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Abstract

This paper extends the domain theoretic method for solving initial value prob-
lems, described in [8], to unbounded vector fields. Based on asequence of approxi-
mations of the vector field, we construct two sequences of piecewise linear functions
that converge exponentially fast from above and below to theclassical solution of
the initial value problem. We then show, how to construct approximations of the
vector field. First, we show, that fast convergence is preserved under composition of
approximations, if the approximated functions satisfy an additional property, which
we call “Hausdorff Lipschitz from below”. In particular, this frees us from the need
to work with maximal extensions of classical functions. In asecond step, we show
how to construct approximations that satisfy this condition from a given computable
vector field.

1 Introduction

We consider initial value problems (IVPs) of the form

ẏ = v(y), y(0) = 0 (1)

wherev : Rn → Rn is a Lipschitz vector field and we look for a solutiony : [0, a] → Rn

defined on the interval[0, a], wherea ≥ 0 is arbitrary, that satisfies (1).
In contrast to standard numerical methods, which carry no guarantee on the correct-

ness of the computed solution (see e.g. [11]) we are interested inexactsolutions satisfying
the following two properties: (i) the solution is guaranteed to be correct up to some given
error margin and (ii) this error margin can be made arbitrarily small. Interval analysis
[16, 15, 17, 13] provides a method to compute guaranteed enclosures of the solution, by
representing real numbers by intervals and applying outward rounding if the result of an
arithmetical operation is not machine representable. Due to the use of floating point arith-
metic in implementations of this technique, one has no control over the outward rounding,
and therefore no guarantees on the convergence speed can be given.

From a more theoretical perspective, initial value problems have been studied in var-
ious contexts in computable analysis [12, 14, 1, 4]. While the computational modes un-
derlying these investigations is essentially equivalent to ours [18], our approach has the
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main advantage that it allows for a seamless implementationof the obtained algorithms
on a digital computer.

This is made possible by the use of domain theory [2, 10], which gives proper data
types, based on rational or dyadic numbers, to compute solutions up to an arbitrary degree
of accuracy. In particular, the use of rational (or dyadic) numbers ensures, that no round-
off errors are incurred during the computation process.

Previous work on domain theoretic solutions of initial value problems [5, 8, 7, 6] was
targeted at equations of type (1) wherev : [−K,K]n → [−M,M ]n is a vector field that
is defined in a compact, rectangular neighbourhood of the origin. In practice, one often
encounters the situation wherev : Rn → Rn is defined on the whole of then-dimensional
Euclidean space, which renders the limitation ofv being defined on some hyper-rectangle
[−K,K]n extremely restrictive: For the equation to be well-defined,one has to impose
the restrictionaM ≤ K which poses an upper limit to the lifetimea of any solution.

This is due to the fact that, for a solutionz : [0, a] → Rn of the IVP (1), we have
that ż = v(z) ≤ M , i.e. M is a bound on the derivative ofz. As z(0) = 0, we can only
guarantee thatz(t) ≤ Mt, which gives rise to the restrictiona ≤ K

M
for the expression

v(z(t)) to be well-defined for allt ∈ [0, a]. The next example illustrates this situation.

Example 1.1. Consider the IVṖy = y + 1 with initial conditiony(0) = 0. This problem
has the solutiony(t) = et − 1, which is defined on the whole real line. However, the
requirementaM ≤ K, which is crucial for the construct in of solutions in [8, 7] forces
us to consider the vector field as being of typev : [−K,K] → [−(K + 1),K + 1] (i.e.
M = K + 1) and subsequentlya ≤ K+1

K
, which restricts the domain of definition of the

constructed solution to an interval of length≤ 1.

One situation where the global existence of solutions to IVPs is particularly important
are linear boundary value problems, i.e. differential equations of the form

ẏ = Ay + g with boundary conditions involvingy(a) andy(b)

whereA is a (possibly time depended)n × n-matrix. Clearly we need to construct solu-
tions in this case at least in the interval[a, b].

The first contribution of this paper is to describe how to construct domain theoretic
solutions of IVPs for vector fieldsv : Rn → Rn, which are defined on the whole of the
Euclidean space, and obtain solutions defined on arbitrary long intervals[0, a]. While
this is an important step to make exact domain theoretic techniques amenable to practical
problems, another aspect needs to be addressed. The domain theoretic machinery can
only be put to work if one has domain theoretic approximations uk of an extensionu :
IRn → IRn of the vector fieldv. The second main contribution of this paper is to
construct these approximations from a given computable Lipschitz function.

In order to obtain a library of fast converging approximations, we need to guaran-
tee the convergence speed for a combination of approximations. We show, by means of
an example, that fast convergence is in general not preserved by composition, and then
introduce a new concept, which we propose to call “HausdorffLipschitz from below”
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that ensures preservation of fast convergence. In particular, functions satisfying this re-
quirement are closed under composition, which frees us fromthe need to work with max-
imal extensions of classical functions, the computation ofwhich can be very resource
consuming. This supplements the method of Krznaric’s forthcoming PhD thesis where
approximations are generated using the LFT approach to exact computation [3].

Taken together, these two contributions represent a significant step towards the use of
domain theory for the solution of IVPs in practice.

Due to lack of space, we refer to [9] for detailed proofs of ourresults.

2 Preliminaries and notation

We use basic notions from domain theory, see e.g. [2] or [10].Our work is based on the
interval domainIR = {[a, a] | a ≤ a, a, a ∈ R} ∪ {R}, ordered by reverse inclusion, i.e.
α ⊑ β iff β ⊆ α.

We writeI[a, b] for the sub-domain of compact intervals contained in[a, b] andIRn

(resp. I[a, b]n) for the n-fold product ofIR (resp. I[a, b]) with itself. The symbol⊥
denotes the least element ofIRn. For convenience, we identify a real numberx ∈ R with
the interval[x, x], and similarly for real vectors, i.e. elements ofRn. In particular, this
allows us to view a vector valued function of typeX → Rn as taking values inIRn.

Thewidth of a compact interval[a, b] is given asw([a, b]) = b − a and its midpoint
is m([a, b]) = a+b

2 . We putw(⊥) = ∞. For α = (α1, . . . , αn) ∈ IRn we letw(α) =
max{w(αi) | 1 ≤ i ≤ n} andm(α) = (m(α1), . . . ,m(αn)). If X is a set andf : X →
IRn is a function, the width off is given asw(f) = supx∈X w(f(x)).

Given two intervalsα = [a, a] and β = [b, b] ∈ IR, their Hausdorff distanceis
d(α, β) = max{|a−b|, |a−b|}. Similarly, forα = (α1, . . . , αn) andβ = (β1, . . . , βn) ∈
IRn, we let d(α, β) = max{d(αi, βi) | 1 ≤ i ≤ n} and define the distance of two
functionsf, g : X → IRn asd(f, g) = sup{d(f(x), g(x)) | x ∈ X}.

Throughout the paper,‖·‖ denotes the maximum norm‖(x1, . . . , xn)‖ = max{|xi| |
1 ≤ i ≤ n} of a real vector(x1, . . . , xn) ∈ Rn. We note the following elementary
lemma, relating width and distance.

Lemma 2.1. Supposeα, β ∈ IRn are compact rectangles.

1. ‖m(α) − m(β)‖ ≤ d(α, β)

2. w(α) − w(β) ≤ 2d(α, β) if α ⊑ β.

If A ∈ IRn andf : A → Rm is a function, then the functiong : IA → IRm extends
f , if {f(x)} = g({x}), or, using the above convention, iff(x) = g(x) for all x ∈ A.
We write If = λα.{f(x) | x ∈ α} for the maximal extension of a continuous function
f : A → Rm. f .

Given a functionf : X → IR, we writef = [f, f ] if f(x) = [f(x), f(x)] for all
x ∈ X. If f = [f, f ] : [a, b] → IR is Scott continuous, anda ≤ s ≤ t ≤ b, we let
∫ t

s
f(x)dx = [

∫ t

s
f(x)dx,

∫ t

s
f(x)dx]. Note that Scott continuity off = [f, f ] implies
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thatf (resp.f ) is lower (resp. upper) semi continuous, hence
∫ t

s
f(x)dx always exists in

IR. Integration is understood componentwise for functionsf : [a, b] → IRn.
Finally, apartition of an interval[a, b] is a sequenceQ = (q0, . . . , qk) s.t. a = q0 <

· · · < qk = b. Thenormof a partitionQ = (q0, . . . , qk) is given by|Q| = max{qi−qi−1 |
1 ≤ i ≤ k}. The interval associated with a partitionQ = (q0, . . . , qk) is I(Q) =
[q0, qk]. We say that a partitionR = (r0, . . . , rk) refinesa partitionQ = (q0, . . . , ql) if
{q0, . . . , ql} ⊆ {r1, . . . , rk}; this is denoted byQ ⊑ R. Finally, a sequence of partitions
(Qk)k≥0 is increasing, if Qi−1 ⊑ Qi for all 1 ≤ i. We denote the set of partitions byP
and writeP[a, b] for the set of partitions of[a, b].

For the remainder of the paper we fix a continuous vector fieldv : Rn → Rn which
is Lipschitz with Lipschitz constantL and a Scott continuous extensionu : IRn → IRn

of v s.t. u is interval Lipschitz, i.e.w(u(x)) ≤ L · w(x). It can be shown that every
Lipschitz function has an interval Lipschitz extension, and we discuss the construction of
extensions in detail in Section 5.

3 Local a priori bounds

This section introduces local a priori bounds for solutionsof IVPs. The idea is to fix a
partitionQ = (q0, . . . , qk) of the interval[0, a] on which we want to construct a solution
of the equation. We then define constantsKi such that the (unique) solutionz : [0, a] →
Rn satisfies‖z(t)‖ ≤ Ki on every interval[qi−1, qi] induced by the partition.

These bounds allow us to generalise the Picard operator of [8] to an unbounded
setting, the least fixpoint of which is shown to be the solution of the associated IVP.
In the computation of this least fixpoint, one starts with a guaranteed enclosure of the
solution, and the Picard operator is applied to obtain increasingly better approxima-
tions. This approach hinges on the availability of a guaranteed enclosure, which is pro-
vided by the a priori bounds. In more detail, we show, that thePicard operator maps
S = {y : [0, a] → IRn | y ↾ [qi−1, qi) ⊑ λt.[−Ki,Ki]

n} into itself. The constantsKi

providea priori bounds for the solution, and are now introduced.

Definition 3.1. SupposeQ = (q0, . . . , qk) ∈ P[0, a] with |Q| < 1
2L

. Define the constants

K
Q
i =

qi‖v(0)‖

(1 − 2L|Q|)i

for all i = 0, . . . , k. We drop the superscriptQ if the partitionQ is clear from the context.
The constantsKQ

i are called thelocal a priori boundsinduced by the partitionQ and we
denote the inducedglobal boundby KQ = Kk.

We collect some straightforward arithmetical properties,which will be used later.

Lemma 3.2. SupposeQ = (q0, . . . , Qk) ∈ P[0, a] with |Q| < 1
2L

.

1. K
Q
i ≥ K

Q
i−1 + (qi − qi−1)‖v(0)‖ + 2L|Q|KQ

i for all 1 ≤ i ≤ n.
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2. K
Q
i−1 ≤ K

Q
i for all 1 ≤ i ≤ k.

Proof. Throughout the proof, we drop the superscriptQ. For the first item, we fix1 ≤
i ≤ n and calculate

Ki =
qi−1‖v(0)‖ + (qi − qi−1)‖v(0)‖

(1 − 2L|Q|)i

≥
qi−1‖v(0)‖ + (1 − 2L|Q|)i−1(qi − qi−1)‖v(0)‖

(1 − 2L|Q|)i

=
Ki−1

1 − 2L|Q|
+

(qi − qi−1)‖v(0)‖

1 − 2L|Q|
.

Hence
Ki(1 − 2L|Q|) ≥ Ki−1 + (qi − qi−1)‖v(0)‖

i.e.
Ki ≥ Ki−1 + (qi − qi−1)‖v(0)‖ + 2L|Q|Ki.

For the second claim note that|Q| < 1
2L

, hence 1
1−2L|Q| > 1, and thereforeKi−1 =

qi−1‖v(0)‖
(1−2L|Q|)i−1 ≤ qi‖v(0)‖

(1−2L|Q|)i = Ki.

The following proposition and the subsequent corollary justify our choice of termi-
nology.

Proposition 3.3. SupposeQ = (q0, . . . , qk) ∈ P[0, a] with |Q| ≤ 1
2L

andz : [0, a] → Rn

is the unique solution of the IVP (1). Then‖z(t)‖ ≤ ‖z(qi−1)‖ + K
Q
i − K

Q
i−1 for all

t ∈ [qi−1, qi].

We have the following straightforward corollary.

Corollary 3.4. Under the hypothesis of the previous proposition,‖z(t)‖ ≤ Ki for all
t ∈ [0, qi].

Actually, one can prove the same statement with a sharper definition of Ki and show
that‖z(x)‖ ≤ qi‖v(0)‖

(1−|Q|L)i . However, as we shall see later, we need the a priori bounds of
Definition 3.1 when we move to interval valued functions.

For later reference, we include the following lemma, which will be used to show that
the Picard operator, which we introduce in the next section,is well-defined.

Lemma 3.5. SupposeQ = (q0, . . . , qk) ∈ P[0, a] with |Q| < 1
2L

. Then

qi‖v(0)‖ +
i

∑

j=1

2LKj |Q| ≤ Ki

for all i = 0, . . . , k.
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4 A Picard Operator for unbounded vector fields

Using the same technique as in [8], we can define a Picard operator Pu using the given
interval extensionu of v as follows:

Definition 4.1 (Picard Operator). Let y : [0, a] → IRn. Define thePicard Operator
associated withu as

Pu(y) = λt.

∫ t

0
u(y(x))dx.

We write[0, a] ⇒ IRn for the set of Scott continuous functions of type[0, a] → IRn

and obtain the following immediate lemma:

Lemma 4.2. Pu is a Scott continuous operator of type([0, a] ⇒ IRn) → ([0, a] ⇒ IRn).
Furthermore, ifPu(y) = y andw(y) = 0, theny is a solution of the IVP (1).

In the [8], the solution of the IVP (1) was constructed as the least fixpoint of the
operatorPu. In contrast to our setup, it is assumed inloc. cit. that u : I[−K,K]n →
I[−M,M ]n and the lifetimea of the solution satisfiesaM ≤ K. This entails that the
restrictionPu : ([0, a] ⇒ I[−K,K]n) → ([0, a] ⇒ I[−K,K]n) is a well defined oper-
ator. As the functiony0 = λt.[−K,K]n is the least element of[0, a] → I[−K,K]n, the
least fixpoint ofPu can be obtained asy =

⊔

yk with yi = Pu(yi−1) for i > 0. Using
the boundedness assumption onu, one can show that the least fixpoint has width0 and
is a solution of the IVP. The next example shows, that this fails without the boundedness
assumption onv, and in general gives the undefined function as least fixpoint.

Example 4.3. Supposev : R → R is the identity functionv(x) = x with extension
u(α) = α for α ∈ IR. Then the functiony = λx. ⊥ is the least fixed point ofPu:

Pu(y)(t) =

∫ t

0
u(y(x))dx =

∫ t

0
u(⊥)dx =

∫ t

0
⊥ dx =⊥ .

Note that the corresponding IVṖy = v(y), y(0) = 0 has the unique solutiony(t) = 0.

This shows, that a more sophisticated technique is called for. We now show, that the
a priori bounds, introduced in the previous section, allow us to construct the solution of
the IVP (1) in a sub-domain of the function space[0, a] ⇒ IRn.

Definition 4.4. SupposeQ = (q0, . . . , qk) is a partition of[0, a] with |Q| < 1
2L

and take
the a priori boundsKi and the global boundKQ as in Definition 3.1. We

SQ = {f : [0, a] → I[−KQ,KQ]n | f ↾ [0, qi) ⊑ λt.[−Ki,Ki] for all 1 ≤ i ≤ k}

and writey
Q
0 for the least element ofSQ. We callSQ the solution space associated with

Q, and drop the sub/superscriptQ if the partition is clear from the context.

Graphically, the setSQ is the set of functions whose interval values are bounded by a
double staircase, illustrated in Figure 1.

Using Lemma 3.5, we can now show that the Picard operator mapsSQ to SQ.
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Figure 1: The setSQ for Q = (q0, q1, q2, q3)

Lemma 4.5. LetQ ∈ P[0, a] with |Q| < 1
2L

. ThenPu(y) ∈ SQ if y ∈ SQ.

In order to show that the least fixpoint ofPu ↾ SQ actually produces a solution of
the IVP (1) we have to ensure thatPu is contracting. The easiest way of seeing this is to
consider aweighted width, which applies a damping factor to the width of a function at
the far end of its domain of definition. This removes the second restrictionaL ≤ 1 on the
lifetime of a solution present in [8, Section 4]. The formal definition is as follows:

Definition 4.6. Let 0 ≤ α ∈ R andf : [0, a] → IRn. Then

wα(f) = sup
t∈[0,a]

e−αtw(f(t))

is theweighted widthof f with weight factorα.

We collect two straightforward properties.

Lemma 4.7. Letf : [0, a] → IRn. Thenw(f) ≤ eaαwα(f) andwα(f) ≤ w(f).

The following lemma shows thatPu ↾ SQ is a contraction for an appropriate partition
Q of [0, a].

Lemma 4.8. SupposeQ ∈ P[0, a] with |Q| ≤ 1
2L

and y ∈ SQ. Thenwα(Pu(y)) ≤
L
α
wα(y).

Corollary 4.9. Supposeyi+k = Pu(yk) for all k ≥ 0.Thenw(yk) ∈ O(2−k). In partic-
ular, y =

⊔

k yk is real valued and solves the IVP (1).

If u is a computable vector field, we have thatu =
⊔

k uk for a recursive sequence
(uk)k≥0 of finitely representable functionsuk. As we can only work with the finitary ap-
proximationsuk, the algorithm underlying Corollary 4.9 cannot be implemented directly;
instead we have to take the approximationsuk into account. The speed of convergence
to the solution then clearly depends on the rate at which theuk approachu, which is
measured as follows.
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Definition 4.10. Supposeu =
⊔

k≥0 uk. We say thatd(u, uk) ∈ O(2−k) if, for all K > 0
there areC ≥ 0 andk0 ≥ 0 such that

d(u(α), uk(α)) ≤ C · 2−k

wheneverα ∈ I[−K,K]n andk ≥ k0. For K ≥ 0, the restricted distancedK(f, g) is
given by

dK(f, g) =
⊔

{d(f(α), g(α)) | α ∈ I[−K,K]n}

for functionsf, g : IRn → IRm.

That is, we say that theuk converge exponentially fast tou, if they converge expo-
nentially fast on all compact sets.

We now establish that working with approximations(uk) of u does not destroy con-
vergence to a solution, and give an estimate of the convergence speed.

First, note that foru′ ⊑ u, it is no longer guaranteed thatPu′(y) ∈ SQ for all y ∈ SQ.
This problem is addressed in the next lemma, where we put2SQ = {y : [0, a] → IRn |
1
2y ∈ SQ}.

Lemma 4.11. SupposeQ ∈ P[0, a] with |Q| 1
2L

, u′ ⊑ u with d2KQ
(u, u′) ≤ 1

2‖v(0)‖.
ThenPu′(y) ∈ 2SQ for all y ∈ 2SQ.

The next lemma is the key stepping stone for giving an estimate of the convergence
speed in presence of approximationsuk of the interval vector fieldu.

Lemma 4.12. SupposeQ ∈ P[0, a] with |Q| ≤ 1
2L

and u′ ⊑ u with d2KQ
(u, u′) ≤

1
2‖v(0)‖. andy ∈ 2SQ. Thenwα(Pu′(y)) ≤ L

α
wα(y) + 2

αe
d2KQ

(u, u′).

Moving from weighted width to ordinary width, we obtain the main result of this
section: fast convergence of the Picard iterates for unbounded vector fields.

Theorem 4.13. Supposeu =
⊔

k uk with d(u, uk) ∈ O(2−k). For k ≥ 0, put yk+1 =
Puk

(yk) andy =
⊔

k yk. ThenPu(y) = y andw(yk) ∈ O(2−k).

We say thatu iseffectively given, if u =
⊔

k uk for a recursive and monotone sequence
(uk)k∈N where eachuk =

⊔

j=1,...,ik
αj ց βj is a rational step function, i.e.αj, βj ∈

IRn have rational endpoints and

α ց β(x) =

{

β if x ≪ α

⊥ otherwise.

As all of our constructions are clearly effective, we have inparticular:

Corollary 4.14. Supposeu is effectively given. Then we can effectively construct an
effective sequence(yk)k∈N such that

⊔

k yk is the unique solution of the IVP (1).

The data structures that can be used to implement this methodare the same as in the
bounded case treated in [8], and we refer toloc. cit. for estimates of the computational
complexity, which apply verbatim also in this extended setting. Similarly, the domain
theoretic version of Euler’s method [7] can be extended to unbounded vector fields using
the technique of local a priori bounds; this will be elaborated in the full version of this
paper.
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5 Approximating Continuous Functions

The theory outlined in the previous sections depends on an interval vector fieldu, given
in terms of a supremumu =

⊔

k∈N
uk of step functions. In order to apply our theory, the

following assumptions must be satisfied:

1. u is an extension of the classical vector fieldv

2. u satisfies an interval Lipschitz condition

3. The interval distanced(u, uk) converges exponentially fast.

This section shows, how to obtain a sequence(uk)k∈N which satisfies the above as-
sumptions. We discuss two techniques for constructing approximations of vector fields:
first, we discuss compositions of approximations and then weshow, how to construct in-
terval valued approximations from a function that computesthe value of the vector field
to an arbitrary degree of accuracy.

5.1 Composition of Approximations

In this section we assume that we have two functionsg : IRn → IRm andf : IRm →
IRk, approximated by sequences(gn) and(fn), and show, how use these approximations
to compute approximations off ◦ g, subject to the conditions laid down at the beginning
of the section.

We begin with an example showing that composition of approximations does not
necessarily preserve the convergence speed.

Example 5.1. This example shows, that iff =
⊔

k fk andg =
⊔

k gk, and both(fk)
and(gk) converge exponentially fast, then this is not necessarily true for the composition
g ◦ f , even if bothf andg are interval Lipschitz.

Consider the continuous functionh : [0,∞) → [0, 2] given by

h(x) =







1 − 1
log

2
( 2

1−x
)

x < 1

1 x ≥ 1

wherelog2 is the dyadic logarithm (logarithm w.r.t. base2). Clearlyh is differentiable
in [0, 1), and elementary analysis shows that0 ≤ h′(x) ≤ 1

ln 2 ≤ 2 for x ∈ [0, 1), hence
h(x) ≤ 2x for all x ∈ R. Therefore the Scott continuous functionf(α) = [0, h(w(α))]
satisfies an interval Lipschitz conditionw(f(α)) ≤ 2w(α). Puttingfk = f , we clearly
have thatd(f, fk) ≤ 2−k. Note thatf is a non-maximal interval extension of the constant
zero function.

For g(α) = [0, w(α)] and gk(α) = [0, w(α) + 2−k−1] we also have thatg is in-
terval Lipschitz andd(g, gk) = 2−k−1 ≤ 2−k. We show that the compositionfk ◦ gk

only converges linearly fast tof ◦ g. Consider the intervalαk = [0, 1 − 2−k−1]. Then
d(fk ◦ gk, f ◦ g) ≥ d(fk(gk(αk)), f(g(αk))) = h(w(gk(αk)))−h(w(g(αk))) = h(1)−

9



h(1 − 2−k−1) = 1
k
, showing that function composition does not preserve exponential

convergence speed.

As this example shows, we need extra conditions to ensure that composition of ap-
proximations preserves the speed of convergence. We propose to consider functions
which are Hausdorff Lipschitz from below:

Definition 5.2. Supposef : IRn → IRm. Thenf is Hausdorff Lipschitz from below, iff

d(f(α), f(β)) ≤ L · d(α, β)

for someL ≥ 0 and allα ⊑ β, α, β ∈ IRn.

Note that we only require the estimate to hold ifα ⊑ β, hence Hausdorff Lipschitz
from below is a weaker condition than being Lipschitz w.r.t.the Hausdorff metric onIRn

andIRm, respectively.
We briefly relate this condition to the interval Lipschitz condition we have introduced

before. Recall thatf is interval Lipschitz, ifw(f(α)) ≤ L ·w(α) for someL ≥ 0 and all
α ∈ dom(f), i.e. f increases the width of its argument only linearly.

Remark 5.3. The notions “interval Lipschitz” and “Hausdorff Lipschitzfrom below” are
unrelated, as shown by the following examples:

1. The functionf in Example 5.1 is interval Lipschitz, but not Hausdorff Lipschitz
from below.

2. The functionλx.[0, 1] : IR → IR is Hausdorff Lipschitz from below, but not
interval Lipschitz.

It is easy to see that the maximal extension of classical Lipschitz function is also
Hausdorff Lipschitz from below, but the contrary is not true.

Proposition 5.4. Supposef : Rn → Rm satisfies a Lipschitz condition with Lipschitz
constantL. Thend(If(α), If(β)) ≤ Ld(α, β) for all compactα ⊑ β ∈ IRn.

The next example shows, that functions which are Hausdorff Lipschitz from below
are not necessarily maximal.

Example 5.5. Suppose− : IR × IR → R is the maximal extension of the subtraction
function, i.e.[α,α]− [β, β] = [α−β, α−β]. Then the functionf : IR → IR, x 7→ x+x

is both interval Lipschitz and Hausdorff Lipschitz from below, but not maximal, as the
functionλx.0 satisfiesf ⊑ λx.0.

What makes functions that are Hausdorff Lipschitz from below attractive for our pur-
poses is that the set of such functions is closed under composition, in contrast to maximal
extensions.

Lemma 5.6. Supposef : IRn → IRm and g : IRm → IRk are Hausdorff Lipschitz
from below. Then so isg ◦ f .
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Proposition 5.4 and Example 5.5 lead us to think of functionsthat are Hausdorff Lips-
chitz from below as functions that are close to being maximalextensions, without actually
being maximal. In particular, these functions are closed under composition, which makes
them attractive for building libraries.

We are now in the position to prove the promised result on compositionality of ap-
proximations; in particular we establish a guarantee of theconvergence speed of com-
posed approximations.

Theorem 5.7. Supposegk : IRn → IRm andfk : IRm → IRl are monotone sequences
of Scott continuous functions withf =

⊔

k fk and g =
⊔

k gk that satisfy the following
requirements:

1. Bothf andg are interval Lipchitz andf is Hausdorff Lipschitz from below

2. d(f, fk), d(g, gk) ∈ O(2−k)

Thenf ◦g is interval Lipschitz and the extension of a classical function andd(fk ◦gk, f ◦
g) ∈ O(2−k). Moreover, ifg is also Hausdorff Lipschitz from below, then so isf ◦ g.

This theorem shows, that the class of functions that are bothinterval Lipschitz and
Hausdorff Lipschitz from below can be used to build a compositional library for fast
converging Lipschitz functions. In the next section, we address the task of actually con-
structing functions that fall into this class, and can hencebe used as building blocks for
approximating Lipschitz vector fields.

5.2 Construction of Approximations

Now that we have seen how to obtain approximations of interval vector fields composi-
tionally, this section outlines a technique for constructing these approximations, given a
function that computes the Lipschitz functionf : Rn → Rm up to an arbitrary degree of
accuracy.

More precisely, we assume thatg : Qn × N → Qm is given such that‖f(x) −
g(x, k)‖ ≤ 2−k. On a practical level, this allows us to compute approximations for a
large class of functions. Moreover, the existence of acomputablefunction g with the
above property is equivalent to the computability off , and the results of this section
show, that we obtain approximations by step functions for every computableLipschitz
vector field.

The idea of the construction is as follows: Given a rectangleα ⊆ Rn, we compute
the value ofg(m(α), k) of the midpointm(α) of α up to an accuracy of2−k. In order to
accommodate for this inaccuracy, we extend this point valueinto a rectangle by extending
it with 2−k into the direction of each coordinate axis. This rectangle is then subsequently
extended using the Lipschitz constant off , resulting in a rectangle that contains all values
f(x) for x ∈ α. The formal definition is as follows, where we assume for the rest of the
section, thatf : Rn → Rm satisfies a Lipschitz condition with Lipschitz constantL and
g : Qn × N → Qm is such that‖g(x, k) − f(x)‖ ≤ 2−k.

11



Definition 5.8. For a real vectorx = (x1, . . . , xn) ∈ Rn andλ ∈ [0,∞), we writex⊕ λ

for then-dimensional cube[x1−λ, x1+λ]×· · ·×[xn−λ, xn+λ] with centrex and width
2λ. Given a partitionQ = (q0, . . . , qk), we denote the set ofn-dimensional rectangles
with endpoints inQ by

R(Q) = {[qi1 , qj1] × · · · × [qin , qjn ] | 0 ≤ ir < jr ≤ k for all 1 ≤ r ≤ n}.

Finally, we define the family of functionsfk
Q for k ∈ N by

fk
Q =

⊔

α∈R(Q)

α ց g(m(α), k) ⊕ (2−k +
L

2
· w(α))

We call thefk
Q’s the approximation functions associated withQ.

It is easy to see that the approximation functions associated with a partition are sound
in the sense that they give enclosures of the approximated functions.

Lemma 5.9. LetQ ∈ P andk ∈ N. Thenfk
Q ⊑ If .

Before we give guarantees on the quality of approximations constructed using this
method, we need to check that the approximations constructed actually form an increasing
chain. This is the content of the following lemma.

Lemma 5.10. SupposeR ⊑ Q ∈ P andj ≤ i. Thenf
j
R ⊑ f i

Q.

We now establish one of the criteria for approximations laiddown at the beginning
of the section, i.e. that they converge to a function which isinterval Lipschitz. Recall the
order on partitions and their norm from Section 2.

Lemma 5.11.Suppose(Qk)k∈N is an increasing sequence of partitions withlimk→∞ |Qk| =
0 and

⋃

k I(Qk) = R. Then
⊔

k∈N
fk

Qk
satisfies the interval Lipschitz condition with con-

stantL.

As immediate corollary, we deduce that
⊔

k∈N
fk

Qk
is an extension off .

Corollary 5.12. The functionh =
⊔

k∈N
fk

Qk
is an extension off .

We have now shown how to construct approximations which satisfy two of the three
criteria needed to put our theory to work. We now turn to the last item and give an
estimate on the convergence speed of thefk

Qk
to h. In the proof, we compare an upper

approximation offQk

k with a lower approximation ofh for h =
⊔

k f
Qk

k . The next lemma
is a major stepping stone for establishing an lower approximation of h. If we recall
the definition offk

Qk
, we see that the width of the right hand side of the step function

α ց m(α) ⊕ (2−k + L
2 · w(α)) only depends on the width ofα. Hence givenβ ∈ IR,

it does not suffice to consider a minimal enclosureR(Q) ∋ α ≪ β to find an upper
bound forfk

Qk
(β). Instead we need to consider all enclosures that have the same width

12
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Figure 2: Approximations associated withg(x, y, k) = (x, y).

as the minimal enclosure. This situation is illustrated forf(x, y) = g(x, y, k) = (x, y) in
Figure 5.2, where the dots indicate the grid points given byQk. Note thatf(kQk

)
1
(β) =

g1(m(α0), k) + 2−k + L
2 w(α0) despite the fact thatα1 is a better approximation ofβ.

The next lemma accounts for this situation and gives a lower bound for the upper
function associated withfk

Qk
.

Lemma 5.13. SupposeQ ∈ P with I(Q) ≪ [−K,K]n and k ∈ N. Then, for all
i = 1, . . . , n and allα ∈ I[−K,K]n,

(fk
Q)

i
(α) ≥ min{fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)} +

L

2
w(α)

where(fk
Q)

i
is the upper function associated with thei-th component offk

Q.

We obtain the following immediate corollary, which we use inthe estimate of the
convergence speed to give an upper bound onh(α).

Corollary 5.14. Suppose(Qk) is an increasing sequence of partitions andh =
⊔

k∈N
fk

Qk
.

Thenhi(α) ≥ min{fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)} + L
2 w(α) for all 1 ≤ i ≤ n.

Using the last corollary as an upper bound for the value ofh, we can formulate and
prove a statement on the convergence speed as follows:

Proposition 5.15. Suppose(Qk) is an increasing sequence of partitions with|Qk| ∈
O(2−k) and

⋃

k I(Qk) = R. If h =
⊔

k fk
Qk

, thend(h, fk
Qk

) ∈ O(2−k).

In summary, we have the following theorem, which shows, thatthe approximations
satisfy all the conditions discussed at the beginning of thesection.

Theorem 5.16.Suppose(Qk) is an increasing sequence of partitions with|Qk| ∈ O(2−k),
⋃

k≥0 I(Qk) = R and leth =
⊔

k∈N
fk

Qk
. Then

1. h is an extension off

2. h satisfies an interval Lipschitz condition with Lipschitz constantL

3. d(h, f
Qk

k ) ∈ O(2−k).
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5.3 Compositionality of Approximations

We have now established conditions which allow to compose function approximations in
a way that the order of magnitude of convergence speed is preserved. On the other hand,
we have described a method to construct fast converging approximations from scratch.
In this section, we show that the approximationsf

Qk

k are amenable to building a library
for approximating Lipschitz functions by showing that their suprema are Hausdorff Lip-
schitz from below, which entails that the composition of approximations preserves fast
convergence (Theorem 5.7).

For the purpose of this section, we assume thatf : Rn → Rm is a classical Lip-
schitz function,(Qk) is an increasing sequence of partitions with|Qk| ∈ O(2−k) and
⋃

k≥0 I(Qk) = R. Furthermore, we assume thatf
Qk

k is constructed as in Definition 5.8.
Our main result is to show that the functionsh =

⊔

k fk
Qk

can be used to build a
compositional library of fast converging approximations to Lipschitz vector fields. In
the light of Theorem 5.7, we therefore have to show that the function h =

⊔

k f
Qk

k is
Hausdorff Lipschitz from below.

We fix the functionh =
⊔

k f
Qk

k . The proof of the Hausdorff Lipschitz property is
split into several lemmas.

Lemma 5.17. Supposeα′ ⊑ α with w(α) = w(α′). Then there are(x1, . . . , xn) ∈ Rn

s.t.

1. |xi| ≤
1
2 (w(α) − w(αi)) for all i = 1, . . . , n

2. m(α′) = m(α) + (x1, . . . , xn).

Lemma 5.18. Letα ∈ IRn. Thenhi(α) ≤ fi(m(α)) + L
2 w(α).

The next lemma gives the first half of the Hausdorff Lipschitzproperty.

Lemma 5.19. Let α ⊑ β ∈ IRn and supposehi(α) ≥ hi(β). Thenhi(α) − hi(β) ≤
3Ld(α, β).

We now establish the hypothesis dual to Lemma 5.19. Note thatthis is not symmetric,
since we assume thatα ⊑ β.

Lemma 5.20. Let α ⊑ β ∈ IRn and supposehi(β) ≥ hi(α). Thenhi(β) − hi(α) ≤
3Ld(α, β).

As a corollary, we obtain a bound on the difference between the upper values ofh.

Corollary 5.21. Letα ⊑ β ∈ IRn and1 ≤ i ≤ n. Then|hi(α) − hi(β)| ≤ 3Ld(α, β).

Similarly, one proves the dual statement|hi(α) − hi(β)| ≤ 3d(α, β). These two
results together show thath, as constructed, is Hausdorff Lipschitz from below.

Theorem 5.22.Letα ⊑ β ∈ IRn. Thend(h(α), h(β)) ≤ 3Ld(α, β). In particular, h is
Hausdorff Lipschitz from below.

14



This shows, together with the results of Section 5.1, that wecan build a compositional
library for domain theoretic approximations of Lipschitz vector fields.

In conjunction with Theorem 4.13 we obtain a framework for solving initial value
problems, which is based on proper data types, and can therefore be directly implemented
on a digital computer. Moreover, working with rational or dyadic numbers, the speed of
convergence can also be guaranteed for implementations of our technique.
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