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Abstract
Duality is one of the key techniques in the categorical treat-
ment of modal logics. From the duality between (modal) alge-
bras and (descriptive) frames one derives e.g. completeness
(via a syntactic characterisation of algebras) or definability
(using a suitable version of the Goldblatt-Thomason theo-
rem). This is by now well understood for classical modal
logics and modal logics based on distributive lattices, via ex-
tensions of Stone and Priestley duality, respectively. What is
conspicuously absent is a comprehensive treatment of modal
intuitionistic logic. This is the gap we are closing in this
paper. Our main conceptual insight is that modal intuitionis-
tic logics do not appear as algebra/coalgebra dualities, but
instead arise naturally as dialgebras. Our technical contribu-
tion is the development of dualities for dialgebras, together
with their logics, that instantiate to large class of modal intu-
itionistic logics and their frames as special cases. We derive
completeness and expressiveness results in this general case.
For modal intuitionistic logic, this systematises the existing
treatment in the literature.

CCS Concepts: • Theory of computation→Modal and
temporal logics.
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1 Introduction
Duality in logic has a long and venerated tradition, start-
ing with the Stone representation theorem [82] in 1936 that
establishes a categorical duality between Boolean algebras
and certain topological spaces (now called Stone spaces).
Subsequent notable results include the McKinsey-Tarski rep-
resentation theorem for closure algebras [60], the Priestley
duality theorem [68] linking distributive lattices and spaces
now known as Priestley spaces, as well as Esakia duality for
Heyting algebras [25, 27].
The mathematical appeal of duality lies in the fact that

it offers conceptual understanding, as well as enables the
transfer of results between the algebraic and the topological
(or frame) setting.

In modal logic, the first representation theorem was es-
tablished by Jónsson and Tarski in 1952 [47]. Despite the
fact that op.cit. does not mention modal logic explicitly, it
introduces relational semantics and uses the representation
theorem to link relational and algebraic semantics. The full
duality between Boolean algebras with operators and de-
scriptive general frames was established by Goldblatt in 1976
[33, 34], and many other such dualities followed [28, 41, 63].
In the last 20 years, many dualities in modal logic have

been recognised as an instance of a general algebra/coalgebra
duality, where coalgebras play the rôle of frames. This has
been instigated by Moss’ coalgebraic logic [62]. It has lead
to, e.g., recognising descriptive general frames as coalgebras
for the Vietoris functor on Stone spaces [51] that are dual to
modal algebras, understood as algebras over Boolean alge-
bras as a base category. Similar results have been established
for positive modal logic and coalgebras over Priestley spaces
[63]. The coalgebraic view on modal logic has triggered a
substantive body of research, see e.g. [52, 53, 65, 75], that
remains active and relevant [4, 22, 42].
Interestingly, modal intuitionistic logic is conspicuously

absent from the logical systems that have been subject to
coalgebraic techniques, or general algebra/coalgebra duality,
even though this is a seemingly obvious research direction.

A second noteworthy aspect of modal intuitionistic logic
is that, in contrast to positive modal logic and “standard”
modal logic over a classical base, there is no universally
agreed semantics. Indeed, many variations have been put
forward in the literature. This dates back to the 1960’s [16, 17]
and includes [15, 23, 49, 66, 76, 77, 88, 89] (see [81] for an
overview). In addition to the modal intuitionistic logics that
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have a relational flavour, there is also interest in concur-
rent dynamic intuitionistic logic [86], epistemic intuition-
istic logic [3, 44, 46, 69, 87] probabilistic intuitionistic logic
[59], and intuitionistic public announcement logic [7, 58].
More recently, conditional intuitionistic logic has become
prominent [21, 84, 85]. Many of these modal intuitionistic
logics are also studied in philosophy, and conditional logics
embody non-monotonic reasoning.
Indeed, it appears to be folklore that modal intuitionistic

logic is not amenable to coalgebraic methods, as the frame
semantics of modal intuitionistic logic does not “fit” with
coalgebras nearly as neatly as the frame semantics for modal
logic based on classical or positive logic, as we illustrate in
Section 2.

In this paper, we show that dialgebras [39] allow us to give
a general (co)algebraic analysis of many instances of modal
intuitionistic logic, and so provide a solution to the research
problem above. Specifically, we establish completeness, dual-
ity, and Hennessy-Milner type results for dialgebraic logics,
that immediately specialise to various flavours of modal in-
tuitionistic logic.

While our framework captures many existing modal intu-
itionistic logics (we give examples in Section 3), it does not
encompass all. The most notable absentees are [66, 76, 77].
We refer to [88] for a discussion of how these fit in the
framework of modal intuitionistic logic that we cover and
we revisit this issue in the conclusion.

We begin our technical development by observing that
the main impediment of a coalgebraic treatment of modal
intuitionistic logic is a mismatch of morphisms, as coalge-
braic modelling necessitates that both coalgebra structure
maps and homomorphisms are drawn from the same cat-
egory. We illustrate this in Section 2. Our main insight is
that dialgebras present an elegant solution to resolve this
mismatch. In Sections 3 and 4 we introduce dialgebras, give
examples, and establish a general dual adjunction theorem.
Section 5 introduces logics for dialgebras, and we proceed
to establish a generic completeness result (Section 6) and a
Hennessy-Milner type result (Section 7) for dialgebraic logic.
Both results instantiate to a large class of modal intuitionistic
logic and we show how it encompasses monotone modal in-
tuitionistic logic [35, 36] and conditional intuitionistic logic
[21, 84, 85] in Sections 8 and 9. Our principal technical tool
is a dialgebraic notion of general and descriptive frames. A
general frame is a frame together with a subalgebra of its
complex algebra. General and descriptive frames (if they
exist) provide the glue for duality between the algebraic
semantics of a logic and certain (descriptive) frames.

Related work. We are not aware of any previous work
relating dialgebras and modal logic, but stand in the tradition
of coalgebraic logic, logical duality and (intuitionistic) modal
logic, as we have made explicit above.

2 Motivation
A conceptual and categorical treatment of duality for modal
logics understands modal algebras as algebras for an end-
ofunctor on a category of algebras A representing the un-
derlying propositional logic, and frames as coalgebras on a
category of spaces C. Typically, C is either dually equivalent
to A, or to a sub-category of A. The duality between frames
and algebras can then be understood as a duality between
algebras and coalgebras that piggy-backs on a duality for A.

This explains, for example, the duality between descriptive
general frames (coalgebras for the Vietoris functor on Stone
spaces) and modal algebras [51] as well as the analogous
correspondence for positive modal logics, and coalgebras
over Priestly spaces [63].
Somewhat conspicuously, the same has not been carried

out for modal intuitionistic logic, despite the fact that the ba-
sic setup seems obvious: modal intuitionistic algebras would
be algebras over the category of Heyting algebras, and intu-
itionistic frames would be coalgebras for a suitable version
of the Vietoris functor on Esakia spaces (or on intuitionistic
Kripke frames).

The reason for this is simple: it does not work. More pre-
cisely, it fails to adequately describe the morphisms between
standard and well-established examples of modal intuition-
istic frames in the literature, and so stops any attempt at
duality dead in its tracks. An argument for this has been
made in [57, Remark 8] (but not in journal version [56] of
the same paper). We showcase this phenomenon using □-
frames from [88] and illustrate how a dialgebraic approach
naturally emerges.

We consider the language IntK□ of intuitionistic logic with
an additional unary operator □ which satisfies the axioms

□φ ∧ □ψ = □(φ ∧ψ ), □⊤ = ⊤.

This language can be interpreted in □-frames:

2.1.Definition. A□-frame is a tuple (X , ≤,R□)where (X , ≤)
is a poset and R□ is a relation on X satisfying

≤ ◦ R□ ◦ ≤ = R□. (1)

The intuitionistic connectives are interpreted in the poset
(X , ≤) as usual. The □-operator is interpreted in a similar
way as in normal modal logic: x satisfies □φ (written x ⊩ □φ)
if all R□-successors of x satisfy φ.

Naively, our first goal is to model □-frames as coalgebras
on the category Pos of posets and monotone functions.

2.2.Definition. Let F be an endofunctor on a categoryC. An
F-coalgebra is a pair (C,γ ) of an objectC ∈ C (called the state-
space) and a morphism γ : C → FC in C (called the structure
map). An F-coalgebra morphism from (C,γ ) to (C ′,γ ′) is a
morphism f : C → C ′ in C that satisfies γ ′ ◦ f = Ff ◦ γ .
We write Coalg(F) for the category of F-coalgebras and F-
coalgebra morphisms.
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To capture □-frames as coalgebras on Pos, the following
endofunctor appears appropriate:

2.3.Definition. The upper powerset functor P+up maps a poset
(X , ≤) to the collection of up-closed subsets of (X , ≤) ordered
by reverse inclusion. For a monotone function f : (X , ≤) →
(X ′, ≤′) define P+up f by P+up f (a) = ↑≤′ f [a] = {x ′ ∈ X ′ | ∃x ∈

a s.t. f (x) ≤ x ′}.

With this definition, it is not hard to see that □-frames are
precisely coalgebras for the upper powerset functor: simply
identify the relation R□ with the map γ : (X , ≤) → Pup(X , ≤)
given by γ (x) = {y ∈ X | xR□y}. Identity (1) holds iff γ is
monotone and γ (x) is up-closed in (X , ≤) for all x ∈ X .
While this looks like a success at first sight, the problem

lies elsewhere: the category Coalg(P+up) has “too many mor-
phisms.”

A morphism between □-frames (X , ≤,R□) and (X ′, ≤′,R′
□)

needs to preserve truth of the formulas in IntK□. To guar-
antee preservation of all intuitionistic operators, f should
be a bounded morphism from (X , ≤) to (X ′, ≤′). That is, a
monotone morphism that additionally satisfies ∃y ∈ X s.t.
x ≤ y and f (y) = y ′, whenever f (x) ≤′ y ′, for all x ∈ X and
y ′ ∈ X ′. In a diagram:

y y ′

x f (x)

f

≤

f
≤′

To ensure that x ⊩ □φ iff f (x) ⊩ □φ, f also needs to be
a bounded morphism (X ,R□) → (X ′,R□′). We call mor-
phisms satisfying this □-frame morphisms. The collection of
□-frames and □-frame morphisms constitutes the category
WZ□ (named after the authors of [88]).

On the other hand, a simple computation shows that the
Coalg(P+up)-morphisms between (the coalgebraic rendering
of) two □-frames (X , ≤,R) and (X ′, ≤′,R′) are precisely the
bounded morphisms between (X ,R) and (X ′,R′), i.e. are not
necessarily bounded with respect to the poset order. In other
words,WZ□ is isomorphic to the (non-full) subcategory of
Coalg(P+up) with the same objects, but whose morphisms
satisfy the additional requirement that they are bounded
morphisms between the underlying posets.
A seemingly self-evident solution here is a change of

base category: instead of Pos one can consider the cate-
gory Krip of posets with bounded morphisms. One fortu-
itous circumstance is that the functor P+up restricts to Krip,
but the price we have to pay is that the structure maps
γ : (X , ≤) → P+up(X , ≤) of P+up-coalgebras are now required
to be bounded morphisms (with respect to the poset struc-
ture). In other words, Coalg(P+up) is the full subcategory of
WZ□ consisting of those □-frames where the coalgebraic
rendering of the structure map is bounded, and so fails to
contain all □-frames.

The only option in this situation is to investigate whether
one can live with a smaller class of frames (with bounded
structure maps): how much semantic richness is lost? Unfor-
tunately, the answer here is everything, at least if we insist
that our treatment should not only do justice do □-frames,
but also cover ^-frames.
To see this, we extend intuitionistic propositional logic

with a ^-modality that satisfies

^φ ∨ ^ψ = ^(φ ∨ψ ), ^⊥ = ⊥.

This language can be interpreted in ^-frames: tuples (X , ≤
,R^)where (X , ≤) is a poset and R^ satisfies ≥ ◦R^◦ ≥= R^ .
These can be seen as P+dn-coalgebras, where P

+
dn : Pos → Pos

is the functor which sends a poset (X , ≤) to the collection of
downwards closed subsets of X ordered by inclusion, and a
function f : (X , ≤) → (X ′, ≤′) to P+dn f = ↓f [−]. A calcula-
tion similar to the above shows that ^-frames are precisely
equivalent to P+dn-coalgebras.
Contrary to P+up, the functor P+dn does not restrict to Krip,

as shown by the following example:

2.4. Example. Let X = {x} be the singleton poset and X ′ =

{x ′,y ′} the two-element poset ordered by equality. Then
the map f : X → X ′ : x 7→ x ′ trivially is a bounded
morphism, but Pdn f is not. To see this, note that we have
Pdn f ({x}) = {x ′} ⊆ {x ′,y ′}, but there is not subset a of {x}
such that Pdn f (a) = {x ′,y ′}.

In other words, we can capture ^-frames (but with the
wrong morphisms) as P+dn-coalgebras, but any attempt at
capturing a subclass of ^-frames (with morphisms that are
bounded with respect to the poset structure) is bound to fail.

It thus appears that we are in a double dead-end situation,
as we need structure maps to be morphisms in Pos, and coal-
gebra morphisms to be morphisms in Krip. This is precisely
where dialgebras come to the rescue, because they allow us
to diligently discern morphisms (which should be bounded)
and structure maps (which should not be). Indeed, dialgebras
(formally introduced in Definition 3.1) allow us to describe
WZ□ (and also the analogously defined categoryWZ^) as
a category of dialgebras.
We write i for the obvious embedding Krip → Pos and

let Pup be the restriction of P+up to Krip viewed as a functor
Krip → Pos. An (i, Pup)-dialgebra is a pair (X ,γ ) of an object
X ∈ Krip together with a morphism

γ : iX → PupX

in Pos. A dialgebra morphism between (X ,γ ) and (X ′,γ ′) is
a morphism f : X → X ′ (in Krip!) that makes

iX iX ′

PupX PupX
′

if

γ γ ′

Pupf
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commute. We write Dialg(i, Pup) for the category of (i, Pup)-
dialgebras and morphisms. An easy verification reveals that

WZ□ � Dialg(i, Pup).

Thus, the categorical notion of dialgebras generalises that of
coalgebras enough to describe □-frames.
We now have a look at the algebras corresponding to

the language IntK□. These are Heyting algebras with (unary)
operators.

2.5. Definition. A Heyting algebra with operator (HAO for
short) is a pair (H ,□) where H is a Heyting algebra and
□ : H → H is a function that satisfies for all a,b ∈ H ,

□a ∧ □b = □(a ∧ b), □⊤ = ⊤.

A morphism between HAOs (H ,□) and (H ′,□′) is a Heyting
algebra morphism f : H → H ′ satisfying □′ ◦ f = f ◦□. We
write HAO for the category HAOs and HAO morphisms.

The category HAO also arises as a category of dialgebras,
see Example 3.3 below.

3 Dialgebras and Examples
We define dialgebras and give examples. Dialgebras were
introduced in [39] to describe data types. They have also
been used as a categorical semantics for inductive-inductive
definitions [2] and furthermore occur in [20, 67]. The 2-
categorically minded reader may appreciate the fact that
dialgebras are precisely coinserters in the 2-category CAT
of categories [43, Appendix A].

3.1. Definition. Let F, G : C → D be functors. An (F, G)-
dialgebra is a pair (X ,γ ) of an object X in C and a mor-
phism γ : FX → GX in D. An (F, G)-dialgebra morphism
f : (X ,γ ) → (X ′,γ ′) is a morphism f : X → X ′ in C
satisfying Gf ◦ γ = γ ′ ◦ Ff . In diagrams,

FX FX FX ′

objects: arrows:

GX GX GX ′

γ γ

Ff

γ ′

Gf

Wedenote the category of (F, G)-dialgebras and (F, G)-dialgebra
morphisms by Dialg(F, G).

Evidently, both algebras and coalgebras are instances of
dialgebras, where C = D and either F or G is the identity.
For basic constructions (like limits, colimits, subdialgebras,
and quotients) in categories of dialgebras we refer to [13,
Chapter 3]. Among other things, dialgebras describe some
extraordinary biological phenomena.

3.2. Example. Unisexual salamanders [14] reproduce by
stealing sperm from one or more donor species. The infor-
mation relevant for a “family tree” for these salamanders
is the mother of a child, and the different species which
provided genetic material for its conception. Dialgebraically:

Let S be the set of all (relevant) species and P0 and Pω the
non-empty powerset functor and the finite powerset functor
on Set, respectively. Define the functor F : Set → Set by
FX = X × P0S . Then a family tree is a (F, Pω )-dialgebra.
Morphisms in this category of dialgebras relate salamanders
which are created via the same “genetic route.”

One main motivating example are Heyting algebras with
operators, i.e. the algebraic counterpart of □-frames [88, Sec-
tion 2].

3.3. Example. Let j : HA → DL be the embedding of
Heyting algebras into distributive lattice. Let N : HA →

DL be the functor that sends a Heyting algebra A to the
free distributive lattice generated by □a, a ∈ A, subject to
□a ∧□b = □(a ∧b) and □⊤ = ⊤. For a morphism h : A → B
let Nh : NA → NB be given by Nh(□a) 7→ □(ha). Then

HAO � Dialg(N, j).

We now restrict our attention to dialgebras that describe
frames of modal (bi-)intuitionistic logic. Most of the refer-
ences in these examples do not discuss morphisms, but in
all cases there is an obvious notion of (bounded) morphism
that preserves (bi-)intuitionistic connectives and modalities.
We discuss monotone and conditional intuitionistic logic in
Sections 8 and 9.

3.4. Example. In the previous section we have already seen
the following isomorphisms of categories:

□WZ � Dialg(i, Pup), ^WZ � Dialg(i, Pdn).

We note that the frames defined in [89, Definition 1.1.5] and
[49, Definition 1] both coincide with □-frames.

A slight variation of □-frames and ^-frames gives frame
semantics for modal bi-intuitionistic logic:

3.5. Example. The category of modal Kripke frames as de-
fined in [38, Definition 5.3] is isomorphic to the category
Dialg(i∗, P∗up × P∗dn) where i

∗, P∗up and P∗dn are restrictions of
the analogously named functors to the category of posets
and bi-bounded morphisms (Definition 3.1 of op.cit.).

We consider several more examples of frame semantics for
modal intuitionistic logic. Most of these have a counterpart
used for interpreting a diamond modality (like ^-frames).

3.6. Example. A H□-frame [15, Definition 2] (found under
a different name in [69, Definition 3.1]) is a tuple (X , ≤,R)
consisting of a pre-order (X , ≤) and a binary relation R on
X such that

≤ ◦ R ⊆ R ◦ ≤.

We can model these as dialgebras for the embedding i′ :
PreKrip → PreOrd, where PreOrd is the category of pre-
orders and monotone maps, and PreKrip is the category
of pre-orders and bounded morphisms. Define the functor
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P
pre
2 : PreKrip → PreOrd to send (X , ≤) to the powerset PX
of X ordered by

a ⊑2 b iff ∀y ∈ b∃x ∈ a s.t. x ≤ y.

On morphisms Ppre2 is defined to send f to the direct image
map. Then the category of H□-frames and truth-preserving
morphisms is isomorphic to Dialg(i′, Ppre2 ).

3.7. Example. A condensed H□-frame [15, Definition 10]
is a H□-frame which satisfies ≤ ◦ R ⊆ R. It can similarly be
modelled as a dialgebra by using the functor which sends a
pre-Kripke frame (X , ≤) to (PX , ⊇) and a morphism to the
direct image map.

3.8. Example. An H□-frame (X , ≤,R) is strictly condensed
[15, Definition 10] if ≤ ◦ R ◦ ≤ ⊆ R. These are dialgebras for
the functor which sends (X , ≤) to the collection of upsets of
(X , ≤) ordered by reverse inclusion, (UpX , ⊇). Note that in
this case ⊇ coincides with ⊑2.

The same frames are used in [80], to interpret tense intu-
itionistic logic. To guarantee preservation of tense operators
by the morphisms, we have to restrict the functor above to
the category of pre-orders and bi-bounded morphisms.

3.9. Example. EK-structures [46, Definition 1] interpret in-
tuitionistic epistemic logic. Their underlying frames are di-
algebras for the embedding i′ : PreKrip → PreOrd and
the functor E, where E sends a preorder (X , ≤) to the n-
fold product of (PX , ⊆) in PreOrd, and a morphism f :
(X , ≤) → (X ′, ≤′) in PreKrip to the n-fold product of the
direct image map f [−] : (PX , ⊆) → (PX ′, ⊆). The mor-
phisms in Dialg(i′, E) preserve truth of all formulas defined
in op.cit. (including the common knowledge operator!).

Lastly, we show how to view descriptive □-frames [88,
Section 2] as dialgebras.

3.10. Definition. A general □-frame is a tuple (X , ≤,R□,A)
where (X , ≤,R□) is a □-frame and A ⊆ Up(X , ≤) is a collec-
tion of upsets such that (X , ≤,A) is a general intuitionistic
frame (see e.g. [18, §8.1]) and A is closed under the map
m□ : Up(X , ≤) → Up(X , ≤) given by

m□(a) = {x ∈ X | xR□y implies y ∈ a}. (2)
A general □-frame morphism (X , ≤,R□,A) → (X ′, ≤′,R′

□,A
′)

is a □-frame morphism f which satisfies f −1(a′) ∈ A when-
ever a′ ∈ A′.
A general □-frame (X , ≤,R□,A) is descriptive if (X , ≤,A)

is a descriptive intuitionistic frame and R□ satisfies
xR□y iff ∀a ∈ A(x ∈ □a → y ∈ a).

We write D-WZ□ for the category of descriptive (general)
□-frames and general □-frame morphisms.

3.11. Example. Let I : ES → Pries be the embedding of
Esakia spaces into Priestley spaces and Vup : ES → Pries the
upper Vietoris functor defined below. Then

D-WZ□ � Dialg(I, Vup).

The upper Vietoris functor is a variation of the Vietoris
functors on Stone spaces [51] and Priestley spaces [63, Defi-
nition 29][11, Definition 2.12]. It resembles the Smyth pow-
erdomain [78], although upward closure need not be with
respect to the specialisation order.
We write X for ordered topological spaces (like Priestley

spaces and Esakia spaces) and X for their underlying sets. In
order to avoid clutter, we often suppress the order ≤.

3.12. Definition. For an Esakia space X, let VupX be the
collection of closed upsets ordered by reverse inclusion and
topologised by the clopen subbase

�a = {c ∈ VupX | c ⊆ a}, �b = {c ∈ VupX | c ∩ b , ∅},

where a ranges over the clopen upsets and b over the clopen
downsets of X. For an Esakia morphism f : X→ X′, define

Vup f : VupX→ VupY : c 7→ ↑≤Y f [c].

3.13. Proposition. Vup : ES → Pries is a functor.

One easily sees that Vup extends to an endofunctor on
Pries. For future reference, we also note:

3.14. Proposition. Vup defines an endofunctor on ES.

We can now substantiate the claim of Example 3.11.

Proof sketch. Recall that the category of Esakia spaces is iso-
morphic to the category of descriptive intuitionistic frames.
Knowing this, on objects, the proof is given by identifying
γ (x) with the successor set of x under Rγ . The claim for
morphisms follows from a straightforward computation. □

Analogously, we can define the downward Vietoris func-
tor: VdnX is the collection of closed downwards closed sets,
ordered by inclusion and topologised by the clopen subbase

�b = {c ∈ VdnX | c ⊆ b}, �a = {c ∈ VdnX | c ∩ a , ∅},

where b ranges over the clopen downsets and a ranges over
the clopen upsets of X. For an Esakia morphism f we define
Vdn f to be ↓f [−]. Again, we obtain a functor ES → Pries.

3.15. Example. The category of descriptive ^-frames is iso-
morphic to Dialg(I, Vdn). We leave the details to the reader.

4 A Dual Adjunction Theorem
We give a sufficient condition for the existence of a dual
adjunction between categories of dialgebras. We then apply
this to obtain a dual adjunction (in fact, a dual equivalence)
between D-WZ□ and HAO.
The following theorem is a modest generalisation of [43,

Theorem 2.14]. In view of the application of dialgebras in the
(dual) rôles of frame and algebraic semantics, we formulate
the results in the form of dual adjunctions. As in [48], we
use crossed arrows to indicate dual adjunctions.
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4.1. Theorem. Let P : C → D and P′ : C′ → D′ be con-
travariant functors. Suppose we have two natural transforma-
tions α and β in the situation

C D C D

C′ D′ C′ D′

P

α

P

F

P′

F′ G

P′

G′
β

This induces a functor P̄ : Dialg(F, G) → Dialg(G′, F′) which
sends a (F, G)-dialgebra γ : Fc → Gc to the composition

G′P′c PGc PFc F′P′c .
βc Pγ αc

Suppose furthermore that C D
P

S
and C′ D′

P′

S′

are dual adjunctions. Let η : idC → SP and θ : idD → PS be
the units of the left dual adjunction, and similarly define η′

and θ ′. Let β ′′ be the composition

GS′ SPGS′ SG′P′S′ SG′.
ηGS′ SβS′ SG′θ ′

We call β ′′ the adjoint buddy of β .1 If both α and β ′′ are
natural isos, then we can define a functor S̄ : Dialg(G′, F′) →
Dialg(F, G) which sends δ : G′d → F′d to

FS′d SF′d SG′d GS′d,
α ′
d Sδ β ′d

where β ′ = (β ′′)−1 and α ′ is defined by the composition

FS′ SPFS′ SF′P′S′ SF.
ηFS′ Sα−1

S′ SFθ ′

Moreover, the functors P̄ and S̄ constitute a dual adjunction
between Dialg(F, G) and Dialg(G′, F′).

4.2. Remark. Note that β and β ′′ are interdefinable: taking
the adjoint buddy twice gives identity. If P′ and S′ form a
dual equivalence, then the same holds for the dual adjunction
obtained via Theorem 4.1.

In our applications, the left square above will often consist
of two embeddings and P′ and S′ will be restriction of P
and S, respectively. In this case, however, the pair (P′, S′)
is not necessarily a dual adjunction itself (see Example 4.4
below). If they do form a dual adjunction, we get a trivial
natural isomorphism α . The following lemma states two
easy conditions that guarantee that the restriction of the
dual adjunction is again a dual adjunction.

4.3. Lemma. Let P : C → D and S : D → C form a dual
adjunction. Let i : C′ → C, j : D′ → D be embeddings such
that the restriction P′ of P to C′ lands in D′ and similar for S′.

1. If i and j are full embeddings, then P′ and S′ form a
dual adjunction.

2. If P and S form a dual equivalence and both embeddings
reflect isos, then P′ and S′ form a dual equivalence.

1This looks like the adjoint mate of β but is slightly different because the
units come from potentially different (dual) adjunctions, hence the name
“adjoint buddy”.

In fact, it suffices that the units are still morphisms in the
subcategories. Both conditions in Lemma 4.3 guarantee that
this is the case, but it is not automatic:

4.4. Example. The dual adjunction between BA and Set,
given by ultrafilters and (contravariant) powerset, does not
restrict to an adjunction between (the non-full subcategories
of) Boolean algebras with only monomorphic homomor-
phisms, and sets with surjective functions.

We use the remainder of this section to prove that the
category of descriptive □-frames (Example 3.11) is dually
equivalent to that of HAOs (Example 3.3). For objects this
was proved in [88].

4.5. Theorem. We have a dual equivalence

D-WZ□ ≡op HAO.

We work with the following inclusion functors and dual
adjunctions:

Pries DL

ES HA

ClpUp

≡op

pt

ClpUp′

≡op

I

pt′

j (3)

Here both I and j are embeddings, and the horizontal arrows
are Priestley duality [68] and Esakia duality [26, 27].
By Theorem 4.1 and Remark 4.2 we need to find natural

isomorphisms α : ClpUp ·I → j ·ClpUp′ and β ′′ : Vup ·pt′ →
pt ·N. Since Esakia duality is a restriction of Priestley duality,
the diagram in (3) naturally commutes and we trivially get
α . So we focus on finding β ′′.

Let β be defined by βX : N·ClpUpX → ClpUp·VupX : □a 7→

�a. This is easily seen to be a natural transformation. The
adjoint buddy β ′′ of β is a natural transformation Vup · pt →

pt · N. We aim to prove that it is a natural isomorphism.
ForU ∈ Vup · ptA and a ∈ A we have

□a ∈ β ′′A (U ) iff β(Nθ (□(a))) ∈ Ũ

iff U ∈ β(Nθ (□a)) = β(□(θ (a))) = β(□â)

iff U ⊆ â

where â = {q ∈ ptA | a ∈ q}. (Note that â is a clopen upset
of ptA, hence an element of Vup · ptA.) Guided by this, to
prove that β ′′ is an isomorphism on objects, we define a map
in the converse direction by

ξA : pt · NA → Vup · ptA : Q 7→
⋂

{b̂ | □b ∈ Q}.

This is well defined because the arbitrary intersection of
clopen upsets is a closed upset. It is monotone (i.e. a mor-
phism in Pos) because Q ⊆ Q ′ implies ξA(Q) ⊇ ξA(Q

′) and
Vup is ordered by reverse inclusion. Furthermore we have:

4.6. Lemma. The assignment ξA : pt · NA → Vup · ptA given
by Q 7→

⋂
{b̂ | □b ∈ Q} satisfies for all a ∈ A,

□a ∈ Q iff ξA(Q) ⊆ â.
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Proof. Left to right is immediate from the definition. Suppose
that□a < Q . Then the filterBa = {b ∈ A | □b ∈ Q} is disjoint
from the ideal ↓a (because we must have b ≰ a for all b ∈ B,
for otherwise□a ∈ Q). By the prime filter lemma (see e.g. [61,
Lemma 1.4]) Ba extends to a prime filter u disjoint from ↓a.
We then have u ∈ ξA(Q) while u < â, hence ξA(Q) ⊈ â. □

It follows from the lemma that ξ−1
A (�â) = □̂a, so that:

4.7.Corollary. For everyA ∈ HA, ξA is a Priestley morphism.

We now have all ingredients to prove Theorem 4.5.

Proof of Theorem 4.5. By Theorem 4.1 it suffices to show that
the β ′′ is a natural isomorphism. Note that a closed upset
c ∈ Vup ·ptA is determined by the clopen upsets in which it is
contained, and a point in pt·NA is uniquely determined by the
sets of the form □a it contains. It then follows from Lemma
4.6 that ξA = (β ′′A )

−1, hence β ′′ is a natural isomorphism. □

5 Logic for Dialgebras
We turn to a more restricted setup of dialgebras, where one
of the two functors determining the category of dialgebras
is an embedding. We define logic in a similar way as usual
in abstract coalgebraic logic, namely via a natural transfor-
mation ρ (see e.g. [48, Definition 3.1]) that we call a logical
connection. We then explain how to characterise a logic by
predicate liftings and axioms, and show how these give rise
to such a logical connection. We illustrate this using modal
intuitionistic logic based on the frames from Sections 2 and
3. We fix the following setup for the rest of the paper.

5.1. Setup. Let P : C → A be a contravariant functor and i :
C′ → C and j : A′ → A embeddings such that P[C′] ⊆ A′.
We denote the restriction of P to C′ by P′.

We think of C as the category of carriers of frames, and
P(C) as the algebra of predicates over C ∈ C, and a guiding
example is to take A′ = HA ⊆ A = DL. For frames, one can
think of C′ = Krip ⊆ C = Pos, or alternatively C′ = ES ⊆

C = Pries. The prime examples of functors P defining the
predicates are (clopen) upsets.

5.2. Definition. We call such a setup structured if P is the
dual adjoint of some contravariant S : A → C and S[A′] ⊆

C′. We denote the units of the dual adjunction by η : idC →

SP and θ : idA → PS.
If moreover θA′ ∈ A′ for allA′ ∈ A′ then we call the setup

well-structured. In this case we write θ ′ for the restriction of
θ to A′. In particular this implies θjA′ = jθ ′A′ for all A′ ∈ A′.

For the running examples, we note that the prime filter
functor S = pf witnesses that both ClpUp : Pries → DL and
Up : Pos → DL are well-structured.
A functor T : C′ → C gives rise to a category Dialg(i, T)

of dialgebras. We introduce logic for dialgebras generalising
the abstract view of coalgebraic logic [52, Section 3.3].

5.3. Definition. A modal logic for Dialg(i, T) is a pair (L, ρ)
where L is a functor A′ → A and ρ is a natural transforma-
tion

ρ : LP′ → PT.

The complex (di)algebra of a (i, T)-dialgebra (X ,γ ) is the
object (P′X ,γ ∗) ∈ Dialg(L, j) given by the concatenation

LP′X PTX PiX jP′X
ρX Pγ �

where we will often elide the embedding j.

5.4. Proposition. The assignment (X ,γ ) 7→ (P′X ,γ ∗) ex-
tends to a functor (·)∗ : Dialg(i, T) → Dialg(L, j) by putting
f ∗ = P′ f for morphisms.

Specifically, the initial (L, j)-dialgebra gives rise to the
interpretation of modal formulae, and plays the rôle of the
Lindenbaum-Tarski algebra of the logic.

5.5. Definition (Interpretation). Assume Dialg(L, j) has ini-
tial object ψ : LΨ → jΨ. Then the semantics of a (i, T)-
dialgebra γ : iX → TX is the unique map J·Kγ that makes
the following diagram commute:

LΨ LP′X

jΨ jP′X

LJ·Kγ

ψ γ ∗

jJ·Kγ

For structured setups, we define the theory map thγ :
iX → iS′Ψ for (X ,γ ) as the transpose of jJ·Kγ . Concretely,
thγ is given by the composition

iX SPiX = iS′P′X iS′Ψ.
ηSPX iS′J·Kγ

The map thγ need not be in C′ because ηiX need not be.

5.6.Definition. If the setup is well-structured we can define
the adjoint buddy ρ♭ : TS′ → SL of ρ as the composition

TS′ SPTS′ SLP′S′ SL.
ηTS′ SρS′ SLθ ′

To capture our running examples, we demonstrate how
to define concrete logics using predicate liftings [64, 74],
originally introduced for set-based coalgebras. They have
been used over different base categories in [24, Definition
2.5] and [10, Definition 8]. We assume that A is a variety
of single-sorted algebras over Set and U : A → Set is the
forgetful functor.

5.7. Definition. An n-ary predicate lifting is a natural trans-
formation λ : U(jP′)n → UPT, where (jP′)nX is the n-fold
product of PX in A.

For a collection Λ of predicate liftings for T and a set X ,
let L′X be the free A-algebra generated by the set{

♥λ(x1, . . . ,xn) | λ ∈ Λ,xi ∈ X
}
.

A Λ-axiom is a pair (φ,ψ ) of two elements in L′X , where X
is some set of variables.
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For a set Λ of predicate liftings for T and a collection Ax of
Λ-axioms, define a functor L(Λ,Ax) = L : A′ → A as follows:
For A ∈ A′ let LA be the free A-algebra generated by{

♥λ(a1, . . . ,an) | λ ∈ Λ,ai ∈ jA
}

subject to the relations R from Ax, where the variables are
substituted by elements from A. For a morphism f : A → B
define Lf on objects by

Lf (♥λ(a1, . . . ,an)) = ♥λ(f (a1), . . . , f (an)).

We call Ax sound if it induces a logical connection, i.e. a
well-defined natural transformation ρ(Λ,Ax) : LP′ → PT via

ρ(Λ,Ax),X ([♥
λ(a1, . . . ,an)]R ) = λX (a1, . . . ,an)

that is independent of the choice of representative relative
to R-equivalence classes [·]R . In this case, naturality is an
immediate consequence of naturality of predicate liftings.

5.8.Definition. The logic given by collectionsΛ of predicate
liftings and Ax of sound Λ-axioms is (L(Λ,Ax), ρ(Λ,Ax)).

The predicate liftings and axioms give rise to a new class
of algebras. We define the signature Σ+ as the signature Σ′

of A′ plus an operator ♠λ for each λ ∈ Λ. We let E+ to be the
collection of equations for A′ plus Ax. Let A+ = Var(Σ+,E+).
ThenA+ is a subvariety ofA′. WriteΨ for the freeA+-algebra
on zero generators. Then Ψ is also a A′-algebra. We claim
that Ψ is initial in Dialg(L, j).

5.9. Lemma. View Ψ as an object of A′ and defineψ : LΨ →

jΨ by ♥λ(a1, . . . ,an) 7→ ♠λ(a1, . . . ,an). Then (Ψ,ψ ) is initial
in Dialg(L, j).

5.10. Remark. Propositional variables can be expressed as
nullary operators in algebraic signature. The logical connec-
tion ρ then also defines their valuation.

We return to the examples of Sections 2 and 3.

5.11. Example. Recall the dialgebraic rendering of □-frames
from Example 3.11. Define λ□ : Up → Up · Pup by

λ□X : UpX → Up · PupX : a 7→ {b ∈ PupX | b ⊆ a}.

It is easy to see that this is a natural transformation. The in-
terpretation of the box modality in a (i, Pup)-dialgebra (X ,γ )
now is as desired: x ⊩ φ iff γ (x) ⊆ JφK, which intuitively
translates to every R□-successor of x satisfies φ. Imposing
the axioms

□φ ∧ □ψ = □(φ ∧ψ ) and □⊤ = ⊤

yields the functor N from Example 3.3 via the procedure from
Definition 5.7.

One can define an interpretation of the same logic in Vup
dialgebras in the same manner. Furthermore, the □ and ^
modalities in [15, 69, 89] can be defined likewise.

6 General Frames and Completeness
We introduce categorical notions of completeness and gen-
eral frames, and define descriptive semantics and use this
for a general completeness theorem.
Consider a setting as in the previous section, where the

semantics of a language (L, ρ) is given via an initial dialgebra.
Intuitively, the logic is complete if every two expressions
(elements) in the initial (L, j)-dialgebra (Ψ,ψ ) can be distin-
guished in some (i, T)-dialgebra. That is, for every two ele-
ments a,b ∈ Ψ there exists (X ,γ ) ∈ Dialg(i, T) such that the
initial map J·Kγ : (Ψ,ψ ) → (P′X ,γ ∗) satisfies JaKγ , JbKγ .
This idea underlies the following definition.

6.1. Definition. We say that the logic (L, ρ) is complete if
the source (or cosink){

J·Kγ : Ψ → P′X
}
(X ,γ )∈Dialg(i,T)

is jointly monic in A′.

For standard (e.g. normal) modal logics, Ψ is the algebra
of formulae, quotiented by logical equivalence, and the P′X
correspond to the complex algebras of the class of frames
under consideration.

It is easy to see that soundness of Ax (Definition 5.7) imme-
diately implies soundness of the logic, as formulae identified
by axioms are equivalent in the codomain of ρ, and therefore
have the same denotation.
In practice one often finds a single monomorphism from

the initial algebra to some complex algebra of a frame, e.g. the
canonical model, which then makes the cosink jointly monic.

We now give a categorical definition of general frames. In-
tuitively, a general frame is a (i, T)-dialgebra (X ,γ ) together
with a “collection of admissible subsets” (a subobject of P′X )
which is closed under certain operations. General frames
provide the glue between algebraic and frame semantics that
we need to prove completeness via duality, because they
arise as the duals of Lindenbaum-Tarski algebras.

6.2.Definition. A general frame for the logic (L, ρ) is a triple
(X ,γ ,m) where (X ,γ ) is a (i, T)-dialgebra andm : A → P′X
is a monomorphism in A′ (i.e.m is a subobject of P′X ) such
that the composition γ ∗ ◦ Lm factors through jm : jA →

jP′X .
A morphism from (X ,γ ,m) to (X ′,γ ′,m′) is an (i, T)-di-

algebra morphism h : (X ,γ ) → (X ′,γ ′) such that P′h ◦m′

factors throughm. In diagrams:

LA LP′X A′ P′X ′

jA jP′X A P′X

objects:

Lm

µA γ ∗ morphisms:

m′

ĥ P′h
jm m

We write Gen(ρ) for the category of general frames and
general frame morphisms, and identify the subobject m :
A → P′X with A if there is no danger of confusion.
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6.3. Remark. If j preserves monos then both fill-ins µA and
ĥ in the diagrams above are unique asm and jm are monic.

6.4. Example. Let (X , ≤,R□,A) be a general □-frame (Defi-
nition 3.10), and let ((X , ≤),γ ) be the dialgebra representing
(X , ≤,R□), carried by the poset (X , ≤). Then ((X , ≤),γ ,A) is
a general frame in the sense of Definition 6.2 above.

6.5. Examples. Since coalgebras are special cases of dial-
gebras, Definition 6.2 gives a notion of general frame for
coalgebraic logic. This specialises to the usual notion of gen-
eral frame in well-known settings like normal modal logic
(see [18, §8.1] or [12]) and monotone modal logic (see [41]).
Specialising this further by viewing C � Coalg(T) where
Tc = 1 and A � Alg(id0) for final/initial objects 0 and 1,
respectively, we obtain that e.g. general frames for the ad-
junction between sets and boolean algebras are fields of sets
in the standard way, and analogous instances for distributive
lattices (which yields rings of sets) and Heyting algebras
(general intuitionistic Kripke frames).

We have an obvious forgetful functor f : Gen(ρ) →

Dialg(i, T). Conversely, we can view every (i, T)-dialgebra
(X ,γ ) as a general ρ-frame via (X ,γ , P′X ) with the inclusion
idP′X . This assignment extends to a functor g : Dialg(i, T) →
Gen(ρ) by setting gh = h, for everymorphismh inDialg(i, T).
We immediately see that f ◦ g = idDialg(i,T). Furthermore, for
every general frame (X ,γ ,A) the identity on X is a general
frame morphism g · f(X ,γ ,A) = (X ,γ , P′X ) → (X ,γ ,A).
Now it is easy to verify that we have:

6.6. Proposition. The functors f and g constitute an adjunc-
tion g ⊣ f and exhibit that Dialg(i, T) is a coreflective subcat-
egory of Gen(ρ) (because the unit is a natural isomorphism).

Crucially for completeness, we can mediate between gen-
eral frames and the associated algebras.

6.7. Proposition. If j preserves monos, we have a contravari-
ant functor (·)+ : Gen(ρ) → Dialg(L, j) given by (X ,γ ,A)+ =
(A, µA) and h+ = ĥ, with µA and ĥ as in Definition 6.2.

Keeping Definition 6.1 in mind, we are interested in whet-
her an (L, j)-dialgebra (A,α) maps to the complex algebra of
some (i, T)-dialgebra and, if such a morphism f : (A,α) →
(X ,γ )∗ exists, whether the underlying map f : A → P′X
is mono. Put differently, we want to know whether (·)+ is
surjective on objects. If this is the case we view it as a special
property:

6.8. Definition. A logic (L, ρ) has weak descriptive seman-
tics if we have a map (·)+ from the objects of Dialg(L, j) to
the objects of Gen(ρ) such that for every (L, j)-dialgebra B
we have (B+)+ � B. We say that the logic has descriptive
semantics if (·)+ extends to a section of (·)+ (i.e, a functor
such that (·)+ ◦ (·)+ = idDialg(L,j)).

If the logic has descriptive semantics, then by definition
we have B � (B+)

+ for all B ∈ Dialg(L, j). We call the

general frames in the image of (·)+ descriptive, and we call a
(i, T)-dialgebra descriptive if it lies in the image of f◦(·)+. For
every descriptive general frame F = B+ we have (F+)+ � F
because (F+)+ = ((B+)

+)+ � B+ = F. In fact, the image
of (·)+ is dually equivalent to Dialg(L, j). Thus, a logic has
descriptive semantics if we can choose a subcategory of
Gen(ρ) which is dually equivalent to Dialg(L, j). We have:

6.9. Proposition. Suppose (L, ρ) has weak descriptive seman-
tics. Then the logic is complete for (i, T)-dialgebras.

Proof. Let (Ψ,ψ )+ = (X ,γ ,A). Then we have a monomor-
phism mA : A → P′X which is also a morphism from
(X ,γ ,A)+ to (X ,γ )∗ = (P′X ,γ ∗). By assumption (X ,γ ,A)+ �
(Ψ,ψ ) andmA is monic. □

The following Proposition gives a sufficient condition for
the existence of (weak) descriptive semantics. It is a modifi-
cation of results in [55].

6.10. Proposition. Suppose we work in a well-structured
setup and θ ′ is pointwise monic.

1. If there exists a (not necessarily natural) transformation
τ : SL → TS′ such that ρ♭ ◦ τ = id then (L, ρ) has weak
descriptive semantics.

2. If moreover τ is natural, then (L, ρ) has descriptive se-
mantics.

Proof. We prove only item 1. Given a (L, j)-dialgebra (A,α),
define α∗ to be the composition

iS′A SjA SLA TS′A� Sα τA

and let (A,α)+ = (S′A,α∗,A). By assumption we have a
monomorphism θ ′A : A → P′S′A. We claim that

LA LP′S′A

jA jP′S′A

Lθ ′A

α (α∗)∗

jθ ′A

(4)

commutes. This can be proven in a way similar to Theorem
6.4 in [55]. □

As an example, we re-establish the completeness for □-
frames from [88, Theorem 1].

6.11. Example. There is a forgetful functor Dialg(I, Vup) →
Gen(ρ), where ρ corresponds to the logic given in Example
5.11. Since Dialg(I, Vup) is dually equivalent to Dialg(L, j)
(by Theorem 4.5), this proves that the functor (·)+ : Gen(ρ) →
Dialg(L, j) has a section, which in turn proves completeness
of IntK□ with respect to □-frames.

Alternatively, this can be obtained via Proposition 6.10.

6.12. Example. Minor modification of Example 6.11 yields
the same results for bi-intuitionistic counterpart of normal
modal intuitionistic logic, see [38, Section 5].
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7 Prime Filter Extensions and Expressivity
We investigate when a logic (L, ρ) is expressive for (a class
of) (i, T)-dialgebras, a notion similar to the Hennessy-Milner
property. We generalise this to expressivity-somewhere-else,
to capture notions of bisimilarity-somewhere-else as found
in [12, 50]. To do this, we introduce prime filter extensions,
which build on our theory of general and descriptive frames
from the previous section. (We choose the term “prime filter
extension” by analogy to ultrafilter extensions for modal
logic over a classical base, although concrete instances are
not necessarily based on prime filters.) The abstract notion
of the “collection of prime filters” of X ∈ C′ is the object
S′P′X ∈ C′. In Proposition 6.10 we have seen that, under
certain conditions, the spaces underlying descriptive frames
corresponding to complex algebras are of the form S′P′X .
Therefore we define the prime filter extension of (X ,γ ) as a
truth-preserving map in C to a certain descriptive frame.

7.1. Definition. Write pf for the map on objects given by
the composition

Dialg(i, T) Gen(ρ) Dialg(L, i)
Gen(ρ) Dialg(i, T).

g (·)+

(·)+ f

Let (X ,γ ) be a (i, T)-dialgebra and let pf(X ,γ ) = (X̂ , γ̂ ). A
prime filter extension of a (i, T)-dialgebra is a morphism u in
C from iX to iX̂ such that the following commutes:

iX iX̂ iS′Ψ
u

thγ

thγ̂ (5)

In the following special case, prime filter extensions exist.

7.2. Proposition. If weak descriptive semantics are given
via Proposition 6.10, then every dialgebra has a prime filter
extension.

Prime filter extensions play a rôle in the expressivity-
somewhere-else result below. We define what we mean by
expressivity and expressivity-somewhere-else. The former
is a minor adaptation of [48, Definition 4.1], and intuitively
expresses that non-equivalent formulae can be semantically
distinguished. A dialgebra is expressive-somewhere-else if it
can be embedded into an expressive one.

7.3. Definition. A (i, T)-dialgebra (X ,γ ) is said to be ex-
pressive if the theory map thγ factors through a dialgebra
morphism followed by a monomorphism in C′.

A (i, T)-dialgebra (X ,γ ) is said to be expressive somewhere
else if the theory map thγ factors through morphism in C
followed by a theory map of an expressive dialgebra.

General expressivity results can be proven in a way similar
to [48]. We proceed differently and use the theory of general
and descriptive frames, developed in the previous section, to
prove expressivity and expressivity-somewhere-else.

7.4. Proposition (Expressivity-somewhere-else). If every de-
scriptive (i, T)-dialgebra is expressive and the (i, T)-dialgebra
(X ,γ ) has a prime filter extension. Then (X ,γ ) is expressive
somewhere else.

Proof. The diagram in (5) commutes and we assumed thγ̂ to
correspond to an expressive dialgebra. □

The following theorem is the main theorem of this section.

7.5. Theorem. Suppose the logic (L, ρ) for (i, T)-dialgebras
has descriptive semantics given as in Proposition 6.10. Then:

1. Every descriptive (i, T)-dialgebra is expressive.
2. Every (i, T)-dialgebra is expressive somewhere else.

Proof. We show that for each (X ,γ ) underlying a descriptive
frame, the theory map is a dialgebra morphism. (Clearly this
suffices.) So suppose (X ,γ ,A) = (A,α)+ is a descriptive gen-
eral frame. Then we have an initial morphism t : (Ψ,ψ ) →
(A,α) and this induces a morphism t+ = S′t : (Ψ,ψ )+ →

(A,α)+ = (X ,γ ,A). By construction this is such that the left
diagram below commutes, and taking complex algebras (see
Proposition 5.4) proves that the right diagram commutes:

iX iS′Ψ

TX TS′Ψ

iS′t

γ ψ+

TS′t

jP′S′Ψ jP′X

LP′S′Ψ LP′X

(ψ+)∗

jP′S′t

γ ∗

LP′S′t

Besides, we have seen in the proof of Proposition 6.10 that θ ′Ψ
is an (L, j)-dialgebra morphism from (Ψ,ψ ) to (P′S′Ψ, (ψ+)∗).
Therefore the following diagram commutes:

jΨ jP′S′Ψ jP′X

LΨ LP′S′Ψ LP′X

jθ ′Ψ

ψ (ψ+)∗

jP′S′t

γ ∗

lθ ′Ψ LP′S′t

Since (Ψ,ψ ) is the initial (L, j)-dialgebra, the interpreta-
tion J·K : Ψ → P′X satisfies

jJ·K = jP′S′t ◦ jθ ′Ψ = PiS′t ◦ θjΨ .

Here the second equality holds by the remark in Definition
5.2. But this shows that J·K is the adjoint buddy of iS′t :
iX → iS′Ψ and therefore iS′t = thγ is the theory map
from Definition 5.5.

But S′t is a dialgebra morphism (X ,γ ) → (S′Ψ,ψ+), so this
proves that the theory map factors as a dialgebra morphism
(S′t ) followed by a monomorphism (the identity on iS′Ψ),
hence (X ,γ ) is expressive.
Item 2 follows from the first and Proposition 7.2. □

7.6. Example. Descriptive □-frames are expressive because
the map ξ defined in Lemma 4.6 is a natural isomorphism
(as inverse of a natural isomorphism). Moreover, □-frames
have prime filter extensions by Proposition 7.2 because □-
frames have weak descriptive semantics via Proposition 6.10
(Example 6.11, note that the section in this example need not
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be natural). It then follows from Proposition 7.4 that every
□-frame is expressive-somewhere-else.

8 Monotone Modal Intuitionistic Logic
We showcase the versatility of our approach by showing how
it encompasses monotone modal intuitionistic logic [36, Sec-
tion 6]. This logic is closely related to its classical counterpart
[19, 40, 41], except that the underlying propositional logic is
intuitionistic. We first define the algebras corresponding to
this logic.

8.1. Definition. A Heyting algebra with monotone operator
(HAM) is a pair (H ,△) of a Heyting algebra H and a map
△ : H → H satisfying △(a ∧ b) ≤ △a for all a,b ∈ H . A
morphism between HAMs (H ,△) and (H ′,△′) is a Heyting
algebra homomorphism f : H → H ′ satisfying△′◦ f = f ◦△.
Write HAM for the category of HAMs and HAM morphisms.

HAMs are (M, j)-dialgebras in a way similar to Example
3.3, where j is the embedding HA → DL and MA is the free
distributive lattice generated by △a, where a ∈ A, subject to
△(a ∧ b) ≤ △a (or equivalently △(a ∧ b) ∧ △a = △(a ∧ b)).
The frame semantics of this logic are given by a form of

(monotone) neighbourhood semantics, called neighbourhood
spaces in [36, Subsection 6.4.1].

8.2. Definition. Let (X , ≤) be a poset. A monotone neigh-
bourhood for x ∈ X is a collectionW of up-closed sets in
(X , ≤) such that a ∈ W and a ⊆ b implies b ∈ W . A mono-
tone frame is a tuple (X , ≤,N ) where (X , ≤) is a poset and
N assigns to each x ∈ X a monotone neighbourhood, such
that a ∈ N (x) and x ≤ y implies a ∈ N (y).

A monotone frame morphism f : (X , ≤,N ) → (X ′, ≤′,N ′)

is a bounded morphism f : (X , ≤) → (X ′, ≤′) such that for
all up-closed a′ ⊆ X ′ and x ∈ X :

a′ ∈ N ′(f (x)) iff f −1(a′) ∈ N (x).

Monotone frames and morphism form the category Mon.

We can viewMon as a category of dialgebras. Interestingly,
the crucial functor to achieve this is the composition of two
functors we have already encountered: P−up and Pdn, where
P−up is the restriction of Pup to Krip (see Section 2).

8.3. Theorem. We have Mon � Dialg(i, PdnP−up).

Define the predicate lifting λ△ : j · Up → PdnP
−
up · Up by

λ△
(X ,≤)(a) = {W ∈ PdnP

−
upX | a ∈W }.

One readily sees that this yields the modalilty △. We now
prove completeness. Using Propositions 6.9 and 6.10, com-
pleteness follows from a simple application of the prime
filter lemma (in the proof of Lemma 8.4). Monotone modal
intuitionistic logic, as a logic in the sense of Definition 5.3,
is given by ρ : M · Up′ → Up · PdnP

−
up, which is defined by

ρ(X ,≤)(△a) = {W ∈ PdnP
−
up(X , ≤) | a ∈W }

and M is as introduced after Definition 8.1. Let ρ♭ : PdnP−up ·
pt′ → pt · M be the adjoint buddy of ρ. We have

△a ∈ ρ♭A(W ) iff ã ∈W , (6)

where ã = {u ∈ ptA | a ∈ u}. We define a potential inverse
ξ : pt · M → PdnP

−
up · pt

′ by

ξA(U ) = {b ⊆ pt′A | ∃a ∈ A with ã ⊆ b and △a ∈ U }.

8.4. Lemma. Let A ∈ HA we have ρ♭A ◦ ξA = idpt·NA.

Combining Propositions 6.9 and 6.10 and Lemma 8.4 gives:

8.5. Theorem. Monotone modal intuitionistic logic is com-
plete with respect to monotone frames.

In concrete terms, an axiomatisation of monotone modal
intuitionistic logic is given by an axiomatisation of intuition-
istic logic, together with the axiom △(φ ∧ ψ ) → △φ, and
the theorem above gives completeness of this axiomatisation
with respect to monotone frames.

8.6. Definition. A general monotone frame is a tuple (X , ≤
,N ,A) where (X , ≤,N ) is a monotone frame, (X , ≤,A) is
a general intuitionistic frame, and A is closed under m△ :
Up(X , ≤) → Up(X , ≤) given by

m△(a) = {x ∈ X | a ∈ N (x)}.

We call A the collection of admissible subsets. A morphism
between such frames is a monotone frame morphism whose
inverse image preserves admissibles.

An upset in a general monotone frame is called closed if it
is the intersection of admissible upsets. A general monotone
frame is called descriptive (compare [41, Subsection 2.4.2]) if
(D1) For every closed upset c , c ∈ N (x) iff [c ⊆ a → a ∈

N (x)], where a ranges over A;
(D2) For any upset b, b ∈ N (x) iff there is a closed c ⊆ b

with c ∈ N (x).
We denote the category of general monotone frames and
morphisms and its full subcategory of descriptive frames by
G-Mon and D-Mon respectively.

Every monotone frame can be viewed as a general mono-
tone frame where A is the collection of all upsets. Also, a
general monotone frame (X , ≤,N ,A) gives rise to the HAM
(A,m△), whereA is the Heyting algebra given by the general
intuitionistic frame (X , ≤,A). This assignment extends to a
functor G-Mon → HAM. In the converse direction we have:

8.7. Definition. Let (H ,△) be a HAM and let (pfH , ⊆, H̃ )

be the dual intuitionistic Kripke frame (pf are prime filters).
For each u ∈ pfH define a neighbourhood N (u) by:

• If k is the intersection of sets in H̃ , then k ∈ N (u) iff
k ⊆ ã implies ã ∈ N (u);

• For any up-closed q in (pfH , ⊆), q ∈ N (u) iff there is
an intersection k of elements in H̃ such that k ⊆ q and
k ∈ N (u).
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It is straightforward to verify that (pfH , ⊆,N , H̃ ) is a de-
scriptive monotone frame. Moreover, although we omit the
details, note that this gives rise to a dual equivalence

D-Mon ≡op HAM. (7)
Just like descriptive□-frames, descriptivemonotone frames

can also be viewed as dialgebras for functors I, W : ES →

Pries, where I is the embedding of Esakia spaces into Priest-
ley spaces and W is defined as follows.

8.8. Definition. Define W : ES → Pries by W = Vdn · V
−
up,

where V−up is the restriction of Vup to ES, see Proposition 3.14.

An element of WX is a closed collection A of closed upsets
in X satisfying c ∈ A and c ⊆ c ′ implies c ′ ∈ A (i.e. A itself,
as well as the elements of A need to be closed).

8.9. Theorem. We have D-Mon � Dialg(I, W).

The categorical duality in (7) can also be achieved using
Theorem 4.1 and the characterisation of descriptive mono-
tone frames as dialgebras.

8.10. Remark. Similarly, one can define a “dual” opera-
tor ▽, interpreted by x ⊩ ▽φ iff X \ JφK < N (x). This
means that the collection of neighbourhoods of x consists
of downsets. The category of frames corresponding to this
setting is Dialg(i, P+upPdn) and the category of descriptive
frames is Dialg(I, V+upVdn), where P+up and V+up are the exten-
sions of Pup and Vup to endofunctors on Pos and Pries, re-
spectively.

9 Conditional Intuitionistic Logic
Conditional intuitionistic logics [21, 84, 85] combine non-
monotonic reasoning with an intuitionistic base logic. From
a philosophical viewpoint, this allows us to separate logical
principles that are conditional from those that are induced
by the base logic being classical. We show how this fits in
our framework.
The language of conditional intuitionistic logic is intu-

itionistic logic with an additional binary modality ▷ which
is non-monotonic in its first argument and normal in its
second argument. That is, ▷ satisfies

φ ▷ (ψ ∧ θ ) = (φ ▷ ψ ) ∧ (φ ▷ θ ), φ ▷ ⊤ = ⊤.

The algebraic semantics are defined as follows.

9.1. Definition. A Heyting algebra with conditional operator
(HAC) is a pair (H ,▷) of a Heyting algebra H together with
a binary map ▷: H × H → H which satisfies

a ▷ (b ∧ c) = (a ▷ b) ∧ (a ▷ c), a ▷ ⊤ = ⊤.

A HAC morphism (H ,▷) → (H ′,▷′) is a Heyting algebra
morphism h : H → H ′ satisfying h(a ▷ b) = h(a) ▷′ h(b).
Write HAC for the category of HACs and HAC morphisms.

The object part of this definition corresponds to [84, Defi-
nition 3]. Definition 1 of op.cit. defines frame semantics for
conditional intuitionistic logic as follows.

9.2. Definition. A conditional Kripke frame is a tuple (X , ≤
, {Ra | a ∈ PX }), where (X , ≤) is a preorder and for each
subset a ⊆ X we have a relation Ra ⊆ X × X , subject to

≤ ◦ Ra ⊆ Ra ◦ ≤.

These can in fact be seen an (intuitionistic) adaptation of
selection function frames (see e.g. [19, Section 10], [52, Sec-
tion 2]), that is, as tuples (X , ≤, s) where (X , ≤) is a preorder
and

s : X × PX → PX

is a function satisfying x ≤ y implies s(y,a) ⊆ ↑≤s(x ,a). The
correspondence with conditional Kripke frames arises by
identifying s(x ,a) with the set of Ra-successors of x .
Since truth sets of intuitionistic formulas are upsets in

(X , ≤), it makes sense to restrict the domain of s to X ×

Up(X , ≤). Since furthermore we are interested in whether or
not s(x ,a) is a subset of some truth set JφK, and s(x ,a) ⊆ JφK
if and only if ↑≤s(x ,a) ⊆ JφK, we stipulate the codomain of
s to consist of upsets only.

9.3.Definition. An intuitionistic selection function frame is a
tuple (X , ≤, s) consisting of a preorder (X , ≤) and a function

s : X × Up(X , ≤) → Up(X , ≤)

such that x ≤ y implies s(y,a) ⊆ s(x ,a). A morphism f :
(X , ≤, s) → (X ′, ≤′, s ′) is a bounded morphism f : (X , ≤) →
(X ′, ≤′) that satisfies for all x ∈ X and a′ ∈ Up(X , ≤):

f [s(x , f −1(a′))] = s ′(f (x),a′). (8)
(Unravelling the definitions shows that this is precisely re-
quired to preserve truth of ▷.) Write SFF for the category of
intuitionistic selection function frames and morphisms.

We show how to view such frames as dialgebras.

9.4. Definition. For a preorder (X , ≤) define D(X , ≤) as the
collection of functions Up(X , ≤) → Up(X , ≤) ordered by д ≤

h iff h(a) ⊆ д(a) for all a ∈ Up(X , ≤), viewed as a preorder.
For a bounded morphism f : (X , ≤) → (X ′, ≤′) in PreKrip
define Df by Df (h)(a′) = f [h(f −1(a′))].

Recall that i′ denotes the embedding PreKrip → PreOrd.
We leave it to the reader to verify:

9.5. Theorem. We have SFF � Dialg(i′, D).

We now define general and descriptive frames, connect
these to the frames used in [21], and prove completeness.
In what follows, we write “frame” instead of “intuitionistic
selection function frame.”

9.6.Definition. A general frame is a tuple (X , ≤, s,A)where
(X , ≤, s) is a frame, (X , ≤,A) is a general intuitionistic frame
and A is closed underm▷ : Up(X , ≤) × Up(X , ≤) → Up(X , ≤)
given bym▷(a,b) = {x ∈ X | s(x ,a) ⊆ b}.

A general frame is called descriptive if moreover:
• For all a ∈ Awe have s(x ,a) =

⋂
{b ∈ A | s(x ,a) ⊆ b};

• For all a < A we have s(x ,a) = ∅.
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Amorphism between general frames is a morphism between
the underlying frames (as in Definition 9.3) which is simul-
taneously a general intuitionistic frame morphism. Write
G-SFF and D-SFF for the category of general frames and
morphism, and its full subcategory of descriptive frames.

The second clause of descriptive frames is rather arbitrary.
We could have chosen to set s(x ,a) = a or s(x ,a) = X for
all a < A. The crux is that we want to determine the action
of s on a < A uniquely. Additional axioms of the logic, for
example inspired by [29–32], may require a more involved
definition.

9.7. Remark. Interestingly, general frames with s(x ,a) = ∅

for all a < A correspond bijectively with the frames underly-
ing the models in [21, Definition 3].

We complete this section by proving completeness (which
again follows from an easy application of the prime filter
lemma). As usual, we have a functor (·)+ : G-SFF → HAC,
sending a general frame (X , ≤, s,A) to (X ,m▷) and a mor-
phism f to f −1. Conversely:

9.8. Definition. Suppose given a HAC (H ,▷). Let (X , ≤,A)
be the descriptive intuitionistic frame dual to H and recall
that A = {ã | a ∈ H }. Let (H ,▷)+ = (X , ≤, s,A) where
s : X × Up(X , ≤) → Up(X , ≤) is defined by:

• If ã ∈ A, then s(u, ã) =
⋂
{b̃ ∈ A | a ▷ b ∈ u};

• If d ∈ Up(X , ≤) and d < A, let s(u,d) = ∅.

It is obvious that the construction in Definition 9.8 does
indeed give a descriptive frame. The next lemma provides
the crucial argument for proving completeness. Its proof
resembles the proof of Lemma 4.6.

9.9. Lemma. In the setting of Definition 9.8, for all ã, b̃ ∈ A

we have s(u, ã) ⊆ b̃ iff a ▷ b ∈ u.

Lemma 9.9 entails ((H ,▷)+)
+ = (A,m▷) � (H ,▷). So the

logic has weak descriptive semantics and by Proposition 6.9:

9.10. Theorem. Conditional intuitionistic logic is (sound and)
complete with respect to the intuitionistic selection function
frames from Definition 9.3.

10 Conclusion
We have established duality, completeness, and Hennessy-
Milner type results for dialgebraic logics. Crucially, this al-
lows us to give a general, categorical description of vari-
ous flavours of modal intuitionistic logics based on alge-
bra/coalgebra duality, addressing an open research question
in the field.

Some technical questions remain open. For example, under
which conditions θ ′ in Proposition 6.10 is pointwise monic?
A similar question has been treated in [48, Section 4], al-
though the setup in op.cit. is different. Another question is:
under which conditions can the natural transformation τ in

Proposition 6.10 be found? A similar question, but in a more
restricted setting, has been investigated in [55].

Conceptually, our research can be extended along several
independent and mutually orthogonal directions.

Additional Axioms. An important direction for future re-
search is the investigation of intuitionistic modal logics not
yet covered by our paper, for example Simpson’s IK which
adds additional interaction axioms between implication and
modal operators. More generally, it would be intriguing to
develop a theory of definability along the lines of Goldblatt
Thomason [37, 54], and investigate Sahlqvist type theorems
[72, 73].

Different Modalities. Other modal intuitionistic logics that
potentially fit the framework include probabilistic intuition-
istic logic [59] and intuitionistic public announcement logic
[7, 58]. More generally, it would be fascinating to investigate
intuitionistic fragments of (set-based) coalgebraic logics, in
analogy with positive fragments of coalgebraic logics [6, 22].
Such a line of research may benefit from existing results
about the posetification of a set-functor, i.e. the lifting of an
endofunctor on Set to one on Pos [5, 22].

Different Base Logics. Although this paper focussed on modal
intuitionistic logics, the theory is developed in more gener-
ality. Evidently, it also captures modal extensions of dual-
intuitionistic and bi-intuitionistic logic [38, 70, 83], but it
would be interesting to see whether more (logical) paradigms
fall within the presented framework. For example, it may
give rise to a dialgebraic treatment of modal logics based
on the fragment of intuitionistic logic with connectives ∧
and→ [9, 71]. Algebraic semantics for this logic are given
by implicative meet-semilattices, for which an Esakia-style
duality result is already in place [8].

Extending the Framework. Apart from further investigating
the framework defined in this paper, it would be fascinating
to see if it can be generalised to the setting of arbitrary dial-
gebras. That is, can we avoid the assumption that one of the
functors defining a category of dialgebras is an embedding?
In particular, this would cover several flavours of automata,
modelled as dialgebras for two functors on Set [13].

Equivalence Notions. Finally, the theory would benefit from a
high-level comparison of dialgebraic equivalence notions in
the style of Staton [79]. It would furthermore be interesting
to see how these interact with the notions of bisimulations
for modal (bi-)intuitionistic logics given in [1, 38, 45].
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