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Abstract

For lack of general algorithmic methods that apply to
wide classes of logics, establishing a complexity bound for
a given modal logic is often a laborious task. The present
work is a step towards a general theory of the complex-
ity of modal logics. Our main result is that all rank-1
logics enjoy a shallow model property and thus are, un-
der mild assumptions on the format of their axiomatization,
in PSPACE . This leads not only to a unified derivation
of (known) tightPSPACE -bounds for a number of log-
ics includingK, coalition logic, and graded modal logic
(and to a new algorithm in the latter case), but also to a
previously unknown tightPSPACE -bound for probabilis-
tic modal logic, with rational probabilities coded in binary.
This generality is made possible by a coalgebraic seman-
tics, which conveniently abstracts from the details of a given
model class and thus allows covering a broad range of log-
ics in a uniform way.

1. Intoduction

Modal logics are attractive from a computational point of
view, as they often combine expressiveness with decidabil-
ity. For many modal logics not involving dynamic features,
satisfiability is known to be inPSPACE . This is typically
proved for one logic at a time, e.g. by modifications of the
witness algorithm for the modal logicK [4], but also us-
ing markedly different methods such as in the constraint-
basedPSPACE -algorithm for graded modal logic [31]. A
first glimpse of a generalisable method was given in [34],
where various epistemic logics, equipped with a neigh-
borhood frame semantics, were shown to be inNP and
PSPACE , respectively (with theK axiom being respon-
sible forPSPACE -hardness; recent work [11] shows that
negative introspection brings the complexity back down to
NP). Nevertheless, there is to date no generally applica-
ble theorem that allows establishingPSPACE -bounds for
large classes of modal logics in a uniform way.

Here, we generalise the methods of [34] to obtain

PSPACE bounds for rank-1 modal logics (those axiomati-
sable by formulae whose nesting depth of modalities equals
one) in a systematic way. Although limited to rank 1, our
approach covers numerous relevant and non-trivial exam-
ples. E.g., our results recover knownPSPACE bounds for
standard modal logics such asK and also for a range of
non-normal modal logics such as graded modal logic [31]
and coalition logic [23]. Moreover, our method goes be-
yond re-proving known results in a uniform fashion: we ob-
tain a previously unknownPSPACE -bound for probabilis-
tic modal logic [17, 13], with rational probabilities coded
in binary. These logics are far from exotic: graded modal
logic plays a role e.g. in decision support and knowledge
representation [33, 19], and probabilistic modal logic has
appeared in connection with model checking [17] and in
modelling economic behaviour [13].

The key to the generality is to parametrise the theory over
the type of systems defining the semantics, using coalge-
braic methods. Coalgebra conveniently abstracts from the
details of a concrete class of models by encoding it as an
endofunctor on the category of sets. As specific instances,
one obtains e.g. Kripke frames, (monotone) neighbourhood
frames [12], game frames [23], probabilistic transition sys-
tems and automata [24, 3], weighted automata, linear au-
tomata [6], and multigraphs [9]. Despite the broad range
of systems covered by the coalgebraic approach, a substan-
tial body of concepts and non-trivial results has emerged,
encompassing e.g. generic notions of bisimilarity and coin-
duction [2], corecursion [32], duality, and ultrafilter exten-
sions [15]. Coalgebraic modal logic features in actual spec-
ification languages such as the object oriented specification
language CCSL [26] and COCASL [18].

The coalgebraic study of computational aspects of modal
logic was initiated in [30], where the finite model property
and associatedNEXPTIME -bounds were proved. Here,
we push this further by proving a coalgebraic shallow model
property. OurPSPACE -algorithm traverses a shallow
model, stripping off one layer of modalities in every step.
This requires converting the axiomatisation of a given logic
into a set of logical rules that obeys a specific closure condi-
tion, and a general construction to perform this conversion



is provided. The algorithm runs inPSPACE , provided the
induced set of rules has a polynomial bound on matchings,
which is the case for all examples we are aware of.

2. Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic in-
terpretation of modal logic.

Definition 2.1. [27] Let T : Set → Set be a functor, re-
ferred to as thesignature functor, whereSet is the category
of sets. AT -coalgebraA = (X, ξ) is a pair (X, ξ) where
X is a set (ofstates) andξ : X → TX is a function called
thetransitionfunction.

We view coalgebras as generalised transition systems:
the transition function delivers a structured set of succes-
sors and observations for a state. Mutatis mutandis, we can
in fact allowT to take proper classes as values, as we never
iterateT or otherwise assume thatTX is a set; details are
left implicit. This allows us to treat more examples, in par-
ticular Pauly’s coalition logic (Example 2.5.7 below).

Assumption 2.2. We can assume w.l.o.g. thatT preserves
injective maps [1]. For convenience of notation, we will
in fact sometimes assume thatTX ⊆ TY in caseX ⊆
Y . Moreover, we assume w.l.o.g. thatT is non-trivial, i.e.
TX = ∅ =⇒ X = ∅ (otherwise,TX = ∅ for all X).

Modal logic in the form considered here has been in-
troduced as a specification logic for coalgebraically mod-
elled reactive systems in [22], generalising previous re-
sults [14, 25, 16, 20]. The coalgebraic semantics is based on
predicate liftings, which abstract from the concrete interpre-
tation of modal operators in the same way that the signature
functor abstracts from a concrete class of models.

Definition 2.3. A predicate liftingfor a functorT is a nat-
ural transformationλ : 2 → 2 ◦ T op, where2 denotes the
contravariant powerset functorSet

op → Set.

A coalgebraic semantics for a modal logic consists of a
signature functor and an assignment of a predicate lifting to
every modal operator; we write[λ] for a modal operator that
is interpreted using the liftingλ. Thus, a setΛ of predicate
liftings for T determines the syntax of a modal logicL(Λ).
Formulaeφ, ψ ∈ L(Λ) are defined by the grammar

φ ::= ⊥ | φ ∧ ψ | ¬φ | [λ]φ,

whereλ ranges overΛ. Disjunctionsφ ∨ ψ, truth⊤, and
other boolean operations are defined as usual. Therank
of a formula is its maximal nesting depth of modal oper-
ators; note however that the notion ofrank-1 axiom em-
ployed in [21, 8, 15, 30], replaced below by the notion of

one-step rule, is stricter than ‘formula of rank1’ in that it
disallows non-trivial subformulae of rank0.

The satisfaction relation|=C between statesx of a T -
coalgebraC = (X, ξ) andL(Λ)-formulae is defined in-
ductively, with the usual clauses for the boolean operations.
The clause for the modal operator[λ] is

x |=C [λ]φ ⇐⇒ ξ(x) ∈ λC([[φ]]C),

where[[φ]]C = {x ∈ X | x |=C φ}. We drop the subscripts
C whenC is clear from the context.

From a coalgebraic perspective, the logicsL(Λ) have
pleasant properties. Behaviourally equivalent states (i.e.
states identified by some pair of morphisms) have the same
theory [22], and we can – in caseT is accessible – always
find enough (polyadic) modal operators to distinguish non-
equivalent states [29]. In the interest of readability, we re-
strict our attention to unary modalities for the purpose of
this work. However, we remark that our treatment extends
to the polyadic case in a straightforward manner. Our main
interest is in the (local)satisfiability problemfor L(Λ):

Definition 2.4. An L(Λ)-formula φ is satisfiableif there
exist aT -coalgebraC and a statex in C such thatx |=C φ.

For a more detailed discussion of global and local conse-
quence and weak and strong completeness in a coalgebraic
context see [30]. Many modal logics (including probabilis-
tic modal logic and graded modal logic) fail to be compact
and hence do not admit finitarystronglycomplete proof sys-
tems. The following examples show that the coalgebraic
approach subsumes a large class of modal logics.

Example 2.5. [22, 8, 30]

1. Let P be the covariant powerset functor. ThenP-
coalgebras are graphs, thought of as transition systems or
indeed Kripke frames. The predicate liftingλ defined by

λX(A) = {B ∈ P(X) | B ⊂ A}

gives rise to the standard box modality� = [λ]. This trans-
lates verbatim to the finitely branching case, captured by the
(accessible) finite powerset functorPfin .

2. Coalgebras for the functorN = 2 ◦ 2op (composi-
tion of the contravariant powerset functor with itself) are
neighbourhood frames, the canonical semantic domain of
non-normal logics [7]. The coalgebraic semantics induced
by the predicate liftingλ defined by

λX(A) = {α ∈ N(X) | A ∈ α}

is just the neighbourhood semantics for� = [λ].

3. Similarly, coalgebras for the subfunctor ofN given
by the upwards closed subsets of2X are monotone neigh-
bourhood frames [12]. Putting� = [λ], with λ defined as
above, gives the standard interpretation of the�-modality
of monotone modal logic.



4. It is straightforward to extend a given coalgebraic
modal logic forT with a setU of propositional symbols.
This is captured by passing to the functorT ′X = TX ×
P(U) and extending the set of predicate liftings by the lift-
ingsλa, a ∈ U , defined by

λa
X(A) = {(t, B) ∈ TX × P(U) | a ∈ B}.

Sinceλa is independent of its argument, the induced modal
‘operator’ can be written as just the propositional symbola,
with the expected meaning.

5. Thefinite multiset(or bag) functorB maps a setX
to the set of mapsb : X → N with finite support. The ac-
tion on morphismsf : X → Y is given byBf : BX →
BY, b 7→ λy.

∑

f(x)=y b(x). Coalgebras forB are directed
graphs withN-weighted edges, often referred to asmulti-
graphs[9], and provide a coalgebraic semantics forgraded
modal logic(GML): One defines a set of predicate liftings
{λk | k ∈ N} by

λk
X(A) = {b : X → N ∈ B(X) |

∑

a∈A b(a) > k}.

The arising modal operators are precisely the modalities♦k

of GML [9], i.e. x � ♦kφ iff φ holds for more thank suc-
cessor states ofx, taking into account multiplicities. (GML
is more standardly interpreted over Kripke frames, where
♦kφ reads ‘there are more thank successors satisfyingφ’.
Both interpretations induce the same notion of satisfiabil-
ity [30].) Note that♦k is monotone, but fails to be normal
unlessk = 0. (Recall that a diamond-like operator♦ is
calledmonotoneif it satisfies♦(a∧b) → ♦a, andnormalif
it satisfies♦(a∨b) → ♦a∨♦b). A non-monotone variation
of GML arises when negative multiplicities are admitted.

6. Thefinite distribution functorDω maps a setX to
the set of probability distributions onX with finite support.
Coalgebras for the functorT = Dω × P(U), whereU is
a set of propositional symbols, are probabilistic transition
systems (also calledprobabilistic type spaces[13]) with fi-
nite branching degree.
The natural predicate liftings forT are the propositional
symbols (Item 4 above) and the liftingsλp defined by

λp(A) = {P ∈ DωX | PA ≥ p},

wherep ∈ [0, 1] ∩ Q. This yields the modalitiesLp = [λp]
of probabilistic modal logic (PML)[17, 13], whereLpφ
reads ‘φ holds in the next step with probability at leastp’.
(In general [13], probabilistic type spaces can have arbi-
trary branching degree, but since PML has the finite model
property, this has no bearing on satisfiability.) PML is non-
normal (Lp(a ∨ b) → Lpa ∨ Lpb is not valid forp > 0).

7. A coalgebraic semantics forcoalition logic [23] is
given by the class-valued signature functorT defined by

TX = {(S1, . . . , Sn, f) | ∅ 6= Si ∈ Set, f :
∏

i∈N

Si → X}

whereN = {1, . . . , n} is a fixed set ofagents. Thus, the
elements ofTX arestrategic gameswith setX of states,
i.e. tuples consisting of nonempty setsSi of strategiesfor
all agentsi, and anoutcome function(

∏

Si) → X . Then,
a T -coalgebra is agame frame[23]. SubsetsC ⊆ N are
calledcoalitions. We denote the set

∏

i∈C Si by SC , and
for σC ∈ SC , σC̄ ∈ SC̄ , whereC̄ = N − C, (σC , σC̄)
denotes the obvious element of

∏

i∈N Si. The modalities
[C] of coalition logic are captured as[C] = [λC ] by the
predicate liftingsλC , given by

λC
X(A) = {(S1, . . . , Sn, f) ∈ TX |

∃σC ∈ SC . ∀σC̄ ∈ SC̄ . f(σC , σC̄) ∈ A}.

Intuitively, [C]φ means that coalitionC can forceφ.

All the above examples can be canonically extended to
systems that process inputs from a setI by passing from the
signature functorT to the functorT I . Similarly, output of
elements ofO is modelled by extending the functorT to the
assignmentX 7→ O × TX . We refer to [8] for a detailed
account of the induced logics.

3. Proof Systems For Coalgebraic Modal Logic

Our decision procedure for rank-1 logics relies on a com-
plete axiomatisation in a certain format. Deduction for
modal logics with coalgebraic semantics has been consid-
ered in [21, 8, 15, 30]. It has been shown that every modal
logic over coalgebras can be axiomatised in rank1 us-
ing either rank-1 axioms or rules leading from rank0 to
rank 1 [30], essentially because functors, as opposed to
comonads, only encode the one-step behaviour of systems.
Here, we focus on rules. The crucial ingredients for the
shallow model construction and the ensuingPSPACE al-
gorithm are novel notions ofresolution closureandstrict
one-step completenessof rule sets.

For the remainder of the paper, we assume given a func-
torT and a setΛ of predicate liftings forT . We recall a few
basic notions from propositional logic, as well as notation
for coalgebraic modal logic introduced in [21, 8]:

Definition 3.1. We denote the set of propositional formulae
over a setV by Prop(V ). Here, we regard¬ and∧ as the
basic connectives, with all other connectives defined in the
standard way. Aliteral overV is either an element ofV
or the negation of such an element. We use variablesǫ etc.
to denote either nothing or¬, so that a literal overV has
the general formǫa, a ∈ V . A clauseis a finite, possibly
empty, disjunction of literals. The set of all clauses overV
is denoted byCl(V ). Although we regard clauses as for-
mulae rather than sets of literals, we shall sometimes use
terminology such as ‘a literal is contained in a clause’ or



‘a clause contains another’, with the obvious meaning. We
denote byUp(V ) the set{[λ]a | λ ∈ Λ, a ∈ V }.

If the elements ofV are, or have an interpretation as, sub-
sets of a given setX , thenφ ∈ Prop(V ) can be interpreted
as a subset[[φ]]X ofX ; we writeX |= φ if [[φ]]X = X . Sim-
ilarly, if a ∈ V is interpreted as a subsetA ofX , then we in-
terpret[λ]a ∈ Up(V ) as the subset[[[λ]a]] = λX(A) of TX .
This can be iterated, leading to interpretations[[φ]] ⊂ TX
of φ ∈ Up(Prop(V )) etc.

In case the elements ofV are formulae inL(Λ), we
also regard propositional formulae overV as formulae in
L(Λ). We sometimes explicitly designateV as consisting of
propositional variables; propositional variables retain their
status across further applications ofUp andProp (e.g. ifV
is a set of propositional variables, thenV and notProp(V )
is the set of propositional variables forUp(Prop(V ))).
Given a setL, anL-substitutionis a substitutionσ of the
propositional variables by elements ofL; for a formulaφ
overV , we callφσ anL-instanceof φ. If L ⊂ P(X) for
someX , then we also refer toσ as anL-valuation.

Definition 3.2. A (one-step) ruleR over a setV of propo-
sitional variables is a ruleφ/ψ, where φ ∈ Prop(V )
andψ ∈ Cl(Up(V )). We silently identify rules underα-
equivalence. The ruleR is soundif, wheneverφσ is valid
for anL(Λ)-substitutionσ, thenψσ is valid. Moreover,R is
one-step soundif for each setX and eachP(X)-valuation
τ ,X |= φτ impliesTX |= ψτ .

Out hitherto informal use of the termrank-1 logic for-
mally meansaxiomatisable by one-step rules(equivalently
by rank-1-axioms [30]). The class of rank-1 logics includes
many interesting cases (Example 3.17), but excludes logics
whose axiomatisation needs nested modalities, e.g.S4.

Remark 3.3. We can always assume that every proposi-
tional variablea appearing in the premiseφ of a one-step
rule appears also in the conclusion: otherwise, we can elim-
inatea by passing fromφ to φ[⊤/a] ∨ φ[⊥/a].

Proposition 3.4. Every one-step sound rule is sound.

The converse holds under additional assumptions [29];
note however that the obviously sound rule⊥/⊥ is one-step
sound iffT ∅ = ∅ (as is the case e.g. for PML).

A given setR of one-step sound rules induces a proof
system forL(Λ) as follows.

Definition 3.5. Let RC denote the set of rules obtained by
extendingR with thecongruence rule

(C)
a↔ b

[λ]a→ [λ]b
.

(This rule of course implies a rule where→ is replaced
by ↔, which however does not fit the format for one-
step rules.) The set ofderivableformulae is the smallest

set closed under propositional entailment and the rules in
RC , with propositional variables instantiated to formulae
in L(Λ).

It is easy to see that this proof system is sound. Com-
pleteness requires ‘enough’ rules in the following sense.

Definition 3.6. The setR is (strictly) one-step complete
if, for each setX and each finiteA ⊂ P(X), whenever
TX |= χ for χ ∈ Cl(Up(A)), thenχ is (strictly) derivable;
i.e.χ is propositionally entailed by clausesψτ , whereφ/ψ
is in R andτ is aProp(A)-valuation (anA-valuation) such
thatX |= φτ .

The distinctive feature ofstrict one-step completeness is
that strict derivation precludes intermediate reasoning over
Up(Prop(A)). This plays a central role in the shallow
model construction to be presented in Section 4.

Remark 3.7. It is easy to see that in the definition of one-
step completeness, it does not matter whether elements of
Prop(A) are regarded as formulae or as subsets ofX .

Lemma and Definition 3.8. If R is strictly one-step com-
plete, then for each setX , each φ ∈ Prop(Up(V )),
and eachP(X)-valuation τ such thatTX |= φτ , φ is
strictly congruence derivable, i.e. propositionally entailed
by clausesψσ, whereφ/ψ is in RC (Definition 3.5) andσ
is aV -substitution such thatX |= φστ .

Remark 3.9. It is implicitly shown in [30] that the set of all
one-step sound rules is always strictly one-step complete
and that the proof system induced by a one-step complete
set of rules isweakly complete, i.e. proves all valid formu-
lae.

Proposition 3.10. A setR of one-step rules is (strictly)
one-step complete iff for allfinite setsX and all subsets
A ⊂ PX that generateP(X) as a boolean algebra,χ
is (strictly) derivable underR wheneverTX |= χ for
χ ∈ Cl(Up(A)).

Strictly one-step complete sets of rules are generally more
complicated than one-step complete sets of rules or ax-
ioms [21, 30]. In our terminology, part of the effort of [34]
and [23] is devoted to finding strictly one-step complete sets
of rules. We now develop a systematic procedure for turning
one-step complete rule sets into strictly one-step complete
ones. For the following, recall that given clausesφ andψ
containing literalsa and¬a, respectively, aresolventof φ
andψ (at a) is obtained by removinga and¬a from the
clauseφ ∨ ψ. A setΦ of clauses is calledresolution closed
if, for φ, ψ ∈ Φ, all resolvents ofφ andψ are inΦ.

Definition 3.11. A set R of one-step rules isresolu-
tion closedif it satisfies the following requirement. Let
R1, R2 ∈ R, whereR1 = φ1/ψ1 andR2 = φ2/ψ2. We can



assume thatR1 andR2 have disjoint sets of propositional
variables. Let[λ]a be inψ1, and let¬[λ]b be inψ2 for some
λ ∈ Λ, so that we have a resolventψ of ψ1 andψ2[a/b] at
[λ]a. ThenR is required to contain a ruleR = φ/ψ such
thatφ is propositionally entailed byφ1 ∧ φ2[a/b]; in this
case,R is called aresolventof R1 andR2.

Remark 3.12. One can construct resolution closed sets by
iterated addition of missing resolvents. Here, an obvious
choice for a resolventφ/ψ as above is to takeφ asφ1 ∧
φ2[a/b], with a eliminated according to Remark 3.3 ifa is
not contained inψ; it is clear thatφ1∧φ2[a/b]/ψ is one-step
sound ifR1 andR2 are one-step sound.

Remark 3.13. One should not confuse the terminology in-
troduced above with existing resolution-based approaches
to decision procedures for modal logic (e.g. [10]), which
rely on translating modal logic into first-order logic.

Lemma 3.14. LetV be a set of propositional variables, let
ψ ∈ Cl(V ), and letΦ ⊂ Cl(V ) be resolution closed. Then
Φ propositionally entailsψ iff ψ contains a clause inΦ.

Theorem 3.15. If R is one-step complete and resolution
closed, thenR is strictly one-step complete.

Proof. (Sketch) LetA ⊂ PX , and letγ ∈ Cl(Up(A)) such
thatTX |= γ. By one-step completeness,γ is proposition-
ally entailed by the set of clauses

Ψ = {ψσ | φ/ψ ∈ R, σ aProp(A)-valuation, X |= φσ}.

Resolution closedness ofR implies thatΨ is resolution
closed. By Lemma 3.14, it follows thatγ contains, and
hence is propositionally entailed by, a clauseψσ in Ψ,
where necessarilyσ(v) ∈ A for variablesv of ψ.

In summary, strictly one-step complete rule sets can be con-
structed by resolving the rules of a one-step complete ax-
iomatisation against each other. Below, we give examples
of strictly one-step complete systems obtained in this way.
In order to simplify the presentation for the case of graded
modal logic and probabilistic modal logic, we use the fol-
lowing notation. Ifφi is a formula,ri ∈ Z for all i ∈ I, and
k ∈ Z, we abbreviate

∑

i∈I

riφi ≥ k ≡
∧

r(J)<k

(

∧

j∈J

φj →
∨

j /∈J

φj

)

,

wherer(J) =
∑

j∈J rj . Moreover, ifr ∈ Z−{0} andφ is
a formula, then we put

sgn(r)φ =

{

φ r > 0
¬φ r < 0.

The formula
∑

i∈I riai ≥ k translates into the arithmetic of
characteristic functions as suggested by the notation:

Lemma 3.16. An elementx ∈ X belongs to the interpreta-
tion of

∑

i∈I riai ≥ k under aP(X)-valuationσ iff
∑

i∈I

ri1σ(ai)(x) ≥ k,

where1A : X → {0, 1} is the characteristic function of
A ⊆ X .

In all examples, the resolution process, applied to known
one-step complete rule sets, can be kept under control; by
Theorem 3.15, the resulting rule sets are strictly one-step
complete.

Example 3.17. 1. The empty set of rules is one-
step complete for neighbourhood frame semantics (Exam-
ple 2.5.2). This set is trivially resolution closed.

2. (Monotone modal logic) The one-step rule

(M)
a→ b

�a→ �b

is one-step complete for monotone neighbourhood frame
semantics (Example 2.5.2), and clearly resolution closed.

3. (Standard modal logicK) The one-step rules

a

�a

a ∧ b→ c

�a ∧ �b→ �c

are one-step complete for Kripke semantics (Exam-
ple 2.5.1), i.e. for the modal logicK [21]. The resolution
closureR of these rules consists of the rules

∧n
i=1 ai → b

∧n
i=1 �ai → �b

for all n ∈ N (here, strict one-step completeness is also
easily seen directly).

4. (Coalition logic) In Lemma 6.1 of [23], the follow-
ing set of one-step rules for coalition logic (Example 2.5.7),
numbered as in loc. cit., is implicit:

(1)

∨n
i=1 ¬ai

∨n
i=1 ¬[Ci]ai

(2)
a

[C]a
(3)

a ∨ b

[0]a ∨ [N ]b

(4)

∧n
i=1 ai → b

∧n
i=1[Ci]ai → [

⋃

Ci]b

wheren ≥ 0, and rules (1) and (4) are subject to the side
condition that theCi are pairwise disjoint. This set of
rules extends the axiomatisation of coalition logic, which
one easily proves to be one-step complete given the results
of [23]. The rules are moreover ‘nearly’ resolution closed
(full resolution closure is not needed in [23] due to a slightly
different notion of closed rule sets). Resolving rule (4) with
rules (2) and (3), one obtains the rule schema

(4′)

∧n
i=1 ai → b ∨

∨m
j=1 cj

∧n
i=1[Ci]ai → [D]b ∨

∨m
j=1[N ]cj



wherem,n ≥ 0, subject to the side condition that theCi are
pairwise disjoint subsets ofD; this subsumes rules (2)–(4)
above. The set consisting of the rules (1) and (4’) is easily
seen to be resolution closed.

5. (Graded modal logic) Using Proposition 3.10, one
shows directly that the one-step rules

(W ) ♦k+1a→ ♦ka (A1)
b→

∨m
i=1 ai

♦P

m
i=1

ki
b→

∨m
i=1 ♦ki

ai

(A2)

∧

1≤i,j≤n
i6=j

(¬bi ∨ ¬bj)

∧n
j=1(bj → a)

∧n
j=1 ♦kj

bj → ♦ka
(
P

n
j=1

(kj+1)=k+1),

wherem ≥ 0, n ≥ 1, are one-step complete for GML
(Example 2.5.5). All these rules are subsumed by the rule
schema

(G)

∑m
i=1 ai −

∑n
j=1 bj ≥ 0

∧n
j=1 ♦lj bj →

∨m
i=1 ♦ki

ai
,

wheren,m ≥ 0 andn+m ≥ 1, subject to the side condi-
tion

∑n
j=1(li +1) ≥ 1+

∑m
i=1 ki. Soundness of this rule is

seen analogously as for similar rules in probabilistic modal
logic [13]. It is easy to see that the rule schema is closed
under resolution.

6. (Probabilistic modal logic) By reformulating the one-
step complete set of axioms for probabilistic modal logic
given in [8] as one-step rules and subsequently applying res-
olution, one obtains the rules

(Pk)

∑m
i=1 ai −

∑n
j=1 bj ≥ k

∧n
j=1 Lqj

bj →
∨m

i=1 Lpi
ai
,

wherem,n ≥ 0,m+ n ≥ 1, andk ∈ Z, subject to the side
condition

∑m
i=1 pi −

∑n
j=1 qj ≤ k, and

if m = 0 then −
∑n

j=1 qj < k.

This rule schema subsumes the axiomatisation in loc. cit.
and hence is one-step complete. Using Lemma 3.16, one
can show directly that(Pk) is one-step sound in the same
way as for the axiomatisation in [8]. Moreover, it is easy to
see that the rule schema is resolution closed: the required
resolvent of an instance of(Pk) and an instance of(Pl) is
obtained as an instance of(Pk+l).

4. The Shallow Model Construction

We now present the announced generic shallow model con-
struction, which is based on strictly one-step complete ax-
iomatisations. The construction is performed along with the
proof of a recursive characterisation of satisfiable formulae
which generalises results from [34] (where the use of ax-
iomatisations is implicit in certain lemmas).

Definition 4.1. A set Σ of formulae is calledclosedif it
is closed under subformulae and undernormalised nega-
tion∼, where∼φ is defined to beψ in caseφ is of the form
¬ψ, and¬φ otherwise. The smallest closed set containing a
given formulaφ is denotedΣ(φ). A subsetH of Σ is called
aΣ-Hintikka setif ⊥ /∈ H and, forφ ∧ ψ ∈ Σ, φ ∧ ψ ∈ H
iff φ, ψ ∈ H , and, for¬φ ∈ Σ, ¬φ ∈ H iff φ /∈ H .

For a formulaχ ∈ Prop(V ) and aΣ-substitutionσ, we
define satisfaction ofχσ in H (H |= χσ) inductively by

H |= (χ1 ∧ χ2)σ : ⇐⇒ H |= χ1σ andH |= χ2σ

H |= (¬χ)σ : ⇐⇒ H 6|= χσ

H |= aσ : ⇐⇒ σ(a) ∈ H

H 6|= ⊥.

This is well-defined becauseH is Hintikka.

Lemma 4.2. Let Σ be closed, letH be aΣ-Hintikka set,
and letφ, ψ ∈ Prop(V ). ThenH |= φ ∨ ψ iff H |= φ or
H |= ψ.

Lemma 4.3(Soundness of propositional reasoning for Hin-
tikka sets). Let Σ be closed, and letH be a Σ-Hintikka
set. Letφ, ψ ∈ Prop(V ), and letσ be aΣ-substitution. If
H |= φσ andφ propositionally entailsψ, thenH |= ψσ.

The following result generalises Propositions 3.2, 3.5,
3.8, 3.13, and 3.16 (but not 3.10 and 3.18, which concern
logics outside rank1) of [34] and Lemma 6.1 of [23].

Theorem 4.4. Let R be strictly one-step complete. Then
φ ∈ L(Λ) is satisfiable iffφ ∈ H for some Hintikka set
H ⊂ Σ(φ) such that, for every clauseρ =

∨n
i=1 ǫi[λi]ρi

overΣ(φ) withH 6|= ρ and for each ruleψ/
∨n

i=1(ǫi[λi]ai)
in RC , the formula¬ψ[ρi/ai]i=1,...,n is satisfiable.

Proof. ‘Only if ’: TakeH to be the intersection ofΣ(φ)
with the theory of a state satisfyingφ.

‘If ’: For each formulaχ ≡ ¬ψ[ρi/ai]i=1,...,n as in the
statement, there exists a coalgebraCχ = (Xχ, ξχ) and a
statexχ in Cχ such thatxχ |=Cχ

χ; we can assume that the
Xχ are pairwise disjoint. Define the setsX andρ̂ by

X = {x0} ∪
⋃

χ

Xχ and ρ̂ = Aρ ∪
⋃

χ

[[ρ]]Cχ
,

wherex0 is a fresh element,ρ ∈ Σ(φ), andAρ = {x0} if
ρ ∈ H , Aρ = ∅ otherwise. We define a coalgebra structure
ξ onX as follows. Forx ∈ Xχ, we putξ(x) = ξχ(x) ∈
TXχ ⊂ TX (cf. Assumption 2.2). Then for[λ]ρ ∈ Σ(φ),

ξ(x) ∈ λρ̂ ⇐⇒ x |=Cχ
[λ]ρ, (1)

because by naturality(λρ̂)∩TXχ = λ(ρ̂∩Xχ) = λ[[ρ]]Cχ
.

Moreover, we will show that there existsξ(x0) ∈ TY ⊂
TX , whereY is the set of allxχ, such that for[λ]ρ ∈ Σ(φ),

ξ(x0) ∈ λρ̂ ⇐⇒ [λ]ρ ∈ H. (2)



By structural induction, (1) and (2) then imply

x |=C ρ ⇐⇒ x |=Cχ
ρ for x ∈ Xχ, and

x0 |=C ρ ⇐⇒ ρ ∈ H

for all ρ ∈ Σ(φ). In particular,x0 |= φ, and we are done.
It remains to prove thatξ(x0) satisfying (2) exists. As-

sume the contrary. LetV be the set of propositional vari-
ables bρ, where [λ]ρ ∈ Σ(φ) for some λ. Let θ ∈
Cl(Up(V )) consist of the literals¬[λ]bρ for [λ]ρ ∈ H and
[λ]bρ for ¬[λ]ρ ∈ H . By assumption,TY |= θτY , where
τY is theP(Y )-valuation takingbρ to ρ̂ ∩ Y = {xχ |
xχ |=Cχ

ρ}. By Lemma 3.8, it follows thatθ is strictly
congruence derivable from thoseζ ∈ Prop(V ) such that
Y |= ζτY .

From the derivation ofθ, it now follows thatH |= θσ,
whereσ is theΣ(φ)-substitution takingbρ to ρ (note that
θσ is a propositional formula over atoms[λ]ρ ∈ Σ(φ)),
by Lemma 4.2 a contradiction to the construction ofθ:
by Lemma 4.3, the propositional steps are sound overH ;
it remains to be shown that if the derivation ofθ uses
a ruleR ≡ ψ/

∨n
i=1(ǫi[λi]ai) in RC , instantiated for a

V -substitutionη, then the conclusion ofRησ is satisfied
over H . Assume the contrary. By Lemma 4.2, it fol-
lows that ǫi[λi]σ(η(ai)) /∈ H for all i. By construc-
tion, we havexχ |=Cχ

χ for χ ≡ ¬ψησ. But since
Rη appears in the derivation ofθ, Y |= ψητY and hence
xχ ∈ [[ψητχ]], whereτχ is theP(Xχ)-valuation takingbρ
to [[ρ]]Cχ

. Since[[ψητχ]] = [[ψησ]]Cχ
, we have arrived at a

contradiction.

As a corollary to the above proof, we obtain that coalgebraic
modal logic has the shallow model property. The formula-
tion of this property requires the following notion.

Definition 4.5. A supporting Kripke frameof a T -
coalgebra(X, ξ) is a Kripke frame(X,R) such that for
eachx ∈ X ,

ξ(x) ∈ T {y | xRy} ⊂ TX.

As clauses suffice for satisfiability checking, we obtain

Corollary 4.6 (Shallow model property). Every satisfiable
L(Λ)-formula φ is satisfiable in ashallow model, i.e. in
a T -coalgebra(X, ξ) that has a supporting Kripke frame
which consists of a tree of depth at most the rank ofφ and
of branching degree at most2n, wheren is the number of
subformulae ofφ, and possibly an additionalfinal statex⊤,
i.e. for all x, xRx⊤, andx⊤Rx impliesx = x⊤.

(The statex⊤ may arise from the rule⊥/⊥, cf. Sect. 3.)

5. A Generic PSPACE Algorithm

The shallow model result (Theorem 4.4) will be exploited
to design a decision procedure in the spirit of [34]. Since
resolution closed rule sets are in general infinite, this re-
quires ensuring that we never need to instantiate literals in
the conclusions of rules with identical formulae: otherwise,
an infinite number of rules could match a single given clause
over a Hintikka set. This is formally captured as follows.

Definition 5.1. We call a clause overL reducedif all its
literals are distinct. AnL-instanceφσ/ψσ of a ruleφ/ψ ∈
R is reducedif the clauseψσ is reduced. Finally,R is
closed under reductionif for every V -instanceφσ/ψσ of
a ruleφ/ψ overV in R, there exists a reducedV -instance
φ′σ′/ψ′σ′ of a ruleφ′/ψ′ ∈ R such thatψσ andψ′σ′ are
propositionally equivalent and andφ′σ′ is propositionally
entailed byφσ.

I.e. a rule set is reduced if every instance of a rule that
duplicates literals in the conclusion can be replaced by a
reduced instance of a different rule. Not all the rule sets
discussed in Example 3.17 satisfy this property, but they
can easily be extended to reduction closed sets: just add a
rule φ′/ψ′ for every ruleφ/ψ overV in R and everyV -
substitutionσ, whereφ′ is some suitably chosen proposi-
tional equivalent ofφσ andψ′ is obtained fromψσ by re-
moving duplicate literals. It is clear that the new rules re-
main one-step sound. Note that there is no need to preserve
closure under resolution when passing to a reduced rule set,
as Theorem 4.4 requires only strict one-step completeness,
which is preserved under extending the rule set.

Example 5.2. 1. The strictly one-step complete rule
sets of Examples 3.17.1–4 (including monotone modal
logic, K, and coalition logic) are easily seen to be closed
under reduction, essentially because in all relevant rule
schemas, the premise is a clause of the same general for-
mat as the conclusion.

2. (Graded modal logic) The rule schema(G) of Exam-
ple 3.17.5 fails to be closed under reduction, as duplicat-
ing literals in the conclusion substantially affects both the
premise and the side condition. We can close(G) under
reduction as described above; this results in the rule schema

(G′)

∑n
i=1 riai ≥ 0

∨n
i=1 sgn(ri)♦ki

ai
,

wheren ≥ 1 andr1, . . . , rn ∈ Z − {0}, subject to the side
condition

∑

ri<0 ri(ki + 1) ≥ 1 +
∑

ri>0 riki.

3. (Probabilistic modal logic) The rule schema(Pk) of
Example 3.17.6 fails to be closed under reduction. Closure
under reduction as described above leads to the rule schema

(P ′
k)

∑n
i=1 riai ≥ k

∨

1≤i≤n sgn(ri)Lpi
ai



wheren ≥ 1 andr1, . . . , rn ∈ Z− {0}, subject to the side
condition

∑n
i=1 ripi ≤ k, and

if ∀i. ri < 0 then
∑n

i=1 ripi < k.

As instances of the congruence rule never contain dupli-
cate literals, we have the following trivial fact.

Lemma 5.3. If R is closed under reduction, then so isRC .

Thus the following is immediate from Theorem 4.4.

Corollary 5.4. Let R be strictly one-step complete and
closed under reduction. Thenφ ∈ L(Λ) is satisfiable iff
φ ∈ H for some Hintikka setH ⊂ Σ(φ) such that, for
every reducedclauseρ =

∨n
i=1 ǫi[λi]ρi over Σ(φ) with

H 6|= ρ and for each ruleψ/
∨n

i=1(ǫi[λi]ai) in RC , the
formula¬ψ[ρi/ai]i=1,...,n is satisfiable.

In the implementation of the algorithm suggested by Corol-
lary 5.4, we need to pass around matches of rules with given
clauses. Since rules, in particular their premises, are gener-
ally too large to pass around directly, we assume that ev-
ery rule (i.e. every instance of a rule scheme) is given by a
code, i.e. a string over some alphabet which identifies the
rule; when rules appear as data, they are always represented
by their code. Moreover, we assume that propositional vari-
ablesai in rules are uniformly represented by indices that
point to literalsǫi[λi]ai of the conclusion.

Definition 5.5. We say that a ruleR ∈ R matchesa re-
duced clauseρ ≡

∨n
i=1 ǫi[λi]φi if the conclusion ofR is

of the form
∨n

i=1 ǫi[λi]ai. By the above variable conven-
tion, the instantiationψ[φi/ai]i=1,...,n of a conjunctψ of
the premise ofR can be computed in polynomial time from
ψ andρ; we denote the result byψ[ρ]. Two matching rules
areequivalentif their premises are propositionally equiva-
lent; equivalence classes[R] are calledR-matchings. The
code ofR is also acodefor [R].

We fix some size measures for complexity purposes:

Definition 5.6. The size size(a) of an integer a is
⌈log2(|a| + 1)⌉, where⌈r⌉ = min{z ∈ Z | z ≥ r} as
usual. The sizesize(p) of a rational numberp = a/b, with
a, b relatively prime, is1 + size(a) + size(b). Thesize|φ|
of a formulaφ over V is defined by counting1 for each
propositional variable, boolean operator, or modal operator,
and additionally the size of each index of a modal operator.
(In the examples, indices are either numbers, with sizes as
above, or subsets of{1, . . . , n}, assumed to be of sizen.)

In particular, indices of graded or probabilistic modal oper-
ators are coded in binary.

Example 5.7. For the rules of Examples 3.17 and 5.2, we
just take the parameters of a rule as its code in the obvious
way. E.g. the code of an instance of(P ′

k) as displayed in
Example 5.2.3 consists ofn, k, theri, and thepi. The size
of the code is determined by the sizes of these numbers plus
separating letters, say,

∑

(1+size(ai))+
∑

(1+size(pi))+
size(n)+size(k)+1. Note that not all such codes represent
instances of(P ′

k).

The following decision procedure on an alternating Turing
machine generalises the algorithms in [34], given a strictly
one-step complete and reduction closed setR.

Algorithm 5.8. (Decide satisfiability ofφ ∈ L(Λ))

1. (Initialise) Construct the setΣ(φ).

2. (Existential) Guess a Hintikka setH ⊂ Σ(φ) with
φ ∈ H .

3. (Universal) Guess a reduced clause⊥ 6= ρ ∈ Σ(φ)
with H 6|= ρ and anRC -matching[R] of ρ.

4. (Existential) Guess a clauseγ from the conjunctive
normal form (CNF) of the premise ofR and recursively
check that¬γ[ρ] is satisfiable.

The algorithm succeeds if all possible choices at steps
markeduniversal lead to successful termination, and for
all steps markedexistential, there exists a choice leading
to successful termination.

Correctness of the algorithm is guaranteed by Corol-
lary 5.4. Note that the algorithm terminates successfully in
Step 3 if there are no rules matching clauses overH . In par-
ticular, the algorithm terminates either in Step 2 or in Step3
if φ has rank0. We emphasise that in Step 3, it suffices to
guess one code for each matching.

The crucial requirement for the effectivity of Algo-
rithm 5.8 is that Steps 3 and 4 can be performed in poly-
nomial time, i.e. by suitable nondeterministic polynomial-
time multivalued functions (NPMV) [5]. We recall that a
functionf : Σ∗ → P(∆∗), whereΣ and∆ are alphabets,
is NPMV iff

1. there exists a polynomialp such that|y| ≤ p(|x|) for
all y ∈ f(x), where| · | denotes size, and

2. the graph{(x, y) | y ∈ f(x)} of f is in NP .

Thus, the following conditions guarantee that Algorithm 5.8
has polynomial running time:

Definition 5.9. A set R of rules is calledPSPACE -
tractable if there exists a polynomialp such that allR-
matchings of a reduced clauseρ overL(Λ) have a code of
size at mostp(|ρ|), and it can be decided inNP

1. whether a given code is the code of some rule inR;

2. whether a rule matches a given reduced clause; and



3. whether a clause belongs to the CNF of the premise
of a given rule.

Theorem 5.10(Space Complexity). LetR be strictly one-
step complete, closed under reduction, andPSPACE -
tractable. Then the satisfiability problem forL(Λ) is in
PSPACE .

Remark 5.11. A more careful analysis of Algorithm 5.8
reveals that it suffices for the decision problems in Defini-
tion 5.9 to be inPH , the polynomial time hierarchy. In our
examples, however, the complexity is in factP rather than
NP . We expect that this situation is typical, with the cru-
cial condition forPSPACE -tractability being the polyno-
mial bound onR-matchings. We are not aware of any natu-
ral examples of intractable rule sets (contrived examples are
easy to construct, e.g. by using hard side conditions).

The next lemma, which follows directly from size esti-
mates in linear integer programming [28], is crucial for es-
tablishingPSPACE -tractability in the examples. Follow-
ing usual practice, we take thesize |W | of a rational in-
equalityW ≡ (

∑n
i=1 uixi op u0), op ∈ {<,≤, >,≥}, to

be1 + n+
∑n

i=0 size(ui).

Lemma 5.12. There exists a polynomialp such that for
every rational linear inequalityW and every solution
r0, . . . , rn ∈ Z ofW , there exists a solutionr′0, . . . , r

′
n ∈ Z

ofW such thatsize(r′i) ≤ p(|W |) for all i, and the formu-
lae

∑n
i=1 riai ≥ r0 and

∑n
i=1 r

′
iai ≥ r′0 are proposition-

ally equivalent.

We now illustrate how Theorem 5.10 allows us to establish
PSPACE bounds for many modal logics in a uniform way.
In particular, we obtain a new (tight)PSPACE bound for
probabilistic modal logic.

Example 5.13.Conditions 1 and 2 of Definition 5.9 are im-
mediate for all the rule sets of Example 3.17 — the decision
problems in question involve no more than checking com-
putationally harmless side conditions in the case of Con-
dition 1 (disjointness and containment of finite sets, linear
inequalities), and comparing clauses of polynomial (in fact,
linear) size in the case of Condition 2. Moreover, Condi-
tion 3 is immediate in those cases where the premises of
rules are just single clauses. This leaves only GML and
PML; but the definition of

∑

i∈I riai ≥ k is already in
CNF, and checking whether a given clause belongs to this
CNF is clearly inP .

It remains to establish the polynomial bound on the
matchings. For GML and PML, this is guaranteed by
Lemma 5.12. In all other cases, every reduced clauseρ
matches at most one rule, whose code has size linear in the
size ofρ.

We thus have obtainedPSPACE -tractability and hence
decidability in PSPACE for all logics in Example 3.17.

The logic of neighbourhood frames and monotone modal
logic are of lesser interest here, as the corresponding modal
logics are inNP [34]. We briefly comment on the algo-
rithms and bounds for the other cases.

1. For the modal logicK (Example 3.17.3), Algo-
rithm 5.8 is essentially the witness algorithm [34, 4], with
reduced clauses violated byH corresponding todemands.

2. For coalition logic (Example 3.17.4), we arrive, due
to minor differences of the rule sets, at a slight variant of
Pauly’sPSPACE -algorithm [23].

3. For graded modal logic, we obtain a new algorithm
which confirms the knownPSPACE bound [31]. One
might claim that the new algorithm is not only nicely em-
bedded into a unified framework, but also conceptually sim-
pler than the constraint-based algorithm of [31] (which cor-
rects an erroneous algorithm previously given elsewhere).

4. For probabilistic modal logic, we obtain a new algo-
rithm which yields a previously unknownPSPACE -bound
(to our knowledge, the best previously published bound for
PML is EXPTIME [30]). The bound is tight, as PML con-
tains thePSPACE -complete logicKD as a fragment (em-
bedded by mapping� toL1).

6. Conclusion

Generalising results of [34], we have shown that coalge-
braic modal logic has the shallow model property, and we
have presented a genericPSPACE algorithm for satisfia-
bility based on depth-first exploration of shallow models.
We have thus

• reproduced thewitness algorithmforK [4]
• obtained a slight variant of the knownPSPACE algo-

rithm for coalition logic [23]
• obtained a newPSPACE algorithm for graded modal

logic, recovering the knownPSPACE bound [31]
• obtained a novelPSPACE bound for probabilistic

modal logic [17, 13].

In all these cases, the bound obtained is tight.
The crucial prerequisite for the generic algorithm is an

axiomatisation by so-called one-step rules (going from rank
0 to rank1) obeying two closedness conditions: closedness
under resolution and under removal of duplicate literals. In
the examples, it has not only turned out that is it feasible
to keep this closure process under control, but also that the
axiomatisations obtained have pleasingly compact presenta-
tions — often, one ends up with a single rule schema. Nev-
ertheless, it remains desirable to prove aPSPACE bound
relying on purely semantic conditions such as the ones ap-
pearing in [30]; this is the subject of further research, as
is the extension of the theory beyond rank 1 by means of



comonads and the treatment of iteration, possibly using au-
tomata theoretic methods [35, 36].

Ongoing work indicates that every modal logic can be
equipped with a coalgebraic semantics, provided it is ax-
iomatisable in rank1 and satisfies the congruence rule. This
means in particular that the method employed here applies
to every such modal logic, i.e. one obtains a purely syntactic
criterion (tractability of a certain closure of the axiomatisa-
tion) for rank-1 modal logics to be inPSPACE .
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