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Abstract

This paper extends the domain theoretic method for solnit@i value prob-
lems, described in [8], to unbounded vector fields. Basedssyaence of approxi-
mations of the vector field, we construct two sequences cbpiese linear functions
that converge exponentially fast from above and below tocthssical solution of
the initial value problem. We then show, how to constructragimations of the
vector field. First, we show, that fast convergence is pxeskunder composition of
approximations, if the approximated functions satisfy dditonal property, which
we call “Hausdorff Lipschitz from below”. In particular,ithfrees us from the need
to work with maximal extensions of classical functions. Isexond step, we show
how to construct approximations that satisfy this condifrem a given computable
vector field.

1 Introduction
We consider initial value problems (IVPs) of the form

y=ov(y), y0)=0 1)

wherev : R™ — R" is a Lipschitz vector field and we look for a solutign [0, a] — R™
defined on the intervadl, a], wherea > 0 is arbitrary, that satisfies (1).

In contrast to standard numerical methods, which carry rewantee on the correct-
ness of the computed solution (see e.g. [11]) we are int@sexactsolutions satisfying
the following two properties: (i) the solution is guarardde be correct up to some given
error margin and (ii) this error margin can be made arblyrasmall. Interval analysis
[16, 15, 17, 13] provides a method to compute guaranteedsumas of the solution, by
representing real numbers by intervals and applying outwaunding if the result of an
arithmetical operation is not machine representable. Dtiegtuse of floating point arith-
metic in implementations of this technique, one has no obaotrer the outward rounding,
and therefore no guarantees on the convergence speed caeltbe g

From a more theoretical perspective, initial value prolddrave been studied in var-
ious contexts in computable analysis [12, 14, 1, 4]. Whiked¢bmputational modes un-
derlying these investigations is essentially equivalenturs [18], our approach has the



main advantage that it allows for a seamless implementatiaghe obtained algorithms
on a digital computer.

This is made possible by the use of domain theory [2, 10], wwhiges proper data
types, based on rational or dyadic numbers, to computei@ofuiip to an arbitrary degree
of accuracy. In particular, the use of rational (or dyadiginters ensures, that no round-
off errors are incurred during the computation process.

Previous work on domain theoretic solutions of initial v@problems [5, 8, 7, 6] was
targeted at equations of type (1) where [- K, K" — [—M, M]"™ is a vector field that
is defined in a compact, rectangular neighbourhood of thggrorin practice, one often
encounters the situation where R™ — R" is defined on the whole of the-dimensional
Euclidean space, which renders the limitation teing defined on some hyper-rectangle
[ K, K|" extremely restrictive: For the equation to be well-definetk has to impose
the restrictiorn M < K which poses an upper limit to the lifetimeof any solution.

This is due to the fact that, for a solutien: [0,a] — R™ of the IVP (1), we have
thatz = v(z) < M, i.e. M is a bound on the derivative ef As z(0) = 0, we can only
guarantee that(t) < Mt, which gives rise to the restriction < % for the expression
v(z(t)) to be well-defined for alt € [0,a]. The next example illustrates this situation.

Example 1.1. Consider the IVR) = y + 1 with initial conditiony(0) = 0. This problem
has the solutiony(t) = ¢' — 1, which is defined on the whole real line. However, the
requirementtM < K, which is crucial for the construct in of solutions in [8, Bfr€es
us to consider the vector field as being of type - K, K] — [-(K + 1), K + 1] (i.e.

M = K + 1) and subsequently < % which restricts the domain of definition of the
constructed solution to an interval of lengthl.

One situation where the global existence of solutions tcsl\éarticularly important
are linear boundary value problems, i.e. differential ¢igna of the form

y = Ay + g with boundary conditions involving(a) andy(b)

whereA is a (possibly time depended)x n-matrix. Clearly we need to construct solu-
tions in this case at least in the interyal b].

The first contribution of this paper is to describe how to ¢tarts domain theoretic
solutions of IVPs for vector fields : R" — R"”, which are defined on the whole of the
Euclidean space, and obtain solutions defined on arbitmary Iintervals|0, a]. While
this is an important step to make exact domain theoretiaciigakes amenable to practical
problems, another aspect needs to be addressed. The ddreaietic machinery can
only be put to work if one has domain theoretic approximatiop of an extension; :
IR™ — IR"™ of the vector fieldv. The second main contribution of this paper is to
construct these approximations from a given computabledhipz function.

In order to obtain a library of fast converging approximagpwe need to guaran-
tee the convergence speed for a combination of approximgtié/e show, by means of
an example, that fast convergence is in general not presdénweomposition, and then
introduce a new concept, which we propose to call “Hausddgdéchitz from below”



that ensures preservation of fast convergence. In paticiuinctions satisfying this re-
guirement are closed under composition, which frees us fhenmeed to work with max-
imal extensions of classical functions, the computationwbfch can be very resource
consuming. This supplements the method of Krznaric’'s tmmthing PhD thesis where
approximations are generated using the LFT approach ta egaxputation [3].

Taken together, these two contributions represent a signifistep towards the use of
domain theory for the solution of IVPs in practice.

Due to lack of space, we refer to [9] for detailed proofs of msults.

2 Preliminaries and notation

We use basic notions from domain theory, see e.g. [2] or [QQ}. work is based on the
interval domainlR = {[a,a] | a < @,a,a € R} U{R}, ordered by reverse inclusion, i.e.
aC giff 8 C a.

We writeI[a, b] for the sub-domain of compact intervals containedkirb] andIR"
(resp. I[a,b]™) for the n-fold product of IR (resp. Ifa,b]) with itself. The symbolL
denotes the least elementI®”. For convenience, we identify a real numbeg R with
the interval[x, ], and similarly for real vectors, i.e. elements®¥f. In particular, this
allows us to view a vector valued function of type— R"™ as taking values ifiR"™.

The width of a compact intervala, b] is given asw([a,b]) = b — a and its midpoint
is m([a,b]) = 22°. We putw(L) = co. Fora = (a,...,a,) € IR" we letw(a) =
max{w(;) | 1 <i<n}andm(a) = (m(a1),...,m(ay)). If Xisasetandf : X —
IR™ is a function, the width of is given asw(f) = sup,cx w(f(z)).

Given two intervalsa = [a,a) and3 = [b,b] € IR, their Hausdorff distancds
d(a, B) = max{|@—bl, |a—>b|}. Similarly, fora = (a1,...,a,)andB = (B1,...,3.) €
IR", we letd(a, ) = max{d(a;, ;) | 1 < i < n} and define the distance of two
functionsf,g : X — IR™ asd(f,g) = sup{d(f(x),g(x)) | v € X}.

Throughout the pape},- || denotes the maximum norfiizy, . .., z,)|| = max{|z;| |
1 < i < n} of areal vector(zy,...,z,) € R™. We note the following elementary
lemma, relating width and distance.

Lemma 2.1. Supposey, 5 € IR™ are compact rectangles.
1. [m(a) —m(B)|| < d(a, B)
2. w(a) —w(P) < 2d(a, B) if a C 3.

If Ae€IR"andf : A — R™is afunction, then the function : IA — IR™ extends
f, it {f(x)} = g({z}), or, using the above convention, fifz) = g(z) for all z € A.
We writeIf = Aa.{f(z) | x € o} for the maximal extension of a continuous function
f:A—R™ f.

Given a functionf : X — IR, we write f = [f, f] if f(z) = [f(2), f(z)] for all
r e X. If f=1[f f]:[ab] — IRis Scott continuous, and < s < t < b, we let

J! f(x)de = [[! f(z)da, [{F(x)dz]. Note that Scott continuity of = [f, f] implies
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that f (resp.f) is lower (resp. upper) semi continuous, he[fsé@“(x)dx always exists in
IR. Integration is understood componentwise for functignga, b] — IR™.

Finally, apartition of an intervalja, b] is a sequenc& = (qo,...,qx) St.a = qo <
-+ < qx = b. Thenormof a partition@ = (qo, . - ., qx) IS given by|Q| = max{g¢;—¢;—1 |
1 < i < k}. Theinterval associated with a partitiod) = (qo,...,qx) IS Z(Q) =
[90, qx]. We say that a partitio® = (ro,...,r) refinesa partition@ = (qo,...,q) if
{90,---,qi} € {r1,...,7}; thisis denoted by) C R. Finally, a sequence of partitions
(Qr)r>o0 isincreasing if Q;—1 C Q; for all 1 < i. We denote the set of partitions By
and writeP[a, b] for the set of partitions of, b].

For the remainder of the paper we fix a continuous vector fielR™ — R"™ which
is Lipschitz with Lipschitz constant and a Scott continuous extension TR" — IR"
of v s.t. w is interval Lipschitz, i.e.w(u(z)) < L - w(z). It can be shown that every
Lipschitz function has an interval Lipschitz extensiond ave discuss the construction of
extensions in detail in Section 5.

3 Local a priori bounds

This section introduces local a priori bounds for solutioh$VPs. The idea is to fix a
partition @ = (qo, - - ., gx) of the interval[0, a] on which we want to construct a solution
of the equation. We then define constafiissuch that the (unique) solution: [0, a] —
R™ satisfieg|z(t)|| < K; on every intervalg;_1, ¢;] induced by the partition.

These bounds allow us to generalise the Picard operator]db[@n unbounded
setting, the least fixpoint of which is shown to be the solutad the associated IVP.
In the computation of this least fixpoint, one starts with amgmteed enclosure of the
solution, and the Picard operator is applied to obtain esirgly better approxima-
tions. This approach hinges on the availability of a guaatitenclosure, which is pro-
vided by the a priori bounds. In more detail, we show, thatRieard operator maps
S={y:[0,a] = IR" |y [ [gi-1,q) C M.[-K;, K;]"} into itself. The constant&’;
providea priori bounds for the solution, and are now introduced.

Definition 3.1. Suppos&) = (qo, . .-, q) € P[0, a] with |Q| < 5-. Define the constants

o_ _alvOl
b =2y
foralli = 0,..., k. We drop the superscrig} if the partition( is clear from the context.

The constantsf(f? are called théocal a priori boundsinduced by the partitiod) and we
denote the induceglobal boundby K = Kj.

We collect some straightforward arithmetical propertigsich will be used later.
Lemma 3.2. Suppos&) = (qo, - .., Qk) € P[0,a] with |Q| < 5.

1. K2 > K2 + (g — qi1)||[v(0)]| + 2L|Q|KP forall 1 < i < n.



2. K2 <Kfforall1<i<k.

Proof. Throughout the proof, we drop the superscipt For the first item, we fix <
7 < n and calculate

_ @i—1[[v(0)[| + (g — gi-1) [0 (0)]

= (1 2LIQ])
S gi—1llv ()]l + (1 = 2L|Q))" (g — gi—1) [[v(0)]]
z 1 —2L|Q])
K (@i — qi—1)[lv(0)]|
T 1-2L|Q| 1-2L|Q|
Hence
K;i(1-2L|Q|) > Ki—1 + (¢; — qi—1)||v(0)]|
ie.

K; > Ki—1+ (¢i — ¢i—1)||v(0)]| + 2L|Q| K.

For the second claim note th®| < =, henceﬁw > 1, and therefore;_; =

T
2Ly T = a-ay = Kt =

The following proposition and the subsequent corollanyify®ur choice of termi-
nology.

Proposition 3.3. Suppos&) = (qo, . .., q) € P[0, a] with |Q| < 5~ andz : [0,a] — R"
is the unique solution of the IVP (1). Théna(t)|| < ||z(gi—1)| + KZQ - Kgl for all
t € [qi-1,qil-

We have the following straightforward corollary.
Corollary 3.4. Under the hypothesis of the previous propositign(t)|| < K; for all
le [07 QZ]

Actually, one can prove the same statement with a sharpenititedi of £; and show

that ||z(x)| < % However, as we shall see later, we need the a priori bounds of

Definition 3.1 when we move to interval valued functions.
For later reference, we include the following lemma, whidh e used to show that
the Picard operator, which we introduce in the next sectowgell-defined.

Lemma 3.5. Suppose&) = (qo, - - -, qx) € P[0,a] with |Q] < % Then

i
o) + ) 2LK;|Q| < K;
j=1

foralli=0,..., k.



4 A Picard Operator for unbounded vector fields

Using the same technique as in [8], we can define a Picard topdfa using the given
interval extension of v as follows:

Definition 4.1 (Picard Operator)Lety : [0,a] — IR"™. Define thePicard Operator
associated with: as

Pula) = M. [ uly(a))da.

We write [0, a] = IR™ for the set of Scott continuous functions of tyjpea] — IR
and obtain the following immediate lemma:

Lemma4.2. P, is a Scott continuous operator of tyf®, a] = IR™) — ([0, a] = IR™).
Furthermore, ifP,(y) = y andw(y) = 0, theny is a solution of the IVP (1).

In the [8], the solution of the IVP (1) was constructed as #mst fixpoint of the
operatorP,. In contrast to our setup, it is assumedag. cit. thatu : I[-K, K]" —
I[—M, M]™ and the lifetimea of the solution satisfiea M/ < K. This entails that the
restrictionP, : ([0, a] = I[-K, K|") — ([0,a] = I[-K, K]") is a well defined oper-
ator. As the functionyy = At.[— K, K]" is the least element ¢0,a] — I|-K, K|, the
least fixpoint of P, can be obtained ag = | |y, with y; = P,(y;—1) fori > 0. Using
the boundedness assumption@rone can show that the least fixpoint has widtand
is a solution of the IVP. The next example shows, that this faithout the boundedness
assumption ow, and in general gives the undefined function as least fixpoint

Example 4.3. Supposev : R — R is the identity functionv(x) = = with extension
u(a) = a for a € IR. Then the functiony = Az. L is the least fixed point oP,:

P,(y)(t) = /Otu(y(x))dw = /Otu(J_)dx = /Ot Lde=1.

Note that the corresponding IVP= v(y), y(0) = 0 has the unique solution(t) = 0.

This shows, that a more sophisticated technique is calledfe now show, that the
a priori bounds, introduced in the previous section, all@saiconstruct the solution of
the IVP (1) in a sub-domain of the function spd@ea| = IR".

Definition 4.4. Suppos&) = (qo, - - -, gx) IS a partition of[0, a] with |Q| < ﬁ and take
the a priori boundd<; and the global boun& as in Definition 3.1. We

Sq=A{f:10,a] = I[-Kq,Ko]" | f I [0,q:) E M.[-K;, K] forall 1 <i < k}

and Writeyg2 for the least element af,. We callSg the solution space associated with
@, and drop the sub/superscrigtif the partition is clear from the context.

Graphically, the sef, is the set of functions whose interval values are bounded by a
double staircase, illustrated in Figure 1.
Using Lemma 3.5, we can now show that the Picard operator siafe Sg.
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Figure 1: The sef, for Q = (g0, q1,92,93)

Lemma 4.5. LetQ € P[0, a] with |Q| < 5-. ThenP,(y) € Sq if y € Sg.

In order to show that the least fixpoint &, [ Sg actually produces a solution of
the IVP (1) we have to ensure thB}, is contracting. The easiest way of seeing this is to
consider aveighted widthwhich applies a damping factor to the width of a function at
the far end of its domain of definition. This removes the sdaastrictionaL < 1 on the
lifetime of a solution present in [8, Section 4]. The formafidition is as follows:

Definition 4.6. Let0 < o € Randf : [0,a] — IR™. Then

wa(f) = sup e *w(f(t))

te(0,a]
is theweighted widthof f with weight factora.
We collect two straightforward properties.
Lemma4.7. Let f : [0,a] — IR™ Thenw(f) < e™wq(f) andwy(f) < w(f).

The following lemma shows thdt, | Sg is a contraction for an appropriate partition
Q of [0, a].

Lemma 4.8. SupposeR € P[0,a] with |Q| < 5~ andy € Sp. Thenwa(P,(y)) <
éwa(y)-

Corollary 4.9. Supposey; ., = P,(yx) for all £k > 0.Thenw(y;,) € O(27%). In partic-
ular, y = | |, v is real valued and solves the IVP (1).

If « is a computable vector field, we have that= | |, u; for a recursive sequence
(ug) k>0 Of finitely representable functions;. As we can only work with the finitary ap-
proximationsuy, the algorithm underlying Corollary 4.9 cannot be impleteerdirectly;
instead we have to take the approximatiengsinto account. The speed of convergence
to the solution then clearly depends on the rate at whichuthapproachu, which is
measured as follows.



Definition 4.10. Suppose: = | |, ux. We say thatl(u, uy) € O(27F) if, forall K > 0
there are”' > 0 andky > 0 such that

d(u(a), up(a)) < C-27F
whenevera € I[-K, K|" andk > ko. For K > 0, therestricted distancelx (f, g) is
given by
dx(f,9) = | [{d(f(a),9(c)) | @ € I[- K, K]"}
for functionsf, g : IR™ — IR™,

That is, we say that the, converge exponentially fast tg if they converge expo-
nentially fast on all compact sets.

We now establish that working with approximatiofig;) of v does not destroy con-
vergence to a solution, and give an estimate of the conveeggpeed.

First, note that for’ C u, it is no longer guaranteed thB, (y) € Sq forall y € Sg.
This problem is addressed in the next lemma, where we@fgt= {y : [0,a] — IR" |
39 € Sal.

Lemma 4.11. Supposey € P|0,a] with |Q|57, v’ T u With dage,, (u, u') < 3[v(0)].
ThenP, (y) € 2S¢ for all y € 25g.

The next lemma is the key stepping stone for giving an eséiréthe convergence
speed in presence of approximatiansof the interval vector field..

Lemma 4.12. SupposeR) € P[0,a] with |Q| < 5 andw' T u with dag, (u,u') <
slv(0)]. andy € 28q. Thenwq (Py (y)) < Lwa(y) + Zdark, (u,u)).

Moving from weighted width to ordinary width, we obtain theaim result of this
section: fast convergence of the Picard iterates for untbedivector fields.

Theorem 4.13. Supposer = | |, ug With d(u,ux) € O(27F). Fork > 0, puty,; =
Py, (yr) andy = | ], yx. ThenP,(y) = y andw(y;) € O27%).

We say that: is effectively givenif u = | |, u;, for arecursive and monotone sequence
(ur)ren Where eachuy, = | |;_; ; a; \, fB; is a rational step function, i.ex;, 3; €
IR™ have rational endpoints and

0 fr<a
1 otherwise.

As all of our constructions are clearly effective, we haveanticular:

Corollary 4.14. Supposeu is effectively given. Then we can effectively construct an
effective sequendgy,),cn such that_|, v is the unique solution of the IVP (1).

The data structures that can be used to implement this metiecithe same as in the
bounded case treated in [8], and we refelom cit. for estimates of the computational
complexity, which apply verbatim also in this extendedisgtt Similarly, the domain
theoretic version of Euler's method [7] can be extended tmunded vector fields using
the technique of local a priori bounds; this will be elabedain the full version of this
paper.



5 Approximating Continuous Functions

The theory outlined in the previous sections depends ontarval vector fieldu, given
in terms of a supremum = | |, . u Of step functions. In order to apply our theory, the
following assumptions must be satisfied:

1. wis an extension of the classical vector field
2. u satisfies an interval Lipschitz condition
3. The interval distancé(u, u;) converges exponentially fast.

This section shows, how to obtain a sequefcg) ey Which satisfies the above as-
sumptions. We discuss two techniques for constructingcequmations of vector fields:
first, we discuss compositions of approximations and theshwesv, how to construct in-
terval valued approximations from a function that compuiesvalue of the vector field
to an arbitrary degree of accuracy.

5.1 Composition of Approximations

In this section we assume that we have two functipndR™ — IR™ and f : IR™ —
IR*, approximated by sequencgg,) and( f,,), and show, how use these approximations
to compute approximations gfo g, subject to the conditions laid down at the beginning
of the section.

We begin with an example showing that composition of appnaions does not
necessarily preserve the convergence speed.

Example 5.1. This example shows, that jf = | |, fx andg = | |, gx, and both(fy)
and(gx) converge exponentially fast, then this is not necessatily for the composition
g o f, evenif bothf andg are interval Lipschitz.

Consider the continuous functidn: [0, c0) — [0, 2] given by

S S
hz) = 1 s (%) S !
1 r>1

wherelog, is the dyadic logarithm (logarithm w.r.t. bagg Clearly i is differentiable
in [0,1), and elementary analysis shows that '(z) < 5 < 2 for z € [0,1), hence
h(z) < 2z for all z € R. Therefore the Scott continuous functigfr) = [0, h(w(a))]
satisfies an interval Lipschitz conditian(f (o)) < 2w(c). Putting fr, = f, we clearly
have thatl(f, f,,) < 27*. Note thatf is a non-maximal interval extension of the constant
zero function.

For g(a) = [0,w(a)] andgi(a) = [0,w(a) + 27%~1] we also have thag is in-
terval Lipschitz andi(g, gr) = 27! < 27%. We show that the compositiofy, o gy
only converges linearly fast tf o g. Consider the interval;, = [0,1 — 27*~1]. Then

d(fxo gk, fog) > d(fr(gr(ar)), f(g(ar))) = h(w(gr(ar))) — h(w(g(ar))) = h(1) —
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h(1 —27k1) = % showing that function composition does not preserve egptial
convergence speed.

As this example shows, we need extra conditions to ensutedmposition of ap-
proximations preserves the speed of convergence. We mdposonsider functions
which are Hausdorff Lipschitz from below:

Definition 5.2. Supposef : IR™ — IR™. Thenf is Hausdorff Lipschitz from beloyiff
d(f(a), f(B)) < L-d(a,3)

for someL > 0 and alla C 3, o, G € IR™.

Note that we only require the estimate to holdif= 3, hence Hausdorff Lipschitz
from below is a weaker condition than being Lipschitz wthe Hausdorff metric ofiR™
andIR™, respectively.

We briefly relate this condition to the interval Lipschitzclition we have introduced
before. Recall thaf is interval Lipschitz, ifw(f(a)) < L-w(«) for someL > 0 and all
a € dom(f), i.e. f increases the width of its argument only linearly.

Remark 5.3. The notions “interval Lipschitz” and “Hausdorff Lipschitzom below” are
unrelated, as shown by the following examples:

1. The functionf in Example 5.1 is interval Lipschitz, but not Hausdorff Lihitz
from below.

2. The function\z.[0,1] : IR — IR is Hausdorff Lipschitz from below, but not
interval Lipschitz.

It is easy to see that the maximal extension of classicaldhis function is also
Hausdorff Lipschitz from below, but the contrary is not true

Proposition 5.4. Supposef : R® — R™ satisfies a Lipschitz condition with Lipschitz
constantL. Thend(If(«),1f(5)) < Ld(«, 3) for all compacta C 3 € IR™.

The next example shows, that functions which are Hausddpfdhitz from below
are not necessarily maximal.

Example 5.5. Suppose- : IR x IR — R is the maximal extension of the subtraction
function, i.e.[a, @] — 3, 3] = [a— 3,@— 3]. Then the functiory : IR — IR, z — z+x

is both interval Lipschitz and Hausdorff Lipschitz from bl but not maximal, as the
function Ax.0 satisfiesf C \z.0.

What makes functions that are Hausdorff Lipschitz from weddtractive for our pur-
poses is that the set of such functions is closed under catigmpsn contrast to maximal
extensions.

Lemma 5.6. Supposef : IR® — IR™ andg : IR™ — IR* are Hausdorff Lipschitz
from below. Then so igo f.
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Proposition 5.4 and Example 5.5 lead us to think of functibias are Hausdorff Lips-
chitz from below as functions that are close to being maxiew&nsions, without actually
being maximal. In particular, these functions are closatbucomposition, which makes
them attractive for building libraries.

We are now in the position to prove the promised result on asitipnality of ap-
proximations; in particular we establish a guarantee ofcithrevergence speed of com-
posed approximations.

Theorem 5.7. Supposgy;, : IR” — IR™ and f;, : IR™ — IR/ are monotone sequences
of Scott continuous functions with= | |, f andg = ||, gx that satisfy the following
requirements:

1. Bothf andg are interval Lipchitz andf is Hausdorff Lipschitz from below

2. d(f, fr),d(g, gr) € O(27F)

Thenf o g is interval Lipschitz and the extension of a classical fioxcandd( fy o g, f o
g) € O(27%). Moreover, ifg is also Hausdorff Lipschitz from below, then sfis g.

This theorem shows, that the class of functions that are int¢val Lipschitz and
Hausdorff Lipschitz from below can be used to build a comiimsal library for fast
converging Lipschitz functions. In the next section, weragd the task of actually con-
structing functions that fall into this class, and can heneaised as building blocks for
approximating Lipschitz vector fields.

5.2 Construction of Approximations

Now that we have seen how to obtain approximations of intersetor fields composi-
tionally, this section outlines a technique for constmgtihese approximations, given a
function that computes the Lipschitz functign R™ — R™ up to an arbitrary degree of
accuracy.

More precisely, we assume that: Q" x N — Q™ is given such that|f(z) —
g(z, k)| < 27%. On a practical level, this allows us to compute approxioratifor a
large class of functions. Moreover, the existence abmputablefunction g with the
above property is equivalent to the computability fofand the results of this section
show, that we obtain approximations by step functions fargeomputableLipschitz
vector field.

The idea of the construction is as follows: Given a rectamgle R™, we compute
the value ofg(m(«), k) of the midpointm(«) of o up to an accuracy &, In order to
accommodate for this inaccuracy, we extend this point vialicea rectangle by extending
it with 2~% into the direction of each coordinate axis. This rectangliaén subsequently
extended using the Lipschitz constantfofesulting in a rectangle that contains all values
f(z) for z € a. The formal definition is as follows, where we assume for &t of the
section, thatf : R — R™ satisfies a Lipschitz condition with Lipschitz constdnand
g:Q" x N — Q™is such that|g(z, k) — f(z)|| < 27*.
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Definition 5.8. For a real vector = (z1,...,z,) € R and\ € [0, 00), we writex & A
for then-dimensional cubér; —\, z1+A] x - - - X [x,, — A, z,, + A\] With centrex and width
2). Given a partition@ = (qo,- .-, qx), We denote the set of-dimensional rectangles
with endpoints inQ by

R(Q) = {ldgi1, gj1) x -+ X (@i, 45,] 10 <4, <jp < kforalll <r <n}.
Finally, we define the family of functionﬁg for k € N by
k v, L
1= 1 aNgm@).k)o@e™*+3 - w)
a€R(Q)
We call thef5's the approximation functions associated with

It is easy to see that the approximation functions assatiaith a partition are sound
in the sense that they give enclosures of the approximatesdifuns.

Lemma5.9. LetQ € P andk € N. Thenf§ C If.

Before we give guarantees on the quality of approximatiamssitucted using this
method, we need to check that the approximations constracteially form an increasing
chain. This is the content of the following lemma.

Lemma 5.10. Supposek C Q € P andj < i. Thenf}, C fh.

We now establish one of the criteria for approximations @oeevn at the beginning
of the section, i.e. that they converge to a function whidhntisrval Lipschitz. Recall the
order on partitions and their norm from Section 2.

Lemma5.11. Suppos€Q; ) ren IS an increasing sequence of partitions Wity ., |Qx| =
0andlJ, Z(Qx) = R. Then| |, .y fc"é’k satisfies the interval Lipschitz condition with con-
stantL.

As immediate corollary, we deduce thdf, fc%k is an extension of.

Corollary 5.12. The functions = | |,y 5, is an extension of.

We have now shown how to construct approximations whiclsfyativo of the three
criteria needed to put our theory to work. We now turn to thet [eem and give an
estimate on the convergence speed ofﬁgg to h. In the proof, we compare an upper

approximation off,?’“ with a lower approximation of for h = | |, ka’“. The next lemma
is a major stepping stone for establishing an lower appration of h. If we recall
the definition offgk, we see that the width of the right hand side of the step fancti
a\, m(a) @ (27% + £ . w(a)) only depends on the width ef. Hence givers € IR,

it does not suffice to consider a minimal enclos®é&?) > o <« ( to find an upper
bound forfc’gk(ﬁ). Instead we need to consider all enclosures that have the wsadith

12
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Figure 2: Approximations associated withe, y, k) = (x,y).

as the minimal enclosure. This situation is illustratedffor, y) = g(z,y, k) = (z,y) in
Figure 5.2, where the dots indicate the grid points giverf)hy Note thatf(’g?k)l(ﬁ) =
g1(m(ag), k) +27% + Zw(ay) despite the fact that; is a better approximation ¢f.

The next lemma accounts for this situation and gives a loweint for the upper
function associated Witﬁék.

Lemma 5.13. Supposel) € P with Z(Q) < [-K,K]|" andk € N. Then, for all
i=1,...,nand alla € I|- K, K|",

(f§),(a) = min{fi(m()) | & E o, w(a) = w(a)} + gww)

where(fc’g)i is the upper function associated with théh component ofc’g.

We obtain the following immediate corollary, which we usetle estimate of the
convergence speed to give an upper bound @).

Corollary 5.14. Suppos€&Q),) is an increasing sequence of partitions anek | |, fgk.
Thenh;(a) > min{fi(m(a)) | &/ T o, w(a!) = w(a)} + Zw(a) forall 1 < i < n.

Using the last corollary as an upper bound for the valug,afie can formulate and
prove a statement on the convergence speed as follows:

Proposition 5.15. Supposg ;) is an increasing sequence of partitions with,| €
O(27%) andU, Z(Qx) = R. If h = |, f§, . thend(h, f§, ) € O(27F).

In summary, we have the following theorem, which shows, thatapproximations
satisfy all the conditions discussed at the beginning ostwtion.

Theorem 5.16.SupposéQ);,) is an increasing sequence of partitions widy,| € O(27F),
Ui>0Z(Qr) = Rand leth = | |,cy £, - Then

1. his an extension of
2. h satisfies an interval Lipschitz condition with Lipschitnstant L

3. d(h, f2*) € O(27F).

13



5.3 Compositionality of Approximations

We have now established conditions which allow to composetion approximations in
a way that the order of magnitude of convergence speed ismegs On the other hand,
we have described a method to construct fast convergingorippations from scratch.
In this section, we show that the approximati are amenable to building a library
for approximating Lipschitz functions by showing that th&uprema are Hausdorff Lip-
schitz from below, which entails that the composition of pgmations preserves fast
convergence (Theorem 5.7).

For the purpose of this section, we assume thatR™ — R™ is a classical Lip-
schitz function,(Qy,) is an increasing sequence of partitions wifh.| € ©(27%) and
Uk>0Z(Qx) = R. Furthermore, we assume thﬁﬁk is constructed as in Definition 5.8.

Our main result is to show that the functiohs= | |, fgk can be used to build a
compositional library of fast converging approximatiomsLipschitz vector fields. In
the light of Theorem 5.7, we therefore have to show that tmetian » = | |, ka is
Hausdorff Lipschitz from below.

We fix the functionh = | |, ka. The proof of the Hausdorff Lipschitz property is
split into several lemmas.

Lemma 5.17. Supposey’ C « with w(a) = w(’). Then there arézy,...,z,) € R"
S.t.

1 |z < 2(w(e) —w(e)) foralli =1,...,n
2. m(a) =m(a) + (x1,...,2,).
Lemma 5.18. Leta € IR™. Thenh;(a) < fi(m(a)) + Zw(a).
The next lemma gives the first half of the Hausdorff Lipschitaperty.

Lemma 5.19. Leta C 3 € IR" and supposé;(a) > h;(3). Thenh;(a) — h;i(B) <
3Ld(«, ).

We now establish the hypothesis dual to Lemma 5.19. Notehisais not symmetric,
since we assume thatC (.

Lemma 5.20. Leta = 3 € IR" and supposé;(3) > h;(a). Thenh;(8) — hi(a) <
3Ld(«, ).

As a corollary, we obtain a bound on the difference betweengper values of.
Corollary 5.21. Leta C 3 € IR" and1 < i < n. Then|h;(a) — hi(B)| < 3Ld(a, B).

Similarly, one proves the dual statemeht(a) — h;(5)] < 3d(«,3). These two
results together show that as constructed, is Hausdorff Lipschitz from below.

Theorem 5.22.Leta C § € IR™. Thend(h(a), h(5)) < 3Ld(c, 8). In particular, i is
Hausdorff Lipschitz from below.
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This shows, together with the results of Section 5.1, thatavebuild a compositional
library for domain theoretic approximations of Lipschitzctor fields.

In conjunction with Theorem 4.13 we obtain a framework folvgw initial value
problems, which is based on proper data types, and canohetad directly implemented
on a digital computer. Moreover, working with rational oradjc numbers, the speed of
convergence can also be guaranteed for implementations ¢échnique.
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