are in one-to-one orrespon-dene with Kripke models for TX = P(X) ×P(A).As has been observed in Rutten [18℄, the morphisms of oalgebras for TX =

P(X) × P(A) are preisely the p-morphisms (bounded morphisms in theterminology of [3℄) known from modal logi.Thinking of morphisms between oalgebras as preserving the observable be-haviour, it is natural to onsider elements of the arrier of oalgebras asbehaviourally equivalent if they an be identi�ed by means of behaviour pre-serving funtions. This notion of behavioural equivalene, formally de�nedbelow, was �rst studied by Kurz [9℄.De�nition 2.3. Suppose (C, γ) and (D, δ) are T -oalgebras and (c, d) ∈ C×
D. We all c and d behaviourally equivalent, if there exists (E, ǫ) ∈ CoAlg(T )and two oalgebra morphisms f : (C, γ) → (E, ǫ) and g : (D, δ) → (E, ǫ),suh that f(c) = g(d).Some remarks onerning the de�nition of behavioural equivalene are in or-der. Rutten [18℄ has studied bisimulation, as de�ned by Azel and Mendler4



[1℄, as the fundamental notion of equivalene. It is immediate that bisimi-larity always implies behavioural equivalene. For funtors preserving weakpullbaks, it an be shown that bisimilarity and behavioural equivalene o-inide. For funtors that do not have this property, suh as TX = {(x, y, z) ∈
X3 | card({x, y, z}) ≤ 2} (the example from [1℄), it an easily be seen that,for any T -oalgebra (C, γ), any two points c0, c1 are behaviourally equivalent.It is, however not the ase than any pair (c0, c1) is bisimilar. Sine T does notallow for any observations (other than the existene of a suessor state), weintuitively regard all states (c0, c1) as behaviourally equivalent and thereforetake behavioural equivalene as the more fundamental notion. The follow-ing setions are devoted to a haraterisation of behavioural equivalene interms of modal logis.3 Coalgebrai Modal LogiThis setion introdues the framework of oalgebrai modal logi, whih is anextension of multimodal logi, interpreted over oalgebras. Compared withMoss' oalgebrai logi [13℄, oalgebrai modal logi an still be used for alarge lass of endofuntors, but has the advantage of a standard (multimodal)language.This is ahieved by using prediate liftings to formulate assertions aboutsuessor states. Informally, if T is an endofuntor, a prediate liftings for
T map subsets of a set X to subsets of TX. This allows to use prediateliftings to assert properties of suessor states, and hene to interpret modaloperators on oalgebras. The present setion introdues the framework ofoalgebrai modal logi and shows its adequay, that is, behaviourally equiv-alent points annot be distinguished by logial formulas.De�nition 3.1. A prediate lifting λ for T is an order-preserving naturaltransformation λ : 2 → 2 ◦ T , where 2 is the ontravariant powerset funtor.Spelling out this de�nition, a prediate lifting for T is an indexed family ofmaps λ(C) : P(C) → P(TC), suh that for all funtions f : C → D wehave that λ(C) ◦ f−1 = (Tf)−1 ◦ λ(D) (we write P(C) for the objet partof the ontravariant powerset funtor). Prediate liftings were �rst used byHermida and Jaobs [8℄ in the ontext of (o-)indution priniples and laterby Röÿiger [16℄ and Jaobs [7℄ in the ontext of modal logi. There, as well asin the related paper [16℄, prediate liftings are syntatially de�ned entities,and naturality, whih we take as our de�ning property, is derived.5



In a logial ontext, prediate liftings allows us reason about the state of asystem after a transition has been performed. Order preservation thus allowsus to infer formulas involving suessor states only from the orrespondingjudgements, interpreted in the urrent state. This orresponds to the rule
φ⊢ψ =⇒ 2φ⊢2ψ of modal logi.We illustrate the onept of prediate liftings by showing that they generalisethe interpretation of the 2-operator from Kripke models (see eg. [3, 5℄) tooalgebras of arbitrary signature funtors.Example 3.2. Suppose TX = P(X) × P(A) as in Example 2.2. Considerthe operation λ(C) : P(C) → P(TC) de�ned by

λ(C)(c) = {(a, c′) ∈ TC | c′ ⊆ c}.An easy alulation shows, that this de�nes a prediate lifting λ. Now on-sider a T -oalgebra (C, γ) and a subset c ⊆ C, whih we think of as thesemantis of a modal formula φ. Then
γ−1 ◦ λ(C)(c) = {c ∈ C | π1 ◦ γ(c) ∈ c}(where π1 : P(C)×P(A) → P(C) denotes �rst projetion) orresponds to theinterpretation of the modal formula 2φ under the orrespondene outlinedin Example 2.2.The de�nition of λ(C) given in the last example an be rewritten (using the�rst projetion π1 : TC → P(C)) as λ(C)(c) = {t ∈ TC | π1(t) ⊆ c}, and thenaturality of λ follows immediately from the naturality of π1. Replaing π1by an arbitrary natural transformation, we obtain a onstrution priniplefor prediate liftings:Proposition 3.3. Suppose µ : T → P is a natural transformation. Thenthe operation λ(C) : P(C) → P(TC), given by
λ(C)(c) = {c ∈ TC | µ(C)(c) ⊆ c}de�nes a prediate lifting λ for T .Proof. Let f : C → D. We have to show that λ(C) ◦ f−1 = (Tf)−1 ◦ λ(D),given that µ is natural, i.e. Pf ◦ µ(C) = µ(D) ◦ Tf . If d ⊆ D, we have

λ(C) ◦ f−1(d) = {c ∈ TC | µ(C)(c) ⊆ f−1(d)} = {c ∈ TC | Pf ◦ µ(C)(c) ⊆
d} = {c ∈ TC | µ(D) ◦ Tf(c) ⊆ d} = (Tf)−1 ◦ λ(D)(d), showing that λ isnatural. It is immediate from the de�nition that λ preserves order.6



Continuing Example 2.2, we now show that prediate liftings an also beused to interpret atomi propositions of Kripke models.Example 3.4. Again, let TX = P(X) × P(A). For some �xed a ∈ A,onsider the (onstant) operation λa(C) : P(C) → P(TC), given by
λa(C)(c) = {(c′, a) ∈ TC | a ∈ a}.Given an arbitrary subset c ⊆ C, we obtain

γ−1 ◦ λa(C)(c) = {c ∈ C | a ∈ π2 ◦ γ(c)},that is, the set of worlds satisfying proposition a under the orrespondeneoutlined in Example 2.2.Again, there is a more general priniple underlying the onstrution of the(onstant) lifting of the last example. In the following, we write 1 = {0}and, if X is a set, !X : X → 1 for the uniquely de�ned surjetion.Proposition 3.5. Suppose a ⊆ T1. Then the operation λ(C) : P(C) →
P(TC), given by

λ(C)(c) = {c ∈ TC | (T !C)(c) ∈ a}de�nes a (onstant) prediate lifting λ for T .Proof. Note that λ(C)(c) = (T !C)−1(a), where !C : C → 1 is the uniquemorphism. Given f : C → D, we have to show that λ(C) ◦ f−1 = (Tf)−1 ◦
λ(D). If d ⊆ D, this follows from (Tf)−1 ◦λ(D)(d) = (Tf)−1 ◦(T !D)−1(a) =
(T !C)−1(a) = λ(C)(f−1(d)). Clearly λ preserves order.The following example shows, how Proposition 3.3 and Proposition 3.5 anbe used to onstrut prediate liftings, whih make assertions about deter-ministi automata.Example 3.6. Suppose TX = (X × O)I , where I and O are sets. Wehave demonstrated in Example 2.2 that T -oalgebras are deterministi Mealyautomata with input set I, produing elements of O as outputs.Given an input i ∈ I, the natural transformation ρ : T → P, de�ned by
ρ(C)(f) = {π1(f(i))} for f ∈ (C × O)I = TC, gives rise to a prediatelifting λi by Proposition 3.3. Intuitively, λi allows us to formulate propertiesabout the suessor state after onsuming input i ∈ I.7



If (i, o) ∈ I×O, then the subset {f ∈ (1×O)I | π2(f(i)) = o} gives rise to alifting µ(i,o) by Proposition 3.5. The lifting µ(i,o) an be used to assert thatthe urrent state is suh that proessing of input i yields output o.In lassial modal logi, one often de�nes the operator 3 by putting 3φ =
¬2¬φ. We onlude this setion by showing that this an already be aom-plished on the level of prediate liftings.Proposition 3.7. Suppose λ is a prediate lifting for T . Then the operation
λ¬(C), de�ned by

λ¬(C)(c) = TC \ λ(C)(C \ c)is a prediate lifting for T .Proof. Beause negation preserves inverse images.For the remainder of this exposition, Λ denotes a set of prediate liftings andwe put Λ¬ = {λ¬ | λ ∈ Λ}.As we have seen, prediate liftings an be used to interpret both modalitiesand atomi propositions. We are thus lead to study propositional logi,enrihed with prediate lifting operators, as a logi for oalgebras.Sine the expressiveness and de�nability results require in�nitary logis inthe general ase, the de�nition is parametri in a ardinal number κ. Notethat atomi propositions also arise through prediate liftings (Example 3.4),hene we do not need to inlude atomi propositions in the de�nition.De�nition 3.8. Suppose κ is a ardinal number. The language Lκ(Λ) as-soiated with Λ is the least set with grammar
φ ::=

∧
Φ | ¬φ | [λ]φ (Φ ⊆ Lκ(Λ) with card(Φ) < κ and λ ∈ Λ)Given (C, γ) ∈ CoAlg(T ), the semantis [[φ]]γ ⊆ C is given indutively by thelauses

[[
∧

Φ]]γ =
⋂

φ∈Φ

[[φ]]γ [[¬φ]]γ = C \ [[φ]]γ [[[λ]φ]]γ = γ−1 ◦ λ(C)([[φ]]γ).Note that Lκ(Λ) ontains the formula tt =
∧

∅ (with [[tt]]γ = C) and that
Lκ(Λ) is �nitary if κ = ω. If we want to emphasise that a formula φ ∈ Lκ(Λ)holds at a spei� state c ∈ C of a oalgebra (C, γ), we write c |=γ φ for8



c ∈ [[φ]]γ . As usual Th(c) = {φ ∈ Lκ(Λ) | c |=γ φ} denotes the logial theoryassoiated to a state c ∈ C.Given syntax and semantis of oalgebrai modal logi, we now begin thestudy of the relationship between logial and behavioural equivalene. Sinebehavioural equivalene is de�ned in terms of oalgebra morphisms (De�ni-tion 2.3), we �rst study the relation between logial formulas and morphismsof oalgebras.Lemma 3.9. If f : (C, γ) → (D, δ) ∈ CoAlg(T ), then
[[φ]]γ = f−1([[φ]]δ)for all φ ∈ Lκ(Λ).Proof. We proeed by indution on the struture of φ. For onjuntions andnegations, the laim is evident. So suppose φ ∈ Lκ(Λ) and [[φ]]γ = f−1([[φ]]δ).By naturality of λ and using f ∈ CoAlg(T ), we obtain f−1([[[λ]φ]]δ) = (δ ◦

f)−1 ◦ λ(D)([[φ]]δ) = (Tf ◦ γ)−1 ◦ λ(D)([[φ]]δ) = γ−1 ◦ λ(C) ◦ f−1([[φ]]δ) =
[[[λ]φ]]γ , whih proves the laim.The importane of Lemma 3.9 is that it allows us to onlude that oalgebraimodal logi is invariant under behavioural equivalene, that is, behaviourallyequivalent points annot be distinguished by logial formulas.Theorem 3.10. Let (C, γ), (D, δ) ∈ CoAlg(T ) and φ ∈ Lκ(Λ). Then Th(c) =
Th(d) whenever (c, d) ∈ C ×D are behaviourally equivalent.Proof. If (c, d) are behaviourally equivalent, there are (E, ǫ) ∈ CoAlg(T ) anda pair of oalgebra morphisms f : (C, γ) → (E, ǫ), g : (D, δ) → (E, ǫ) suhthat f(c) = g(d). By Lemma 3.9 we have c |=γ φ i� c ∈ [[φ]]γ i� f(c) ∈ [[φ]]ǫ.Sine f(c) = g(d), this is the ase i� g(d) ∈ [[φ]]ǫ i� g ∈ [[φ]]δ i� d |=δ φ.The preeding theorem states, that behavioural equivalene implies logialequivalene. The remainder of this paper is onerned with onditions on
Λ that also ensure the onverse. Note that oalgebrai modal logi is ingeneral not strong enough to separate non-equivalent states: onsider forexample the logi given by the empty set of liftings. In order to takle theproblem of giving a logial haraterisation of behavioural equivalene, weneed a detailed analysis of behavioural equivalene, whih is given in thenext setion. 9



4 Terminal Sequene IndutionThis setion disusses the proof priniple of terminal sequene indution,due to Worrell [19℄. It provides an indutive haraterisation of behaviouralequivalene, and hene allows us to use trans�nite indution to show thattwo states are behaviourally equivalent. We onentrate on appliations ofthe proof priniple; the reader is referred to [19℄ for full details.We begin with a brief disussion of the terminal sequene, whih is bestthought of as a sequene of approximants to the �nal oalgebra (that is, the�nal objet in the ategory CoAlg(T )).The terminal sequene assoiated with T is an ordinal indexed sequene ofsets (Zα) together with a family (pα
β) of funtions pα

β : Zα → Zβ for allordinals β ≤ α suh that
• Zα+1 = TZα and pα+1

β+1 = Tpα
β for all β ≤ α

• pα
α = idZα and pα

γ = pβ
γ ◦ pα

β for γ ≤ β ≤ α

• The one (Zα, (p
α
β)β<α) is limiting whenever α is a limit ordinal.(See [11℄ for more on limiting ones.) Thinking of Zα as the α-fold appliationof T to the limit 1 of the empty diagram, we sometimes write Zα = Tα1 inthe sequel. With this notation, the terminal sequene of T is the ontinuationof the sequene

1 T1
!

T 21
T !

T 31
T 2! . . .through the lass of all ordinal numbers, with 0 onsidered as limit ordinal.Intuitively, Tα1 represents behaviours whih an be exhibited in α steps.For example, if TX = D × X and n ∈ N, then T n1 ∼= Dn ontains alllists of length n. It has been shown in [19℄, that the terminal sequene ofa κ-aessible endofuntor onverges to a �nal oalgebra (Z, ζ). Given any

(C, γ) ∈ CoAlg(T ), we write !γ : (C, γ) → (Z, ζ) for the unique morphismindued by �nality of (Z, ζ).Also note that every oalgebra (C, γ) gives rise to a one (C, (γα : C → Tα1))over the terminal sequene as follows:
• If α = β + 1 is a suessor ordinal, let γα = Tγβ ◦ γ : C → Tα1.10



• If α is a limit ordinal, γα is the unique map for whih γβ = pα
β ◦ γα forall β < α.(This has already been notied by Barr [2℄). Using this notation, terminalsequene indution an be formulated as follows:Theorem 4.1 (Worrell). Suppose T is κ-aessible and (C, γ), (D, δ) ∈

CoAlg(T ). The following are equivalent for (c, d) ∈ C ×D:1. c and d are behaviourally equivalent2. !γ(c) =!δ(d)3. For all α < κ: γα(c) = δα(d).For the proof, see [19℄. Intuitively, γα(c) represents the behaviour of c, whihis observable in at most α transition steps. Thus γα(c) = δα(d) asserts thatthe α-step behaviour of c and d oinide. The theorem therefore allows us toonlude that c and d are behaviourally equivalent if their α-step behavioursoinide for all α less than the aessibility degree of T . We illustrate thisby means of some examples.Example 4.2. 1. Suppose TX = L×X for some set L of labels. Then Tis polynomial, hene ω-aessible. Note that the elements T n1 ∼= Ln of theterminal sequene assoiated to T are the sequenes of labels, whih havelength n.Given a T -oalgebra (C, γ), every state c0 ∈ C gives rise to an in�nitesequene c0 l1−→ c1
l2−→ c2 . . . by putting c l

−→ c′ i� γ(c) = (l, c′). In thissetup, we have γn(c0) = (l1, . . . , ln), that is, the sequene of the �rst n labelsgiven by c0. Theorem 4.1 states that two states c and d of T -oalgebrasare behaviourally equivalent i� they give rise to the same �nite sequenes oflabels.2. Suppose TX = Pω(L×X) with L as above. Beause Pω is ω-aessible,
T is ω-aessible, sine ω-aessible funtors are losed under omposition.A T -oalgebra (C, γ) is a �nitely branhing labelled transition system: put
c

l
−→ c′ i� (l, c′) ∈ γ(c). Given two T -oalgebras (C, γ) and (D, δ), we de�nea relation ∼n on C × D by indution on n as follows: ∼0= C × D and

c ∼n+1 d i�
• ∀c′.c

l
−→ c′ =⇒ ∃d′.d

l
−→ d′ and c′ ∼n d

′;
• ∀d′.d

l
−→ d′ =⇒ ∃c′.c

l
−→ c′ and c′ ∼n d

′.11



We obtain that c ∼n d if and only if γn(c) = δn(d). The relation ∼n was usedto haraterise bisimilarity for �nitely branhing labelled transition systemsin [6℄. Intuitively, c ∼n d if c and d are bisimilar for the �rst n transitionsteps. In this setting, Theorem 4.1 states that c and d are behaviourallyequivalent i� c ∼n d for all n ∈ ω.3. Suppose κ is a regular ardinal suh that κ > ω and onsider TX =
Pκ(X). Then T is κ-aessible.Now take C = ω + 2 and γ(c) = {c′ | c′ ∈ c}. One obtains γα(c) = γα(c′)i� c ∩ α = c′ ∩ α, for c, c′ ∈ C and α < κ. Hene γα(ω) = γα(ω + 1) for all
α ≤ ω but γω+1(ω) 6= γω+1(ω+1). Hene ω and ω+1 are not behaviourallyequivalent.Writing c→ c′ for c′ ∈ γ(c), this an be explained by the fat that ω+1 hasa suessor (namely ω) whih allows for arbitrary long sequenes ω → nk →
· · · → n0 = 0, for n0 < n1 < . . . nk < ω, whereas there is no suessor of ωwith this property.Note that this also shows that indution up to the aessibility degree of Tis neessary to establish behavioural equivalene of two points.The following setion uses terminal sequene indution to establish a partialonverse of Theorem 3.10.5 Expressivity of Coalgebrai Modal LogiWhile behaviourally equivalent states always have the same logial theory, aswe have seen in Theorem 3.10, the onverse is not neessarily true (onsiderfor example the logi given by the empty set of prediate liftings). Logis,for whih the onverse of Corollary 3.10 holds, are alled expressive:De�nition 5.1. We say that Lκ(Λ) is expressive, if for all T -oalgebras
(C, γ) and (D, δ) and all (c, d) ∈ C ×D, Th(c) = Th(d) implies that c and
d are behaviourally equivalent.This setion introdues separation, a ondition on sets of prediate liftings,and gives a haraterisation of oalgebrai behavioural equivalene in logialterms. The proof of the haraterisation theorem uses terminal sequeneindution as its main tool.The basi idea behind separation is the possibility of distinguishing individ-ual points of TX by means of lifted subsets of X. This is formalised asfollows: 12



De�nition 5.2 (Separation). 1. Suppose C is a set and C ⊆ P(C) is asystem of subsets of C. We all C separating, if the map s : C → P(C),
s(c) = {c ∈ C | c ∈ c}, is moni.2. A set Λ of prediate liftings for T is alled separating, if, for all sets C,the set {λ(C)(c) | λ ∈ Λ, c ⊆ C} is a separating set of subsets of TC.In a separating system of subsets, the system ontains enough informationto distinguish the individual elements of the underlying set. The intuitionbehind a separating set of prediate liftings is that elements of TC an bedistinguished by means of the subsets λ(C)(c) obtained by applying theliftings. Alternatively, one an think of s(c) as the logial theory of the state
c; the fat that s is moni then allows us to reonstrut a state from itstheory.Many sets of prediate liftings are indeed separating, notably the prediateliftings giving rise to the interpretation of modalities and atoms in (standard)modal logi.Example 5.3. Suppose TX = P(X)×P(A) as in Example 2.2 and onsider

Λ = {λ} ∪ {λa | a ∈ A},where λ and the λas are given as in Example 3.2 and Example 3.4, re-spetively. We show that Λ is separating. Fix some set C and let S =
{µ(C)(c) | µ ∈ Λ and c ⊆ C}. We establish that s : TC → P(S), given by
s(c) = {s ∈ S | c ∈ s} is injetive. Note that by de�nition of s, we have
µ(C)(c) ∈ s(c) i� c ∈ µ(C)(c), for all c ∈ C, c ⊆ C and µ ∈ Λ.So suppose s(c0, a0) = s(c1, a1). Then (c0, a0) ∈ λ(C)(c0), hene λ(C)(c0) ∈
s(c0, a0) = s(c1, a1). So (c1, a1) ∈ λ(C)(c0), that is, c1 ⊆ c0 by de�nition of λ.Now assume a ∈ a1. Then (c1, a1) ∈ λa(C)(C), thus λa(C)(C) ∈ s(c1, a1) =
s(c0, a0). Therefore (c0, a0) ∈ λa(C)(C), showing a ∈ a0 and, sine a wasarbitrary, a1 ⊆ a0. We onlude (c0, a0) = (c1, a1) by symmetry.We now show that, given a separating set of prediate liftings, every singletonset {x}, for x ∈ TX, arises as the intersetion of lifted subsets of X. Inorder to obtain this representation we have to use both liftings λ ∈ Λ andliftings of the form λ¬, as introdued in Proposition 3.7. Reall the notation
Λ¬ = {λ¬ | λ ∈ Λ} introdued in Setion 3.Lemma 5.4. Suppose Λ is separating and X is a set. Then

⋂
{λ(X)(x) | λ ∈ Λ ∪ Λ¬ and x ∈ λ(X)(x)} = {x}for all x ∈ TX. 13



Proof. Fix x ∈ TX and denote the left hand side of the above equation by
LHS. Clearly LHS ⊇ {x}.In order to see that LHS ⊆ {x}, onsider the assignmentm(y) =

⋃
λ∈Λ{λ(X)(x) |

y ∈ λ(X)(x)} and pik y ∈ LHS. Sine Λ is separating, m is moni and itsu�es to show that m(x) = m(y). This follows if, for all λ ∈ Λ and all
x ⊆ X,

x ∈ λ(X)(x) i� y ∈ λ(X)(x).First suppose that x ∈ λ(X)(x) for some λ ∈ Λ and some x ⊆ X. Sine y ∈
LHS, learly y ∈ λ(X)(x). Conversely, if x /∈ λ(X)(x), we have x ∈ λ¬(X \x).Sine y ∈ LHS, we have y ∈ λ¬(X \ x), whih amounts to y /∈ λ(X)(x).This lemma provides a �rst handle for isolating a single point x ∈ TX.However, we have to onsider the liftings of sets whose ardinality is notbounded above (amounting to disjuntions of unbounded ardinality on thelogial side). We an do better if T is κ-aessible:Lemma 5.5. Suppose T is κ-aessible, X is a set and x ∈ TX. Then thereexists x0(x) ⊆ X with card(x0(x)) < κ suh that

x ∈ λ(X)(x) i� x ∈ λ(X)(x ∩ x0(x))for all x ⊆ X and all prediate liftings λ for T .Proof. Sine T is κ-aessible, there exists a subset x0 = x0(x) ⊆ X with
card(x0) < κ suh that x = (T i)(x0) for some x0 ∈ x0, where i : x0 → Xdenotes the inlusion.Sine prediate liftings preserve order by de�nition, we have x ∈ λ(X)(x)whenever x ∈ λ(X)(x ∩ x0). For the other impliation, suppose that x ∈
λ(X)(x) for some x ⊆ X and onsider the diagram

P(X)
λ(X)

i−1

P(TX)

(T i)−1

P(x0)
λ(x0)

P(T x0)whih ommutes by the naturality of λ. We obtain
(T i)−1(λ(X)(x ∩ x0)) = λ(x0) ◦ i

−1(x ∩ x0)

= λ(x0) ◦ i
−1(x)

= (T i)−1(λ(X)(x)).14



Sine x = (T i)(x0) ∈ λ(X)(x), we have x0 ∈ (T i)−1(λ(X)(x)) = (T i)−1(λ(X)(x∩
x0)), hene x = (T i)(x0) ∈ λ(X)(x ∩ x0).Combining the last two lemmas allows us to isolate single points x ∈ TX byliftings of subsets x ⊆ X, whih are of ardinality less than κ. This is theontent of the following orollary, whih immediately follows from the fatthat prediate liftings preserve order.Corollary 5.6. Suppose T is κ-aessible, Λ is separating and X is a set.Then

⋂
{λ(X)(x) | λ ∈ Λ ∪ Λ¬ and x ∈ λ(X)(x), x ⊆ x0(x)} = {x}for x ∈ TX and x0(x) as in Lemma 5.5.The next lemma transfers the preeding result to a logial setting. We showthat the logis indued by a separating set of prediate liftings an distinguishdistint elements z0, z1 ∈ Tα1, for α less than the aessibility degree of T .For the general ase, one has to require that the prediate liftings preserveintersetions. This is not needed in the ase where κ = ω or κ is inaessible,as we shall see later.De�nition 5.7. We say that Λ is intersetion preserving, if

λ(X)(
⋂

X) =
⋂

{λ(X)(x) | x ∈ X}for all λ ∈ Λ, whenever X is a set and X ⊆ P(X).For example, all prediate liftings onstruted via Proposition 3.3 and Propo-sition 3.5 are intersetion preserving. The following lemma is the main stepin the proof of the expressiveness theorem:Lemma 5.8. Suppose T is κ-aessible, Λ is separating and intersetion-preserving with card(Λ) < κ.Then, for all α < κ and all z ∈ Tα1, there exists a formula φα
z ∈ Lκ(Λ) suhthat [[φα

z ]]γ = γ−1
α ({z}) for all (C, γ) ∈ CoAlg(T ).Proof. We de�ne φα

z by trans�nite indution. If α is a limit ordinal, let
φα

z =
∧

β<α φ
β
pα

β
(z), where pα

β : Zα → Zβ is the onneting morphism ofthe terminal sequene. We obtain [[φα
z ]](Z,ζ) = ζ−1

α ({z}) using the fat that
(Zα, (p

α
β)β<α) is a limiting one. 15



Now suppose α = β + 1 is a suessor ordinal. By Lemma 5.5 there existsa subset z0 = z0(z) ⊆ Zβ with card(z0) < κ suh that z ∈ λ(Zβ)(z) i�
z ∈ λ(Zβ)(z ∩ z0) for all z ⊆ Zβ and all λ ∈ Λ.We put φα

z = φp ∧ φn where
φp =

∧

λ∈Λ

[λ]
∨

{φβ
z′ | z

′ ∈ d(λ)}for d(λ) =
⋂
{z ⊆ z0 | z ∈ λ(Zβ)(z)}, and

φn =
∧

λ∈Λ

∧
{¬[λ]¬φβ

z′ | z
′ ∈ z0 and z ∈ λ¬(Zβ)({z′})}.Note that both φp and φn ∈ Lκ(Λ). For φp we obtain

[[φp]]γ =
⋂

λ∈Λ

γ−1 ◦ λ(C)(γ−1
β (d(λ)))

=
⋂

λ∈Λ

γ−1
β+1 ◦ λ(Zβ)(d(λ))

= γ−1
β+1(

⋂
{λ(Zβ)(z) | λ ∈ Λ and z ∈ λ(Zβ)(z), z ⊆ z0}),sine every λ(Zβ) preserves intersetions. Regarding φn, we alulate

[[φn]]γ =
⋂

λ∈Λ

⋂
{γ−1 ◦ λ¬(C)(γ−1

β ({z′})) | z′ ∈ z0 and z ∈ λ¬(Zβ)({z′})}

=
⋂

λ∈Λ

⋂
{γ−1

β+1 ◦ λ
¬(Zβ)({z′}) | z′ ∈ z0 and z ∈ λ¬(Zβ)({z′})}

= γ−1
β+1(

⋂
{λ¬(Zβ)(z) | λ ∈ Λ and z ∈ λ¬(Zβ)(z), z ⊆ z0}, )where the last equation follows from the fat that λ¬(Zβ) preserves arbitraryunions. Summing up, we obtain

[[φn∧φp]]γ = γ−1
β+1(

⋂
{λ(Zβ)(z)) | λ ∈ Λ∪Λ¬, z ∈ λ(Zβ)(z), z ⊆ z0} = γ−1

β+1({z})by Corollary 5.6, whih proves the lemma.The main theorem is now easy:Theorem 5.9. Suppose T is κ-aessible and Λ is separating and interse-tion preserving with card(Λ) < κ. Then Lκ(Λ) is expressive.16



Proof. Suppose (C, γ) and (D, δ) are T -oalgebras and (c, d) ∈ C ×D havethe same logial theory, that is, Th(c) = Th(d). By Theorem 4.1 we haveto show that γα(c) = δα(d) for all α < κ. So �x some α < κ and let
z = γα(c). By the previous lemma, there exists a formula φ = φα

z ∈ Lκ(Λ)with [[φ]]ǫ = ǫ−1
α ({z}) for all T -oalgebras (E, ǫ). Now [[φ]]γ = γ−1

α ({γα(c)}),that is, φ ∈ Th(c). Sine Th(c) = Th(d) by assumption, we obtain d ∈
[[φ]]δ = δ−1

α (z), showing δα(d) = z. The laim follows from de�nition of
z.Note that preservation of intersetions is not needed for κ = ω or κ inaes-sible:Remark 5.10. Suppose that κ = ω or κ is inaessible. Then Lemma5.8 and, as a onsequene also Theorem 5.9 remain valid, if one drops theassumption that Λ is intersetion-preserving. In the proof of Lemma 5.8,one puts

φp =
∧

λ∈Λ

∧
{[λ]

∨

z′∈z

φβ
z′ | z ⊆ z0 and z ∈ λ(Zβ)(z)}and

φn =
∧

λ∈Λ

∧
{¬[λ]¬

∨

z′∈z

φβ
s′ | z ⊆ z0 and z ∈ (¬λ¬)(Zβ)(z)}.It follows from κ inaessible (resp. κ = ω) that both φp, φn ∈ Lκ(Λ), andone proves the lemma by appealing to Corollary 5.6.We onlude the setion with some examples illustrating the expressivenessresults.Example 5.11. 1. Let TX = Pω(L × X). We have argued in Exam-ple 4.2 that a T -oalgebra (C, γ) is a �nitely branhing labelled transitionsystem.Consider, for l ∈ L, the natural transformation µl(C) : Pω(L× C) → P(C)given by µl(C) = i ◦ Pω(π2), where i : Pω(C) → P(C) is the inlusion and

π2 : L× C → C is the projetion. By Proposition 3.3, every µl gives rise toa prediate lifting λl. A alulation similar to the one in Example 5.3 shows,that the set Λ = {λl | l ∈ L} thus obtained is separating.Given a T -oalgebra (C, γ), we put c l
−→ c′ if (l, c′) ∈ γ(c). Under thisorrespondene, we have c |= [λl]φ i� ∀c′.c

l
−→ c′ =⇒ c′ |= φ for c ∈ Cand φ ∈ Lω(Λ). Theorem 5.9 then re-proves the haraterisation result byHennessy and Milner [6℄ in the oalgebrai framework.17



2. Suppose TX = Pκ(X)×P(A) for some set A (of atomi propositions)with card(A) < κ. Consider the prediate lifting λ and, for a ∈ A, the liftings
λa, as desribed in Example 3.2 and Example 3.4.If Λ = {λ} ∪ {λa | a ∈ A}, then Λ is intersetion-preserving and, by Theo-rem 5.9, the logial equivalene indued by Lκ(Λ) oinides with behaviouralequivalene. This amounts to saying that, in Kripke models with branh-ing degree less than κ, modal logi with onjuntions of size less than κharaterises behavioural equivalene.If κ > ω, one an use an argument similar to that used in Example 4.2to show that the equivalene indued by Lω(Λ) is weaker than behaviouralequivalene.3. Suppose I and O are �nite sets and TX = (X ×O)I . We have shownin Example 2.2 that T -oalgebras are input-output automata. In Example3.6 we have introdued the set Λ = {λi | i ∈ I} ∪ {µ(i,o) | (i, o) ∈ I × O} ofprediate liftings for T . It is easy to see that Λ is separating and intersetionpreserving. Hene Lω(Λ) haraterises states of input output automata upto behavioural equivalene.6 Conlusions and Related WorkThe main result of the paper is the haraterisation of behavioural equiva-lene as logial equivalene in the framework of oalgebrai modal logi. Inthis framework, modal operators and atomi propositions are interpreted bymeans of prediate liftings.Compared to the syntax-based approahes [7, 10, 16, 17℄, this has the ad-vantage of not restriting the lass of signature funtors a priori. Also, itan easily be seen that (in the one sorted ase) all of the above approahes�t into our framework.In omparison to Moss' oalgebrai logi, our language has the advantage ofhaving a standard syntax (that is, propositional logi plus modal operators).However, we only obtain our haraterisation result for separating sets ofprediate liftings. The proof of the expressiveness theorem used terminalsequene indution, due to Worrell [19℄, as its main proof priniple.A preliminary version of these results has appeared as [14℄. They are ex-tended by the present paper in two major diretions: First, we have usedprediate liftings to unify the treatment of modal operators and atomi18



propositions. Seond, our language only needs onjuntions of size less thanthe aessibility degree of the underlying endofuntor.The present paper deals with oalgebrai modal logi on a purely semantiallevel. Proof systems for oalgebrai modal have been studied in [15℄.AknowledgementsThe author expresses his gratitude to the PhD Programme �Logi in Com-puter Siene� at LMU Munih and TU Munih for �nanial support and toJohn Crossley and Jan Rothe for detailed omments on a �rst draft of thispaper.Referenes[1℄ P. Azel and N. Mendler. A Final Coalgebra Theorem. In D. H. Pittet al, editor, Category Theory and Computer Siene, volume 389 ofLet. Notes in Comp. Si., pages 357�365. Springer, 1989.[2℄ M. Barr. Algebraially ompat funtors. Journal for Pure and AppliedAlgebra, 82:211 � 231, 1992.[3℄ P. Blakburn, M. de Rijke, and Y. Venema. Modal Logi. CambridgeUniversity Press, 2001.[4℄ F. Boreux. Handbook of Categorial Algebra. Cambridge UniversityPress, 1994. 3 Volumes.[5℄ R. Goldblatt. Logis of Time and Computation, volume 7 of CSLI Le-ture Notes. Center for the Study of Language and Information, StanfordUniversity, 1992. Seond Edition.[6℄ M. Hennessy and R. Milner. On Observing Nondeterminism and Con-urreny. In J. W. de Bakker and J. van Leeuwen, editors, Automata,Languages and Programming, 7th Colloquium, volume 85 of LetureNotes in Computer Siene, pages 299�309. Springer-Verlag, 1980.[7℄ B. Jaobs. Many-sorted oalgebrai modal logi: a model-theoretistudy. Theoret. Informatis and Appliations, 35(1):31�59, 2001.19
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