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Abstract

We present a domain-theoretic version of Picard’s theorem for
solving classical initial value problems inRn. For the case of vec-
tor fields that satisfy a Lipschitz condition, we construct an iterative
algorithm that gives two sequences of piecewise linear mapswith
rational coefficients, which converge, respectively from below and
above, exponentially fast to the unique solution of the initial value
problem. We provide a detailed analysis of the speed of convergence
and the complexity of computing the iterates. The algorithmuses
proper data types based on rational arithmetic, where no rounding
of real numbers is required. Thus, we obtain an sound implementa-
tion framework to solve initial value problems. In particular, the use
of rational arithmetic guarantees that implementations ofour tech-
nique will adhere to the bounds on convergence speed and algebraic
complexity.

1. Introduction

We consider the initial value problem (IVP) given by the system of differential equations

ẏi(x) = vi(y1, . . . ,yn), yi(0) = 0 (i = 1, . . . ,n) (1)

where the vector fieldv : O → Rn is continuous in a neighbourhoodO ⊆ Rn of the ori-
gin, and we look for a differentiable functiony = (y1, . . . ,yn) : [−a,a] → Rn, defined
in a neighbourhood of 0∈ R, that satisfies (1). By a theorem of Peano there is always
a solution [7, page 19]. Uniqueness of the solution is guaranteed, by Picard’s theorem,
if v satisfies a Lipschitz condition. The question of computability and the complexity
of the initial value problem has been studied in different contexts in computable analy-
sis [12, 3, 6, 14, 20, 17, 5].

On the algorithmic and more practical side, standard numerical packages for solving
IVPs try to compute an approximation to a solution with a specified degree of accuracy.
Although these packages are usually robust, their methods are not guaranteed to be correct
and it is easy to find examples where they output inaccurate results [13].

Interval analysis [16] provides a method to give upper and lower bounds for the unique
solution in the Lipschitz case with a prescribed tolerance and has been developed and im-
plemented for analytic vector fields [18, 1]. These approaches are concerned with the cor-
rectness of the computed values and deliver interval valuesthat are guaranteed to contain
the true solution of the problem. Typically, implementations of interval analysis techniques
represent real numbers as floating point intervals, and outward rounding is applied if the
resulting interval endpoints are not machine representable.
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While this strategy guarantees soundness, i.e. containment of the exact result in the
computed interval, one has in general no control over the rounding, which can produce un-
duly large intervals, depending on the accurracy of the underlying floating point numbers.
While it is intuitively clear that more precise floating point numbers give more accurate
results, there is no general guarantee of actual convergence to the solution. For the same
reason, one has no control over the speed of convergence.

Domain theory [4] presents an alternative technique, based on proper data types, to pro-
duce a provably correct solution with any given degree of accuracy. Using the domain of
Scott continuous interval valued functions on a compact interval, we define a domain the-
oretic Picard operator, whose least fixed point contains anysolution of the IVP. When the
vector field is Lipschitz, the solution is unique and we construct an iterative algorithm that
gives two sequences of piecewise linear maps with rational coefficients, which converge,
respectively from below and above, exponentially fast to the unique solution of the initial
value problem. Since the data types for representing the piecewise linear maps with rational
coefficients are directly representable on a digital computer, no rounding of real numbers
is required. The implementation of the domain theoretic approach is also complete, that is,
we can guarantee the convergence of the approximating iterates to the solution of the IVP
also for the implementation. This property is not present inany other approach to validated
solutions of differential equations. Furthermore, as a result of the data types we use, we
can give estimates for the speed of convergence of the approximating iterates, which are
still valid for an actual implementation of our algorithm.

This simplifies the earlier treatment, discussed in detail in [8], which used a domain
for C1 functions [9, 10]. That approach requires, at each stage of the iteration, a new ap-
proximation to the derivative of the solution. The new treatment is much more similar to
the classical theorem in that it gives rise, in the Lipschitzcase, to fast convergence of the
approximations to the solution. As regards the question of computability of the solution of
the IVP in the Lipschitz case, the two domain-theoretic techniques lead to the same result
as those in computable analysis [12, 20, 19, 21]: if the vector field is computable then the
unique solution of the IVP is also computable [8, Corollary 6.3].

We discuss two different bases to represent approximationsto the solutions of the IVP,
namely the piecewise linear and the piecewise constant functions with rational (or dyadic)
coefficients. Using piecewise linear functions, we avoid the computation of rectangular
enclosures of the solution which gives tighter bounds on thesolution. This comes at the
expense of an increase in the size of the representation of the approximations to the so-
lution. Using the base consisting of piecewise constant functions, we show that the order
of the speed of convergence to the solution remains unchanged, while the time and space
complexity for the representation of the iterates is much reduced.

Our approach relies on approximating the vector field with a sequence of (interval val-
ued) step functions, which converge exponentially fast to an interval extension of the vec-
tor field. We discuss two techniques for obtaining such sequences. First, we show how to
compose two sequences of approximations such that the composition of the approxima-
tions still converges exponentially fast. Our second technique is based on a function which
computes the values of the vector field to an arbitrary degreeof accuracy, and we show
how this gives rise to step functions with the desired properties.

A prototypical implementation using the GNU multi precision library [2] shows that the
resulting algorithms are actually feasible in practice, and we plan to refine the implemen-
tation and compare it in scope and performance with existinginterval analysis packages
like AWA [ 1], bearing in mind that floating point arithmetic used by interval software is
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executed on highly optimised processors, whereas the rational arithmetic needed for our
implementation is performed by software.

2. Preliminaries and Notation

For the remainder of the paper, we fix a continuous vector field

v = (v1, . . . ,vn) : O→ Rn

whereO ⊆ Rn is a subset ofRn with 0∈ O and consider the IVP given by Equation (1).
Our aim is to approximate solutionsy : [−a,a]→ Rn of the initial value problem (1).

We use basic notions from domain theory, see e.g. [4, 11]. Our work is based on the
interval domainIR = {[a−,a+] | a− 6 a+,a−,a+ ∈R}∪{R}, ordered by reverse inclusion,
i.e. α ⊑ β iff β ⊆ α. We write⊥= R for the least element ofIR. The way below relation
on IR is given byα ≪ β iff β ⊆ αo, where(·)o denotes the interior of a set. Forn > 1,
the domainIRn is isomorphic to the domain ofn-dimensional rectangles{α1× ·· ·×αn |
αi ∈ IR for all 1 6 i 6 n}, and we do not distinguish between these two presentations.For
a rectangleA ∈ IRn, the subset{S∈ IRn | S⊆ A} of rectangles contained inA is a sub-
domain ofIRn, which is denoted byIA.

We consider then-dimensional Euclidean spaceRn equipped with the maximum norm
‖x‖ = max{|x1|, . . . , |xn|}, as this simplifies dealing with the Lipschitz conditions, which
we introduce later.

The powersIRn of the interval domain and the sub-domainIA, for a rectangleA∈ IRn,
are continuous Scott domains. Ifα−,α+ ∈ Rn with α−

i 6 α+
i for all 1 6 i 6 n, we write

[α−,α+] for the rectangle[α−
1 ,α+

1 ]×·· ·× [α−
n ,α+

n ]. Similarly, if f : X → IRn is a function,
we write f = [ f−, f +] if f (x) = [ f−(x), f +(x)] for all x∈ X.

The link between ordinary and interval valued function is provided by the notion of
extension. If A∈ IRn is a rectangle, we say thatg : IA→ IRn is an extension off : A→ Rn

if

g({x1}, . . . ,{xn}) = { f (x1, . . . ,xn)}

for all x ∈ A. Note that every continuous functionf : A → Rn has a canonical maximal
extensionI f defined byI f = (I f1, . . . ,I fn) : IA→ IRn where

I fi(S) =

{

fi(S) in casefi(S) is bounded

⊥ otherwise

for a rectangleS∈ IA ( fi(S) denotes direct image). This extension is maximal in the set of
interval valued functions extendingf . It is easy to see thatI f is continuous w.r.t. the Scott
topology onIA andIRn if f is continuous w.r.t. the Euclidean topology.

If P ∈ IRn andQ ∈ IRm, we write IP ⇒ IQ (resp.P ⇒ IQ) for the set of continuous
functions w.r.t. the Scott topology onIP (resp. the Euclidean topology onP) and the Scott
topology onIQ. The following operations mediate betweenIP⇒ IQ andP⇒ IQ; this is
as in [9].

LEMMA 2.1. Suppose P∈ IRk,Q∈ IRl and consider the following operations:

E :(P⇒ IR) ∋ f 7→ λα.
l

x∈α
f (x) ∈ (IP⇒ IR)

I :(IP⇒ IR) ∋ f 7→ λx. f ({x}) ∈ (P⇒ IR)
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Then bothI andE are continuous,I ◦E = id andid ⊑ E ◦ I .

For the proof, see [11], II-3.9. In order to measure the speed of convergence, as well as for
technical convenience in the formulation of some of our results, we introduce the following
notation.

Thewidth of a compact interval[a,b] is given asw([a,b]) = b−a and its midpoint is
m([a,b]) = a+b

2 . We putw(⊥) = ∞. Forα = (α1, . . . ,αn)∈ IRn we letw(α) = max{w(αi) |
1 6 i 6 n} andm(α) = (m(α1), . . . ,m(αn)). If X is a set andf : X → IRn is a function,
the width of f is given asw( f ) = sup{w( f (x)) | x∈ X}. In the special case whereX ⊆ R,
we letwα( f ) = sup{e−α|x|w( f (x)) | x∈ X} and callwα( f ) theweighted widthof f w.r.t.
the weightα; this givesw( f ) = w0( f ). We will use the weighted width to show that the
domain theoretic Picard operator is a contraction.

Given two intervalsα = [a−,a+] andβ = [b−,b+] ∈ IR, their Hausdorff distanceis
d(α,β)= max{|a+−b+|, |a−−b−|}. Similarly, forα = (α1, . . . ,αn) andβ = (β1, . . . ,βn)∈
IRn, we letd(α,β) = max{d(αi ,βi) | 1 6 i 6 n} and define the distance of two functions
f ,g : X → IRn asd( f ,g) = sup{d( f (x),g(x)) | x∈ X}.

Consideringg as an approximation tof , we view the distanced( f ,g) as a measure of
the quality of the approximation. We mention two simple lemmas linking distance, width
and weighted width.

LEMMA 2.2. Let f : [−a,a]→ IRn. Then wα( f ) 6 w( f ) 6 eaαwα( f ) for all α > 0.

For the next lemma, recall thatm(·) denotes the midpoint of a rectangle.

LEMMA 2.3. Supposeα,β ∈ IRn are compact. Then

(i) ‖m(α)−m(β)‖ 6 d(α,β)

(ii) 0 6 w(β)−w(α) 6 2d(α,β) in caseβ ⊑ α.

The proof of both lemmas is a straightforward calculation, and therefore omitted.
Finally, if x 6 y are real numbers, apartition of [x,y] is a finite sequence(q0, . . . ,qk) of

real numbers such thatx= q0 < · · ·< qk = y, and the set of partitions of[x,y] is denoted by
P [x,y]. Thenormof a partitionQ = (q0, . . . ,qk) is denoted by|Q| = max{qi −qi−1 | 1 6

i 6 k}.

3. Picard Operator in Domain Theory

In the classical proof of Picard’s theorem on the existence and uniqueness of the solution
of the initial value problem (1) one defines an integral operator onC0[−a,a] by

y 7→ λx.
Z x

0
v(y(t))dt

(with the integral understood componentwise), which can beshown to be a contraction
for sufficiently smalla providedv satisfies a Lipschitz condition [15]. An application of
Banach’s theorem then yields a solution of the initial valueproblem. We now define the
domain-theoretic Picard operator for arbitrary Scott continuous vector fieldsu : IA→ IB,
for A,B∈ IRn, and focus on the special case whereu is an extension of a classical function
later. As in the classical proof, the Picard operator is an integral operator, and we therefore
introduce the integral of interval-valued functions.
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DEFINITION 3.1. Supposef = [ f−, f +] : [−a,a]→ IR is Scott continuous. Forx∈ [−a,a]
we let

Z x

0
f (t)dt = [

Z x

0
f−σ(x)(t)dt,

Z x

0
f σ(x)(t)dt]

whereσ(x) = sgn(x) is the sign ofx and f 0(t) = 1. If f = ( f1, . . . , fn) : [−a,a] → IRn, we
let

R x
0 f (t)dt = (

R x
0 f1(t)dt, . . . ,

R x
0 fn(t)dt).

Note that, if we integrate in the positivex-direction, thenf− contributes to the lower
function associated with the integral off and f + contributes to the upper function. If we
integrate in the negativex-direction, the roles off− and f + are swapped to ensure that the
lower value of integral is indeed smaller than the upper value. The following shows that
our definition is meaningful:

LEMMA 3.2. Suppose f: [−a,a]→ IR is Scott continuous.

(i) f − and f+ are measurable.

(ii)
R x

0 f (t)dt ∈ IR for all x ∈ [−a,a].

Proof. For Scott continuousf , the functionsf−, f + are lower (resp. upper) semi continu-
ous, hence measurable. Ifσ(x) = sgn(x), thenσ(x) f−σ(x) 6 σ(x) f σ(x) and

R x
0 f−σ(x)(t)dt 6

R x
0 f σ(x)(t)dt follows from the definition of the ordinary integral. Finally, we have to show

that
R x

0 f +(t)dt = ∞ iff
R x

0 f−(t)dt =−∞, but this is clear asf +(t)= ∞ iff f−(t) =−∞.

The following lemma shows that integration is compatible with taking suprema.

LEMMA 3.3. Let f : [−a,a]→ IRn.

(i) The functionλx.
R x

0 f (t)dt is Scott continuous.

(ii) The function
R

: ([−a,a]⇒ IRn) → ([−a,a]⇒ IRn), defined by f7→ λx.
R x

0 f (t)dt,
is Scott continuous.

Proof. We assumen = 1 from which the general case follows. Ifg(x) =
R x

0 f (t)dt, then
g−,g+ are continuous, henceg is Scott continuous. The second statement follows from the
monotone convergence theorem.

In the following, we are interested in solutionsy : [−a,a] → Rn of the initial value
problem (1), and we fix the domain of definition[−a,a] of a solution for the remainder of
the paper. In order to define the domain theoretic Picard operator, we assume that

u : IA→ IB, where either

• A = [−K,K]n, B = [−M,M]n anda > 0 satisfiesaM 6 K, or

• A = B = Rn anda > 0 is arbitrary.

The restriction on the lifetimea of a solution in the first case is due to the fact that, for a
solutionz: [−a,a]→Rn of the IVP (1), we have that ˙z= v(z) 6 M, i.e.M is a bound on the
derivative ofz. As z(0) = 0, we can only guarantee thatz(t) 6 Mt, which gives rise to the
restrictionaM 6 K for the expressionv(z(t)) to be well-defined for allt ∈ [−a,a]. Clearly
this restriction is not necessary ifu is defined on all ofIRn.

DEFINITION 3.4. Supposeu∈ IA⇒ IB. Thedomain theoretic Picard operator Pu : ([−a,a]⇒
IA) → ([−a,a] ⇒ IA) is defined byPu(y) = λx.

R x
0 u(y(t))dt.

LEMMA 3.5. Pu is well defined and continuous.
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Proof. In caseA = [−K,K]n andB = [−M,M]n, it follows from the assumptionaM 6 K
that Pu(y) ∈ ([0,a] ⇒ IA) whenevery ∈ [0,a] ⇒ IA. Lemma 3.3 shows thatPu(y), for
y∈ [0,a] ⇒ IA, andPu itself are continuous.

In the classical proof of Picard’s theorem, one constructs solutions of IVPs as fixpoint of
the (classical) Picard operator. The domain theoretic proof replaces Banach’s theorem with
the domain theoretic fixpoint theorem in the construction ofa fixed point of the (domain
theoretic) Picard operator. Unlike the classical case, where one chooses an arbitrary initial
approximation, we need to choose an initial (interval valued) functiony0 which is invariant
under the Picard operator, that isy0 ⊑ Pu(y0).

THEOREM3.6. Suppose y0 : [−a,a]→ IA satisfies y0 ⊑ Pu(y0) and let yk+1 = Pu(yk). Then
y =

F

k∈N yk satisfies Pu(y) = y.

Proof. Follows immediately from the domain theoretic fixpoint theorem, see e.g. [4, The-
orem 2.1.19], applied to the directed complete partial order ↑ y0 = { f : [−a,a]→ IA | y0 ⊑
f}.

For computing solutions of IVPs, we will takey0 = λt.[−K,K]n in the case thatu :
I[−K,K]n → I[−M,M]n is defined in a bounded neighbourhood of the origin, and the re-
strictionaM6 K will ensure thaty0 ⊑Pu(y0). This situation is discussed in detail in Section
4. In the unbounded case, we need to takey0 such that the (unique) solutionz of problem
(1) satisfiesy0 ⊑ z, see Section 5 for details.

The bridge between the solution of the domain-theoretic fixpoint equation and the clas-
sical initial value problem is established in the followingproposition, whereS f : [−a,a]→
I[−K,K]n denotes the functionλx.{ f (x)}, for f : [−a,a] → [−K,K]n.

PROPOSITION3.7. Suppose y0 : [−a,a]→ IA satisfies y0 ⊑ Pu(y0) and y∈ ↑y0 is the least
fixpoint of the restricted Picard operator Pu : (↑y0) → (↑y0).

(i) If f : [−a,a]→ IA solves (1) and y0 ⊑ S f , then y⊑ S f .

(ii) If y has width0, then y− = y+ solves (1).

Proof. For the first statement, note thatS f is a fixed point ofPu andy is the least such.
The second statement follows from the fundamental theorem of calculus; note thaty− = y+

implies continuity from the left and from the right.

The previous proposition can be read as a soundness result. Assuming that the problem
(1) admits a unique solutionzwith y0 ⊑ z, then the least fixpointy of the domain theoretic
Picard operator will satisfyy⊑ z.

4. Picard Operator for Lipschitz Vector Fields

We now specialise our discussion to the case wherev : [−K,K]n → [−M,M]n is defined
in a compact neighbourhood of the origin, and we fix an interval extensionu : I[−K,K]n →
I[−M,M]n of v; the unbounded case will be discussed in Section 5.

This allows us to consider the following spaces for approximating the vector field and
the solutions to the IVP, wherea > 0 is withaM 6 K:

• V = I[−K,K]n ⇒ I[−M,M]n for approximations of the vector field

• S = [−a,a]⇒ I[−K,K]n for approximate solutions.
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It is clear that in this setup, withaM 6 K, the functiony0 = λt.[−K,K]n : [−a,a] →
I[−K,K]n satisfiesy0 ⊑ Pu(y0).

We can ensure the uniqueness of the solution of the IVP by requiring that the vector field
satisfies an interval version of the Lipschitz property. Recall that for metric spaces(M,d)
and(M′,d′), a functionf : M →M′ is Lipschitz, if there isL > 0 such thatd′( f (x), f (z)) 6

L ·d(x,z) for all x,z∈ M. The following definition translates this property into an interval
setting, see also [16].

DEFINITION 4.1 (Lipschitz Condition). Supposeu : I[−K,K]n → I[−M,M]n. Thenu is
interval Lipschitz if there is someL > 0 such thatw(u(α)) 6 L ·w(α) for all α ∈ I[−K,K]n.
In this case,L is called aninterval Lipschitz constantfor u.

The following Proposition describes the relationship between the classical notion and
its interval version.

PROPOSITION4.2. For v : [−K,K]n → [−M,M]n, the following are equivalent:

(i) v is Lipschitz

(ii) The canonical extension of v satisfies an interval Lipschitz condition

(iii) v has an interval Lipschitz extension.

Proof. If v is Lipschitz, then the canonical extension ofv satisfies an interval Lipschitz
condition. Now assume thatu is an extension ofv which is interval Lipschitz, and let
x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ [−K,K]n. Let R(x,y) denote the rectangleα1×·· ·×αn

whereαi = [xi ,yi ] in casexi 6 yi andαi = [yi ,xi ] otherwise. Sinceu extendsv, we have
v(x) ∈ u({x}) ⊆ u(R(x,y)) by monotonicity. Henceu−i (R(x,y)) 6 vi(x) 6 u+

i (R(x,y)) for
all 1 6 i 6 n. Similarly u−i (R(x,y)) 6 vi(y) 6 u+

i (R(x,y)). Now

‖v(x)−v(y)‖ = max
16i6n

‖vi(x)−vi(y)‖ 6 max
16i6n

u+
i (R(x,y))−u−i (R(x,y))

= max
16i6n

w(ui(R(x,y))) 6 L ·w(R(x,y)) = L‖x−y‖,

as required.

Note that every interval Lipschitz function induces a totaland continuous classical func-
tion.

COROLLARY 4.3. Suppose u is interval Lipschitz. Then w(u(α)) = 0 whenever w(α) = 0,
and the induced real valued function̄u, given byū(x) = z iff u({x}) = {z}, is continuous.

We now show that the least fixpoint of the Picard operator associated withu has indeed
width zero, ifu satisfies an interval Lipschitz condition. We assume for theremainder of the
paper thatu is an extension ofv that satisfies an interval Lipschitz condition with Lipschitz
constantL. In order to show that the least fixpoint ofPu has width zero, we use the weighted
width, introduced in Section 2. The following lemma is the essential step for showing that
the least fixpoint of the domain theoretic Picard operator actually has width 0 on the whole
of [−a,a]. This is most conveniently expressed as a statement about the whole spaceS of
solutions introduced at the beginning of Section 4.

LEMMA 4.4. Let y∈ S . Then wα(Pu(y)) 6 L
α wα(y).
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Proof. For thei-th componentPu(y)i of Pu(y) we calculate

wα(Pu(y)) = sup
t∈[−a,a]

e−α|t|
Z t

0
uσ(t)

i (y(x))−u−σ(t)
i (y(x))dx

6 sup
t∈[−a,a]

e−α|t|
Z t

0
σ(t) ·L ·e−α|x|eα|x| ·w(y(x))dx

6 L ·wα(y) · sup
t∈[−a,a]

e−α|t|
Z |t|

0
eαxdx

6
L
α

wα(y)

as required.

Recall thaty0(x) = [−K,K]n, hencew(y0) = wα(y0) = 2K for all α > 0. This gives us the
following for the (not weighted) width of the iteratesyk.

THEOREM 4.5. Let yk+1 = Pu(yk) for all k ∈ N. Then w(yk) ∈ O(2−k). In particular, y=
F

k∈N yk is real-valued and solves (1).

Proof. Putα = 2L in Lemma 4.4. Then, by induction one obtainsw2L(yk) 6 2−kw2L(y0),
hencew(yk) 6 2−ke2Lw(y0) by Lemma 2.2. It follows from Proposition 3.7 thaty solves
the initial value problem.

The last result is a simplification, and at the same time a generalisation to higher di-
mensions, of Theorem 7.2 of [10] and Theorem 6.1 of [8], which give a domain theoretic
proof that the unique solution of the initial value problem for a time dependent, computable
scalar field is computable.

Although the above theorem tells us that the iteratesyk of the Picard operator will con-
verge to the unique solution, we need to take a further step toactually be able to compute
the iterates. In particular, we need a way to effectively compute the integrals involved in
the definition ofPu. For this reason, we now consider approximations tou; the basic idea
is that every continuous vector field can be approximated by asequence of step functions
(i.e. functions taking only finitely many values), which allows us to compute the integrals
involved in calculating the approximations to the solutioneffectively (they reduce to a fi-
nite sum). The key property which enables us to use approximations also to the vector field
is the continuity of the mappingu 7→ Pu, which is similar to the approach of [8, Section 6].

LEMMA 4.6. The map P: V → (S ⇒ S), u 7→ Pu, is continuous.

Proof. Follows from continuity ofu and the monotone convergence theorem.

This continuity property allows us to compute solutions to the classical initial value
problem by means of a converging sequence of approximationsof u.

PROPOSITION4.7. Suppose u=
F

k∈N uk and yk+1 = Puk(yk) for k∈ N. Then y=
F

k∈N yk

satisfies y= Pu(y).

Proof. Follows from Theorem 3.6 and continuity ofu 7→Pu by the interchange-of-suprema
law (see e.g. [4, Proposition 2.1.12]).
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We have seen that the Lipschitz condition on the vector field ensures that the approx-
imations of the solution converge exponentially fast (Theorem 4.5). In the presence of
approximations of the vector field, the speed of convergencewill also depend on how fast
the vector field is approximated. The following estimate allows us to describe the speed
of convergence of the iterates if the vector field is approximated by an increasing chain of
vector fields.

LEMMA 4.8. Let r⊑ u and y∈ S . Then wα(Pr(y)) 6 L
α wα(y)+ 2

αed(u, r).

Proof. For thei-th componentPr(y)i we calculate using Lemma 4.4

wα(Pr(y))i = sup
t∈[−a,a]

e−α|t|
Z t

0
rσ(t)
i (y(x))− r−σ(t)

i (y(x))dx

6 sup
t∈[−a,a]

e−α|t|
Z t

0
uσ(t)

i (y(x))−u−σ(t)
i (y(x))+2d(u, r))dx

6 sup
t∈[−a,a]

e−α|t|w(Pu(y)i)+ sup
t∈[−a,a]

e−α|t| · |t| ·2d(u, r)

6
L
α

wα(y)+
2

eα
d(u, r)

where the estimate for the second term follows fromf ′(1/α) = 0, f ′′(1/α) < 0 for f (x) =
x ·e−αx.

Using this estimate, we can now prove fast convergence if theapproximations of the
vector field converge fast, too.

THEOREM4.9. Suppose u=
F

k∈N uk with d(u,uk)∈O(2−k). For k> 0, put yk+1 = Puk(yk)
and y=

F

k∈N yk. Then w(yk) ∈ O(2−k) and y is real-valued and solves (1).

Proof. We show thatw4L(yk)6 2−k ·w4L(y0) by induction onk; this will imply thatw(yk)∈
O(2−k). Without loss of generality, we assume thatd(u,uk) 6 2−k−1Le·w(y0). There is
nothing to show for the casek = 0. For the general case, we invoke Lemma 4.8 and obtain

w4L(yk+1) 6
1
4

w4L(yk)+
2

4Le
d(u,uk)

6
1
4

2−kw4L(y0)+
1
4

2−kw4L(y0)

= 2−(k+1)w4L(y0)

as required. In combination with Lemma 2.2 this yieldsw(yk) 6 2−k ·e4aLw(y0) ∈ O(2−k).

Given a representation ofu in terms of step functions, Proposition 4.7 gives rise to an
algorithm for computing the solution of the initial value problem and Theorem 4.9 provides
an estimate on the speed of convergence.

We conclude with a brief remark on the maximal lifetime of solutions before we extend
the method to vector fields defined on the whole ofRn.

REMARK 4.10. Recall that we have assumedaM 6 K throughout the section whereM is a
bound on the absolute value of the vector field on[−K,K]n. If we drop this restriction and
use a modified Picard operatorP′

u defined byP′
u(y) = λt.Pu(y)(t)∩ [−K,K]n, the ensuing

iteratesyk will still converge to a solution of the problem providedyk(t) ∈ (−K,K)n for all
t ∈ [−a,a].
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In the next section, the method is extended to deal with vector fields defined on the
whole ofRn.

5. Picard’s method for unbounded vector fields

In the previous section, we have shown how to construct domain theoretic solutions of
initial value problems given by a vector field defined on a rectangle[−K,K] containing the
origin.

In practice, one often encounters the situation wherev : Rn →Rn is defined on the whole
of then-dimensional Euclidean space, which renders the limitation of v being defined on
some hyper-rectangle[−K,K]n extremely restrictive: For the equation to be well-defined,
one has to impose the restrictionaM 6 K which poses an upper limit to the lifetimea of
any solution. The next example illustrates this situation.

EXAMPLE 5.1. Consider the IVP ˙y = y+1 with initial conditiony(0) = 0. This problem
has the solutiony(t) = et −1, which is defined on the whole real line. However, the re-
quirementaM 6 K forces us to consider the vector field as being of typev : [−K,K] →
[−(K +1),K +1] (i.e. M = K +1) and subsequentlya 6 K+1

K , which restricts the domain
of definition of the constructed solution to the interval[−a,a] of width 6 2.

One situation where the global existence of solutions to IVPs is particularly important
are linear boundary value problems, i.e. differential equations of the form

ẏ = Ay+g with boundary conditions involvingy(a) andy(b)

whereA is a (possibly time dependent)n×n-matrix. Clearly we need to construct solutions
in this case at least in the interval[a,b].

In this section, we extend the construction of domain theoretic solutions to vector fields
defined over the whole ofn-dimensional Euclidean space. Classically, this is achieved by
constructing solutions locally, and then applying the extension theorem [7]. In the domain
theoretic setting, this is captured by amalgamating the local fixpoint iterations into one,
albeit on a larger function space, so that a single iterativescheme yields the solution on the
whole time interval.

For the remainder of the section, we fix a vector fieldv : Rn → Rn that satisfies the
Lipschitz condition with Lipschitz constantL, and an extensionu : IRn → IRn that is in-
terval Lipschitz with the same constantL. The problem that we face is the following: if we
assume that the range of the classical vector fieldv : Rn → Rn is unbounded, we cannot
start the iteration with the everywhere undefined functiony0 = λx. ⊥, sincey0 is already a
fixpoint of the Picard operator.

EXAMPLE 5.2. Supposev : R → R is the identity functionv(x) = x with extensionu(α) =
α for α ∈ IR. Then the functiony = λx. ⊥ is the least fixed point ofPu:

Pu(y)(t) =

Z t

0
u(y(x))dx=

Z t

0
u(⊥)dx=

Z t

0
⊥ dx=⊥ .

Note that the corresponding IVP ˙y = v(y), y(0) = 0 has the unique solutiony(t) = 0.

Therefore, a more sophisticated technique is called for. Wenow introduce local a priori
bounds for solutions of IVPs. The idea is to fix a partition (cf. Section 2)Q = (q0, . . . ,qk)
of the interval[0,a] on whose symmetric expansion[−a,a] about 0 which we want to
construct a solution of the equation. We then define constants Ki such that the (unique)
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solutionz : [−a,a] → Rn satisfies‖z(t)‖ 6 Ki on every interval[−qi,qi ] induced by the
partition. This allows us to takey0 to be the least function satisfying[−Ki ,Ki ]⊑ y(t) for all
t ∈ [−qi ,qi] and alli = 0, . . . ,k as starting point of the iteration, or equivalently, to obtain
a meaningful least fixpoint of the Picard operator in the space ↑ y0 = { f : [−a,a] → IRn |
y0 ⊑ f}.

DEFINITION 5.3. SupposeQ = (q0, . . . ,qk) ∈ P [0,a] with |Q| < 1
2L . Define the constants

KQ
i =

qi‖v(0)‖

(1−2L|Q|)i

for all i = 0, . . . ,k. We drop the superscriptQ if the partitionQ is clear from the context.
The constantsKQ

i are called thelocal a priori boundsinduced by the partitionQ and we
define the inducedglobal boundby KQ = KQ

k .

We collect some straightforward properties, which will be used later.

LEMMA 5.4. Suppose Q= (q0, . . . ,qk) ∈ P [0,a] with |Q| < 1
2L .

1. KQ
i > KQ

i−1 +(qi −qi−1)‖v(0)‖+2L|Q|KQ
i for all 1 6 i 6 k.

2. KQ
i−1 6 KQ

i for all 1 6 i 6 k.

Proof. Throughout the proof, we drop the superscriptQ. For the first item, we fix 16 i 6 n
and calculate

Ki =
qi−1‖v(0)‖+(qi −qi−1)‖v(0)‖

(1−2L|Q|)i

>
qi−1‖v(0)‖+(1−2L|Q|)i−1(qi −qi−1)‖v(0)‖

(1−2L|Q|)i

=
Ki−1

1−2L|Q|
+

(qi −qi−1)‖v(0)‖

1−2L|Q|
.

Hence

Ki(1−2L|Q|) > Ki−1 +(qi −qi−1)‖v(0)‖

i.e.

Ki > Ki−1 +(qi −qi−1)‖v(0)‖+2L|Q|Ki.

For the second claim note that 0< |Q| < 1
2L , hence 1

1−2L|Q| > 1, and thereforeKi−1 =
qi−1‖v(0)‖

(1−2L|Q|)i−1 6
qi‖v(0)‖

(1−2L|Q|)i = Ki .

The following proposition justifies our choice of terminology. Note that we assume that
v satisfies the Lipschitz condition with Lipschitz constantL.

PROPOSITION5.5. Suppose Q= (q0, . . . ,qk) ∈ P [0,a] with |Q|6 1
2L and z: [−a,a]→ Rn

is the unique solution of the IVP (1). Then‖z(t)‖ 6 Ki for all t ∈ [−qi,qi ].

Proof. We show that‖z(t)‖ 6 Ki for all t ∈ [−qi ,qi ] by induction oni. For i = 0, there
is nothing to show. Now suppose 0< i. If t ∈ [−qi−1,qi−1], the result follows from the
induction hypothesis in conjunction with Lemma 5.4. Lett ∈ [qi−1,qi ].
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As z(t) =
R t

0 v(z(x))dx, we have the following estimate.

‖z(t)‖ 6 ‖

Z qi−1

0
v(z(x))dx‖+‖

Z t

qi−1

v(z(x))dx‖

6 ‖z(qi−1)‖+

Z qi

qi−1

‖v(z(x))‖dx

6 ‖z(qi−1)‖+
Z qi

qi−1

‖v(z(x))−v(z(0))+v(z(0))‖dx

6 ‖z(qi−1)‖+

Z qi

qi−1

L‖z(x)−z(0)‖+‖v(z(0))‖dx

6 ‖z(qi−1)‖+

Z qi

qi−1

L‖z(x)‖+‖v(0)‖dx

6 ‖z(qi−1)‖+(qi −qi−1)L sup
x∈[qi−1,qi ]

‖z(x)‖+(qi −qi−1)‖v(0)‖.

Hence, asqi −qi−1 6 |Q| 6 2|Q| we obtain that

sup
x∈[qi−1,qi ]

‖z(x)‖ 6 ‖z(qi−1)‖+2|Q|L sup
x∈[qi−1,qi ]

‖z(x)‖+(qi −qi−1)‖v(0)‖.

By rearranging and using the induction hypothesis‖z(qi−1)‖ 6 Ki−1, we obtain that

sup
x∈[qi−1,qi ]

‖z(x)‖(1−2|Q|L) 6 Ki−1 +(qi −qi−1)‖v(0)‖

and the result follows from Lemma 5.4. Similarly, the claim is established fort ∈ [−qi,−qi−1].

Actually, one can prove the same statement with a sharper definition of Ki and show that
‖z(x)‖ 6

qi‖v(0)‖
(1−|Q|L)i on [0,qi]. However, as we shall see later, we need the a priori bounds of

Definition 5.3 when we move to interval valued functions.
For later reference, we include the following lemma, which will be used to show that

the Picard operator, which we introduce in the next section,is well-defined.

LEMMA 5.6. Suppose Q= (q0, . . . ,qk) ∈ P [0,a] with |Q| < 1
2L . Then

qi‖v(0)‖+
i

∑
j=1

2LK j |Q| 6 Ki

for all i = 0, . . . ,k.

Proof. We proceed by induction oni, where there is nothing to show for the casei = 0
(recall thatK0 = q0 = 0). Now supposei > 0. The induction hypothesis together with
Lemma 5.4 gives

qi‖v(0)‖+
i

∑
j=1

2LK j |Q|

= qi−1‖v(0)‖+
i−1

∑
j=1

2LK j |Q|+(qi −qi−1)‖v(0)‖+2LKi|Q|

6 Ki−1 +(qi −qi−1)‖v(0)‖+2LKi|Q| 6 Ki

as required.
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Figure 1: The setSQ for Q = (q0,q1,q2,q3)

We now introduce the space, on which we construct domain theoretic solutions.

DEFINITION 5.7. SupposeQ = (q0, . . . ,qk) is a partition of[0,a] with |Q| < 1
2L and take

the a priori boundsKi and the global boundKQ as in Definition 5.3. We let

SQ = { f : [−a,a]→ I[−KQ,KQ]n | f ↾ (−qi ,qi) ⊒ λt.[−Ki,Ki ] for all 1 6 i 6 k}

and writeyQ
0 =

F

16i6k[−qi,qi ] ց [−Ki ,Ki ] for the least element ofSQ, where the step
function α ց β is defined byx 7→ β iff x ∈ αo, andx 7→⊥, otherwise. We callSQ the
solution space associated withQ, and drop the sub/superscriptQ if the partition is clear
from the context.

Graphically, the setSQ is the set of functions whose interval values are bounded by
a double staircase, illustrated in Figure 1. Using Lemma 5.6, we can now show that the
Picard operator mapsSQ to SQ.

LEMMA 5.8. Let Q∈ P [0,a] with |Q| < 1
2L . Then Pu(y) ∈ SQ if y ∈ SQ.

Proof. SupposeQ = (q0, . . . ,qk). By monotonicity ofPu it suffices to show the statement
for y = y0, asy0 is the least element ofS .

We show, by induction oni, that[−Ki ,Ki ]
n ⊑Pu(y)(t) for all t ∈ [−qi,qi ]. For i = 0 there

is nothing to show, so supposei > 0.

As y0 ⊑ λt.0, we have, by monotonicity of integration, thatPu(y0) ⊑ Pu(λt.0), hence

Pu(y0) =
Z t

0
u(y0(x))dx⊑

Z t

0
u(0)dx= {

Z t

0
v(0)dt} = {t ·v(0)}

i.e.

t ·v(0) ∈ Pu(y0) (2)

for all t ∈ [0,a].

Moreover, the width ofPu(y0) can be estimated using the fact thatu is interval Lipschitz
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as follows fort ∈ [qi−1,qi ]:

w(Pu(y0)(t)) =

Z t

0
w(u(y0(x)))dx

=
i−1

∑
j=1

Z q j

q j−1

w(u(y0(x)))dx+

Z t

qi−1

w(u(y0(x)))dx

6
i−1

∑
j=1

2LK j(q j −q j−1)+2LKi(t −qi−1)

for all t ∈ [qi−1,qi ]. Hence

w(Pu(y0)(t)) 6
i

∑
j=1

2LK j (q j −q j−1) 6
i

∑
j=1

2LK j |Q|. (3)

PuttingWi = ∑i
j=12LK j(q j −q j−1), Equation (2) combined with Equation (3) yields

[−qi‖v(0)‖,qi‖v(0)‖]n+[−Wi,Wi ]
n ⊑ t‖v(0)‖+[−Wi,Wi ]

n ⊑ Pu(y0)(t)

for all t ∈ [qi−1,qi ].
By Lemma 5.6 we have thatqi‖v(0)‖+Wi 6 Ki , therefore[−Ki ,Ki ]

n ⊑ Pu(y0)(t) for
all t ∈ [qi−1,qi ] as required. By an analogous argument, the same relation holds for t ∈
[−qi,−qi−1]. Note that for 06 t < qi , we have by induction hypothesis that[−Ki ,Ki ]

n ⊑
[−Ki−1,Ki−1]

n ⊑ Pu(y0)(t), hence the proof is complete.

Since the estimate on convergence speed (Theorem 4.9) remains valid also in this ex-
tended setting, we have:

THEOREM 5.9. Suppose Q∈ P [0,a] is a partition with |Q| 6 1
2L and let yk+1 = Pu(yk).

Then w(yk) ∈ O(2−k) and y=
F

k∈N yk is real-valued and solves (1).

Proof. The estimate on the convergence speed is identical to the proof of Theorem 4.9,
and the result follows, sincey is a real-valued fixpoint ofPu.

We now discuss the case where the extensionu of the classical vector fieldv is given
in terms of an increasing sequence of approximationsu =

F

k∈N uk. For this, we need to
reconsider the measure of convergence speed of theuk to u.

DEFINITION 5.10. If r,u : IRn → IRm andK > 0, therestricted distance dK(r,u) is given
by

dK(r,u) = sup{d(r(α),u(α)) | α ∈ I[−K,K]n}.

If u =
F

k>0uk, we say thatdc(u,uk) ∈ O(2−k) if, for all K > 0 we have thatdK(u,uk) ∈

O(2−k).

That is, we say that the sequence(uk) converges exponentially fast tou, if it converges
exponentially fast on all compact sets; notationally this is reflected using the subscript “c”
in the statementdc(u,uk) ∈ O(2−k).

We now establish that working with approximations(uk) of u does not destroy conver-
gence to a solution, and give an estimate of the convergence speed.

First, note that foru′ ⊑ u, it is no longer guaranteed thatPu′(y) ∈ SQ for all y∈ SQ. This
problem is addressed in the next lemma, where 2SQ = {2y | y∈ SQ}.
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LEMMA 5.11. Suppose Q∈ P [0,a] with |Q|< 1
2L , u′ ⊑ u with d2KQ(u,u′) 6 1

2‖v(0)‖. Then
Pu′(y) ∈ 2SQ for all y with y∈ 2SQ.

Proof. Similar to the proof of Lemma 5.8 it suffices to show the claim for y = 2y0 =
F

i=1,...,k[−qi ,qi] ց [−2Ki ,2Ki ] and verify thattv(0) ∈ Pu′(y)(t) for all t ∈ [0,a]. We have,
for t ∈ [qi−1,qi ]:

w(Pu′(y)(t)) =

Z t

0
w(u′(y(x)))dx

6

Z qi

0
w(u(y(x)))+2d2KQ(u,u′)dx

6
i

∑
j=1

(q j −q j−1)(L ·4Ki +2d2KQ(u,u′))

6
i

∑
j=1

4K jL(q j −q j−1)+qi‖v(0)‖.

Again, if we letWi = ∑i
j=14K jL(q j −q j−1)+qi‖v(0), we havePu′(y)(t)⊒ [−qi‖v(0)‖,qi‖v(0)‖]n+

[−Wi ,Wi ]
n, and asqi‖v(0)‖+Wi 6 2qi‖v(0)‖+∑i

j=1(q j −q j−1)4LK j 6 2Ki by Lemma 5.6,
the result follows.

We now show, that the order of the convergence speed of the iterates to the solution
remains unaffected, if we compute the iterates using approximations of the vector field.
This is similar to Lemma 4.8, except that we need an additional condition on the distance
of u andu′.

LEMMA 5.12. Suppose Q∈ P [0,a] with |Q| 6 1
2L and u′ ⊑ u with d2KQ(u,u′) 6 1

2‖v(0)‖

and y∈ 2SQ. Then wα(Pu′(y)) 6 L
α wα(y)+ 2

αed2KQ(u,u′).

Proof. As for Lemma 4.8.

Moving from weighted width to ordinary width, we obtain the main result of this sec-
tion: fast convergence of the Picard iterates for unboundedvector fields.

THEOREM5.13. Suppose u=
F

k uk with dc(u,uk)∈O(2−k). For k> 0, put yk+1 = Puk(yk)
and y=

F

k yk. Then Pu(y) = y and w(yk) ∈ O(2−k).

Proof. As in the proof of Theorem 4.9, but invoking Lemma 5.12 instead of Lemma 4.8.

Our next goal is to show that this algorithm can be restrictedto bases of the respective
domains, showing that it can be implemented without loss of accuracy. We then give an
estimate of the algebraic complexity of the algorithm.

6. An Implementation Framework for Solving IVPs

We now show that the algorithm contained in Proposition 4.7 is indeed implementable
by showing that the computations can be carried out in the bases of the domains. In fact, we
demonstrate that every increasing chain of (interval valued) vector fields(uk)k∈N, where
eachuk is a base element ofV , gives rise to a sequence of base elements ofS , which
approximate the solution and converge to it. Our discussionis restricted to the situation
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where the vector fieldv : [−K,K]n → [−M,M]n is defined on a rectangle containing the
origin, but all the results adapt to the unbounded setting outlined in Section 5. Recall that
in this case we have to make the assumptionaM 6 K on the lifetime of a solution to
guarantee well-definedness of the problem.

In view of the algorithm contained in Proposition 4.7, we consider simple step func-
tions as base ofV and piecewise linear function as base ofS . Note that in this setup,
the domain-theoretic Picard operator computes integrals of piecewise constant functions,
hence produces piecewise linear functions.

We begin by introducing the bases which we are going to work with.

DEFINITION 6.1. LetD ⊆ R and assume that−a = a0 < · · · < ak = a with a0, . . . ,ak ∈ D,
β0, . . . ,βk ∈ I[−K,K]nD andγ1, . . . ,γk ∈ I[−M,M]nD, whereIRD denotes the set of rectangles,
which are contained inR and whose endpoints lie inD. We consider the following classes
of functions:

(i) The classSL
D of piecewiseD-linear functions[−a,a] → I[−K,K]n,

f = (a0, . . . ,ak)ց
L (β0, . . . ,βk)

where f (x)± = β±
j−1 +

x−a j−1
a j−a j−1

(β±
j − β±

j−1) for x ∈ [a j−1,a j ]. Every component of aD-
linear function is piecewise linear and ata0,a1 . . . ,ak takes values inD.

(ii) The setSC
D of piecewiseD-constant functions[−a,a]→ I[−K,K]n,

f = (a0, . . . ,ak)ց
C (β1, . . . ,βn),x 7→

{

βi x∈ [ai−1,ai ]
o

βi−1
d

βi x = ai and 1< i < k

where⊓ denotes the greatest lower bound and( ·)o is interior relative to the interval[−a,a].
The components of aD-constant function assume constant values inD, which only change
at a0,a1, . . . ,ak.

(iii) The setVD of finite suprema of consistent step functionsI[−K,K]n → I[−M,M]n,

f =
G

16 j6k

β j ց γ j : x 7→
G

{γ j | 1 6 j 6 k,β j ≪ x},

where(βi ց γi)16i6k are consistent ifβo
i ∩βo

j 6= /0 =⇒ γi ∩ γ j 6= /0 for all 1 6 i, j 6 k.

(iv) For any f as above, we putN ( f ) = k and call it thecomplexity of representationof
f . In more detail, we let the complexity of representation is given byN ((a0, . . . ,ak)ց

L (β0, . . . ,βk))=
N ((a0, . . . ,ak)ց

C (β1, . . . ,βk)) =N (
F

16 j6k β j ց γ j) = k.

The notationN (·), that measures the size of representations, is as in [8]. Since we will
not consider different representations for the same functions, we allow ourselves to blur
the distinction between a function and its representation as step function. The last section
shows, how to obtain a representation ofu as a supremum of step functions.

If D is dense inR, it is well known that the sets defined above are bases of theirrespec-
tive superspaces:

PROPOSITION6.2. Suppose D⊆ R is dense and−a,a∈ D.

(i) SL
D andSC

D are bases ofS .

(ii) VD is a base ofV .
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We can now show that the Picard operatorPu associated with a simple step functionu
restricts to an endofunction on the set of basis elements of the space of linear step functions
SL

D, and give estimates for the algebraic complexity of the procedure. The following lemma
covers the operation of applying the vector field to an approximation of the solution, and
simplifies Algorithm 4.4 of [8].

LEMMA 6.3. Suppose D⊆R is a subfield, u∈VD and y∈ SL
D. Then we can effectively find

f ∈ SC
D withN ( f ) 6 3N (y)N (u) and u◦y(x) = f (x) for all but finitely many x∈ [−a,a].

Moreover, f can be computed in timeO(N (u)2N (y)).

Proof. First supposeu = β ց γ consists of a single step function andy = (a0, . . . ,ak)ց
L β

with β = (β0, . . . ,βk). In every open interval(a j−1,a j) we can find an open (possibly
empty) subintervalα j ⊆ (a j−1,a j) such thaty(x) ≪ γ iff x ∈ α j for all x ∈ (a j−1,a j):
put α j =

T

16i6n{x ∈ (a j−1,a j) | yi(x) ∈ βo
i }. As D ⊆ R is a subfield, we haveα± ∈ D.

This gives

u(y(x)) =

{

γ x∈ α1∪·· ·∪αk

⊥ otherwise

for all but finitely manyx∈ [−a,a]. Sinceα j can be computed in constant time (for every
subinterval(a j−1,a j)) and theα j are pairwise disjoint intervals satsfiyingα+

j 6 α−
k for

all j 6 k, we can computef ∈ SC
D with f (x) = u(y(x)) for all but finitely manyx in time

O(N (y)). Moreover, sinceα j splits every subinterval(a j−1,a j) in at most three parts, we
can achieveN ( f ) 6 3N (y).

In caseu =
F

16 j6l γ j ց β j , we haveu◦ y =
F

16 j6l(γ j ց β j)◦ y. For everyj, we can
computef j with f j (x) = (γ j ց β j)(y(x)) for all but finitely manyy in O(N (y)) algebraic
steps. Hence supj f j can be performed inO(N (u)2 ·N (y)) steps, taking into account that
we needO(N (u)2) steps to compute the support points whereu◦y changes its (piecewise
constant) value. Note that the interval(−a,a) is subdivided into at most 3N (y)N (u) parts.
We haveu◦ y(x) = f (x) for all but finitely manyx by construction.

Now that we have a basis representation ofu◦y, it is easy to obtain a basis representation
of Pu(y) by integration. Note that computing integrals can be performed over a base defined
over a subring ofR; we will make use of this fact later. We now consider integration of
base functions, which plays the part of function updating (Algorithm 3.3) of [8].

LEMMA 6.4. Suppose D⊆R is a subring and let g(x) =
R x

0 f (x)dx for f ∈ SC
D . Then g∈ SL

D
andN (g) =N ( f ). Furthermore, g can be computed inO(N ( f )) steps.

Proof. Let f = (a0, . . . ,ak)ց
C (β1, . . . ,βk). First suppose 0∈ {a0, . . . ,ak}. Every compo-

nent fi = [ f−i , f +
i ] consists of a pair of piecewise constant functions. On everyinterval

[a j−1,a j ], for 16 j 6 k, the integral off±i can be computed by multiplying the width of the
interval by the value off±i , henceg∈ SL

D sinceD ⊆R is a subring. This computation takes
constant time, henceg can be computed in timeO(N ( f )), and clearlyN (g) =N ( f ). In
case 0/∈ {a0, . . . ,ak} we insert 0 as additional partition point and obtainN (g) =N ( f )+1
andg can be computed inO(N ( f )+1) = O(N ( f )) steps.

Summing up, we have the following estimate on the algorithm induced by Proposition
4.7 if we compute over the base of piecewise linear functions.

PROPOSITION6.5. Suppose D⊆ R is a subfield, u∈ VD and y∈ SL
D.
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(i) Pu(y) ∈ SL
D

(ii) Pu(y) can be computed in timeO(N (u)2N (y)).

(iii) N (Pu(y)) ∈ O(N (u)N (y)).

Proof. Lemma 6.4 provides us withf =(a0, . . . ,ak)ց
C (β1, . . . ,βk) withN ( f )∈O(N (u)·

N (y)) such thatu◦ y= f for all but finitely many arguments. Hence

Pu(y)(x) =

Z x

0
(u◦ y)(t)dt =

Z x

0
f (t)dt

and the claims follow from Lemma 6.4.

We can now summarise our results for computing with piecewise linear functions as
follows:

THEOREM 6.6. Suppose D⊆ R is a subfield and u=
F

k∈N uk with uk ∈ VD. If yk+1 =
Puk(yk), then

(i) yk ∈ S
L
D for all k ∈ N

(ii) y =
F

k∈N yk has width0 and y− = y+ solves the IVP (1).

(iii) w(yk) ∈ O(2−k) if d(u,uk) ∈ O(2−k).

Since the elements ofSL
D for D = Q, the set of rational numbers, can be represented

faithfully on a digital computer, the theorem – together with Proposition 3.7 – guarantees
soundness and completeness also for implementations of thedomain theoretic method,
albeit at the expense of an exponential number of intermediate points. (This is addressed
in the next section.) We also provide a guarantee on the speedof convergence, since the
conditiond(u,uk) ∈ O(2−k) can always be ensured by the library used to construct the
sequence(uk) of approximations to the vector field, which is discussed in Section 8.

Also, computing over the base of piecewise linear functionseliminates the need of com-
puting rectangular enclosures at every step of the computation. This increase in accurracy
comes at the expense of a high complexity of the representation of the iterates. The next
section presents an alternative, which uses piecewise constant functions only.

7. Computing with Piecewise Constant Functions

We have seen that the time needed to computePu(y) is quadratic in the complexity of the
representation ofu and linear in that ofy. However, the complexity of the representation
of Pu(y) is as in Proposition 6.5 (iii). This implies that

N (yk+1) ∈ O(N (u0) . . .N (uk)),

if u =
F

k∈N uk andyk+1 = Puk(yk).
The blow up of the complexity of the representation of the iterates is due to the fact

that each interval on whichy is linear is subdivided when computingu◦ y, since we have
to intersect linear functions associated withy with constant functions induced byu, as
illustrated by the left diagram in Figure 2.

This can be avoided if we work with piecewise constant functions only. The key idea is
to transform the linear step functionPu(y) into a simple step function before computing the
next iterate: on every interval, replace the upper (linear)function by its maximum and the
lower function by its minimum. We now develop the technical apparatus which is needed
to show that the approximations so obtained still converge to the solution. Technically,
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Figure 2: Subdivision of Intervals (left) and Flattening (right)

this is achieved by using partitions of the interval[−a,a], where we use the following
terminology. (Recall thatP [x,y] denotes the set of partitions of[x,y].)

DEFINITION 7.1 (Partitions). Supposex 6 y are real numbers.

(i) If D ⊆ R thenPD[x,y] ⊂ P [x,y] is the subset of partitions of[x,y] whose points lie
in D.

(ii) The sizeof a partitionQ = (q0, . . . ,qk) is given byN (Q) = k.

(iii) A partition Q = (q0, . . . ,qk) refinesa partitionR = (r0, . . . , r l ) if {r0, . . . , r l} ⊆
{q0, . . . ,qk}; this is denoted byR⊑ Q.

(iv) The rangeof a partitionQ = (q0, . . . ,qk) is denoted byr(Q) = [q0,qk].

We are now ready for the definition of the flattening functional, which transforms piece-
wise linear functions to piecewise constant functions. Thefollowing definition uses the
notation introduced at the beginning of Section 4.

DEFINITION 7.2. SupposeQ∈ P [−a,a]. Theflattening functional FQ : S → S associated
with Q is defined by

FQ( f ) = (q0, . . . ,qk)ց
C (γ1, . . . ,γk)

whereγi =
d
{ f (x) | x∈ [qi−1,qi ]} for 1 6 i 6 k.

Note that, geometrically speaking,FQ computes an enclosure of semi continuous func-
tions into rectangles, as illustrated by the right diagram in Figure 2.

LEMMA 7.3. FQ is well defined and continuous.

Proof. SinceFQ( f ) is a step function,FQ( f ) is continuous, andFQ is well defined. We
now show thatFQ is continuous. Letf ∈ S and assumef =

F

n∈N fn. First suppose that
x∈ [qi,qi+1]

o. We obtain, by Lemma 2.1, that
G

n∈N

FQ( fn)(x) =
G

n∈N

l
{ fn(x) | x∈ [qi ,qi+1]} =

G

n∈N

E( fn)([qi ,qi+1])

= E(
G

n∈N

fn)([qi ,qi+1]) = E( f )([qi ,qi+1])

=
l

{ f (x) | x∈ [qi ,qi+1]} = FQ( f )(x).

Forx∈ {q0, . . . ,qk}, the claim follows from continuity of
d

: IRn× IRn → IRn.
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In order to reduce the complexity of the representations of the iterates, we apply the
flattening functional at every step of the computation. The following lemma is the stepping
stone in proving that this does not affect convergence to thesolution. In the context of
partitions, we understand increasing in terms of the refinement order⊑, introduced in
Definition 7.1.

LEMMA 7.4. Suppose(Qk)k∈N is an increasing sequence of partitions of[−a,a] with
limk→∞ |Qk| = 0. Then

F

k∈N FQk = id.

Proof. This follows from the fact that for every upper semi continuous functionf : [−a,a]→
R and every decreasing chainα0 ⊇α1⊇ . . . of compact intervals containingxwith w(αk)→
0 ask→ ∞ one hasf (x) = infk∈N sup{ f (x) | x∈ αk}, and the dual statement for lower semi
continuous functions.

The last lemma puts us in the position to show that the application of the flattening
functional at every stage of the construction does not affect the convergence of the iterates
to the solution.

PROPOSITION7.5. Suppose u=
F

k∈N uk, (Qk)k∈N is an increasing sequence of partitions
with limk→∞ |Qk| = 0 and yk+1 = FQk(Puk(yk)). Then y=

F

k∈N yk satisfies y= Pu(y).

Proof. Follows from the interchange-of-suprema law (see e.g. [4, Proposition 2.1.12]), the
previous lemma and Proposition 4.7.

We now show that the speed of convergence is essentially unaffected if we apply the
flattening functional at every stage of the computation. This result hinges on the following
estimate on Lipschitz functions, whose Lipschitz constantN is not related to the Lipschitz
constant of the vector field.

LEMMA 7.6. Suppose g= ([g−1 ,g+
1 ], . . . , [g−n ,g+

n ]) : [−a,a]→ IRn is Scott continuous and,
for all i ∈ {1, . . . ,n}, either g+i or g−i satisfies a Lipschitz condition with Lipschitz constant
N. If Q is a partition, then w(FQ(g)) 6 w(g)+N|Q|.

Proof. Fix 1 6 i 6 n, supposex ∈ [−a,a] and choose two consecutive partition points
q−,q+ of Q such thatx ∈ [q−,q+]. Since upper (resp. lower) semi continuous functions
attain their suprema (resp. infima) on compact intervals, there arex−,x+ ∈ [q−,q+] such
that, for allx ∈ [q−,q+], we haveFQ(g)−i (x) = g−i (x−) andFQ(g)+i (x) = g+

i (x+), where
FQ(g)i = [FQ(g)−i ,FQ(g)+i ] denotes theith component ofFQ(g). If we assume w.l.o.g. that
g+

i is Lipschitz continuous, we obtain forx∈ [q−,q+] that

FQ(g)+i (x)−FQ(g)−i (x) = |g+
i (x+)−g−i (x−)|

6 |g+
i (x+)−g+

i (x−)|+ |g+
i (x−)−g−i (x−)|

6 N|x+ −x−|+w(gi)

6 N|Q|+w(g)

as required.

For the weighted width, we have the following corollary:

COROLLARY 7.7. Under the hypothesis of the previous lemma, wα(FQ(g)) 6 wα(g) +
N|Q|.
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Proof. This follows from calculating

wα(FQ(g)) = sup
t∈[−a,a]

e−α|t|w(FQ(g)(t)) 6 sup
t∈[−a,a]

e−α|t|(w(g)+N|Q|)

6 wα(g)+N|Q|

as claimed.

The last corollary allows us to estimate the width of an iterate, computed after applying
the flattening functional.

LEMMA 7.8. Let u′ ∈ V with u′ ⊑ u, y∈ S and Q∈ P [−a,a]. Then wα(FQ(Pu(y))) 6
L
α wα(y)+ 2

αed(u,u′)+ K
a |Q|.

Proof. By definition, the upper and lower functions associated withthe components of
g = Pu′(y), being integrals of functions bounded byM, satisfy a Lipschitz condition with
Lipschitz constantM; we haveK

a 6 M by assumption. The claim follows from Lemma 4.8
and Corollary 7.7.

We can now establish the main result of this section: Applying the flattening functional
at every step of the computation does not affect the order of the speed of convergence.

PROPOSITION7.9. Suppose u=
F

k∈N uk with d(u,uk) ∈ O(2−k) and (Qk)k∈N is an in-
creasing sequence inP [−a,a] with |Qk| ∈ O(2−k). If yk+1 = FQk(Puk(yk)), then w(yk) ∈
O(2−k). In particular, y=

F

k∈N yk is real valued and solves the IVP (1).

Proof. We can assume by relabeling the indices of the sequence, thatd(u,uk) 6 2−k ·
eLw(y0) and|Qk| 6 2−k · a

3w(y0). We show thatw6L(yk) 6 2−kw6L(y0), which implies the
claim with the help of Lemma 2.2. There is nothing to show fork = 0. For the inductive
step we have by Lemma 7.8

w6L(FQk(Puk(yk))) 6
1
6

w6L(y0)+
1
6

2−kw6L(y0)+
1
6

K

6
1
6

2−k(w6L(y0)+w6L(y0)+w6L(y0))

= 2−(k+1)w6L(y0)

as required.

We now show that the application of the flattening functionalat every step avoids the
blow up of the size of the iterates. As a consequence, the algorithm with flattening can
be implemented using a base of functions defined over a dense subring ofR, such as the
dyadic numbers.

LEMMA 7.10. Suppose D⊆ R is a subring and Q∈ PD[−a,a]. Then FQ restricts to a
mappingSL

D → SC
D .

Proof. Supposef = (a0, . . . ,al )ց
L (β0, . . . ,βl ) ∈ SL

D and Q = (q0, . . . ,qk) ∈ PD[−a,a].
If FQ( f ) = (q0, . . . ,qk)ց

C (γ1, . . . ,γk), then the vertices of theγi are elements of the set
S

16i6n{ f +
i (q0), f−i (q0), . . . , f +

i (qk), f−i (qk)}, which can be computed from the vertices
of theβ j ’s without forming quotients.

The complexity of the algorithm underlying Theorem 7.5 overthe basesVD andSC
D

can now be summarised as follows; recall thatN (Q) = k is the size of a partitionQ =
(q0, . . . ,qk).
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PROPOSITION7.11. Suppose D⊆ R is a subring, y∈ SC
D and u∈ VD.

(i) FQ(Pu(y)) ∈ SC
D andN (FQ(Pu(y))) =N (Q)

(ii) FQ(Pu(y)) can be computed in timeO(max(N (u) ·N (y),N (Q))).

Proof. For the first statement, assume thaty= (a0, . . . ,ak)ց
C (β1, . . . ,βk) andu=

F

16 j6l γi ց

δi . Thenu◦ y = (a0, . . . ,ak)ց
C (β′

1, . . . ,β′
k), whereβ′

m =
F

{δ j | βm ≪ γ j}. Clearlyu◦ y∈
SC

D . Computingu◦ y takesO(N (u) ·N (y)) steps, since we have to match every step func-
tion in u against everyβm. By Lemma 6.4 we have thatPu(y)∈ SL

D, and finallyFQ(Pu(y)) ∈
SC

D by Lemma 7.10. ComputingPu(y) from u◦y takes timeO(N (u) ·N (y)) andFQ(Pu(y))
can be computed inO(max(N (u) ·N (y),N (Q)) steps, hence the bound on the complex-
ity.

Note the complexity reduction compared to Proposition 6.5 which is achieved since
Pu( f ) does not changes its value in the subintervals[ai ,ai+1]. We can now summarise our
results concerning soundness and completeness of the algorithm with flattening as follows:

THEOREM7.12. Suppose D⊆R is a subring and u=
F

k∈N uk with uk ∈VD. Furthermore,
assume(Qk)k∈N is an increasing sequence of partitions withlimk→∞ |Qk| = 0 and yk+1 =
FQk(Puk)(yk).

(i) yk ∈ S
C
D for all k ∈ N andN (yk) =N (Qk).

(ii) y =
F

k∈N yk has width0 and y− = y+ solves the IVP (1)

(iii) w(yk) ∈ O(2−k), if both d(u,uk) and|Qk| ∈ O(2−k).

Note that, for a subringR⊆ Q of the rational numbers, the elements ofVD andSC
D can

be faithfully represented on a digital computer. Hence we can guarantee both soundness
and completeness also for an implementation of the domain theoretic approach where fur-
thermore the representation complexity of the iterates arebounded above by the size of the
partitions.

8. Approximating Continuous Functions

The theory outlined in the previous sections depends on an interval vector fieldu, given
in terms of a supremumu =

F

k∈N uk of step functions. In order to apply our theory, the
following assumptions must be satisfied:

1. u is an extension of the classical vector fieldv

2. u satisfies an interval Lipschitz condition

3. The interval distanced(u,uk) converges exponentially fast.

This section shows how to obtain a sequence(uk)k∈N which satisfies the above assump-
tions. We discuss two techniques for constructing approximations of vector fields: first, we
discuss compositions of approximations and then we show howto construct interval valued
approximations from a function that computes the value of the vector field to an arbitrary
degree of accuracy.

8.1. Composition of Approximations
In this section we assume that we have two functionsg : IRn → IRm and f : IRm→ IRk,

approximated by sequences of step functions(gn) and ( fn), and show how to use these

22



approximations to compute approximations off ◦g, subject to the conditions laid down at
the beginning of the section.

We begin with an example showing that composition of approximations does not nec-
essarily preserve the convergence speed.

EXAMPLE 8.1. This example shows that iff =
F

k fk andg=
F

k gk, and both( fk) and(gk)
converge exponentially fast, then this is not necessarily true for the compositiong◦ f , even
if both f andg are interval Lipschitz. Consider the continuous functionh : [0,∞) → [0,2]
given by

h(x) =

{

1− 1
log2(

2
1−x)

x < 1

1 x > 1

where log2 is the dyadic logarithm (logarithm w.r.t. base 2). Clearlyh is differentiable in
[0,1), and elementary analysis shows that 06 h′(x) 6 1

ln2 6 2 forx∈ [0,1), henceh(x) 6 2x
for all x∈ R. Therefore the Scott continuous functionf : IR → IR with f (x) = [0,h(w(x))]
satisfies the interval Lipschitz conditionw( f (x)) 6 2w(x). Putting fk = f , we clearly have
thatd( f , fk) 6 2−k. Note thatf is a non-maximal interval extension of the constant zero
function.

For g(x) = [0,w(x)] andgk(x) = [0,w(x)+ 2−k−1] we also have thatg is interval Lip-
schitz andd(g,gk) = 2−k−1 6 2−k. We show that the compositionfk ◦gk only converges
linearly fast to f ◦ g. Consider the intervalxk = [0,1− 2−k−1]. Thend( fk ◦ gk, f ◦ g) >

d( fk(gk(xk)), f (g(xk))) = h(w(gk(xk)))−h(w(g(xk))) = h(1)−h(1−2−k−1) = 1
k+2, show-

ing that function composition does not preserve exponential convergence speed.

As this example shows, we need extra conditions to ensure that composition of approx-
imations preserves the speed of convergence. We propose to consider functions which are
Hausdorff Lipschitz from below:

DEFINITION 8.2. Supposef : IRn → IRm. Then f is Hausdorff Lipschitz from below, iff

d( f (α), f (β)) 6 L ·d(α,β)

for someL > 0 and allα ⊑ β, α,β ∈ IRn.

Note that we only require the estimate to hold ifα ⊑ β, hence Hausdorff Lipschitz from
below is a weaker condition than being Lipschitz w.r.t. the Hausdorff metric onIRn and
IRm, respectively.

We briefly relate this condition to the interval Lipschitz condition we have introduced
before. Recall thatf is interval Lipschitz, ifw( f (α)) 6 L ·w(α) for someL > 0 and all
α ∈ dom( f ), i.e. f increases the width of its argument only linearly.

REMARK 8.3. The notions “interval Lipschitz” and “Hausdorff Lipschitz from below” are
unrelated, as shown by the following examples:

1. The functionf in Example 8.1 is interval Lipschitz, but not Hausdorff Lipschitz from
below.

2. The functionλx.[0,1] : IR → IR is Hausdorff Lipschitz from below, but not interval
Lipschitz.

It is easy to see that the maximal extension of a classical Lipschitz function is also
Hausdorff Lipschitz from below, but the converse is not truein general.
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PROPOSITION 8.4. Suppose f: Rn → Rm satisfies a Lipschitz condition with Lipschitz
constant L. Then d(I f (α),I f (β)) 6 Ld(α,β) for all compactα ⊑ β ∈ IRn.

Proof. Supposeα,β ∈ IRn. Denote the minimal distance between a pointx ∈ Rn and a
compact setc⊆Rn bydm(x,c). By definition of Hausdorff distance, we find, for allx∈α an
elementyx ∈ β s.t.‖x−yx‖6 d(α,β). Hence we have, for allx∈ α, thatdm( f (x),I f (b)) 6

L‖x−yx‖ 6 Ld(α,β). Therefored(I f (α),I f (β)) 6 Ld(α,β).

The next example shows that functions which are Hausdorff Lipschitz from below are
not necessarily maximal.

EXAMPLE 8.5. Suppose− : IR× IR → R is the maximal extension of the subtraction
function, i.e.[a−,a+]− [b−,b+] = [a− − b+,a+ − b−]. Then the functionf : IR → IR,
x 7→ x−x is both interval Lipschitz and Hausdorff Lipschitz from below (actually it is even
Lipschitz w.r.t. the Hausdorff distance), but not maximal,as the functionλx.0 satisfies
f ⊑ λx.0.

What makes functions that are Hausdorff Lipschitz from below attractive for our pur-
poses is that the set of such functions is closed under composition, in contrast to maximal
extensions.

LEMMA 8.6. Suppose f: IRn → IRm and g: IRm → IRk are Hausdorff Lipschitz from
below. Then so is g◦ f .

Proof. Follows immediately from monotonicity ofg.

Proposition 8.4 and Example 8.5 lead us to think of functionsthat are Hausdorff Lips-
chitz from below as functions that are close to being maximalextensions, without actually
being maximal. In particular, these functions are closed under composition, which makes
them attractive for building libraries.

We are now in the position to prove the promised result on compositionality of approx-
imations; in particular we establish a guarantee of the convergence speed of composed
approximations.

THEOREM 8.7. Suppose gk : IRn → IRm and fk : IRm → IRl are monotone sequences of
Scott continuous functions with f=

F

k fk and g=
F

k gk that satisfy the following require-
ments:

1. Both f and g are interval Lipschitz and f is Hausdorff Lipschitz from below

2. d( f , fk),d(g,gk) ∈ O(2−k).

Then f◦g is interval Lipschitz and the extension of a classical function and d( fk ◦gk, f ◦
g) ∈ O(2−k). Moreover, if g is also Hausdorff Lipschitz from below, thenso is f◦g.

Proof. Only the statement on the convergence speed requires proof.We denote the Haus-
dorff Lipschitz constant off by L and assume w.l.o.g. thatl = 1; the general result then fol-
lows by taking the maximum over the components off resp.fk. Note thatd([a−,a+], [b−,b+])6

|a−−b−|+ |a+−b+| 6 2d([a−,a+], [b−,b+]). Using this fact, the claim follows from the
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following calculation:

d( f ◦g(α), fk ◦gk(α)) = f +
k (gk(α))− f +(g(α))+ f−(g(α))− f−k (gk(α)

= f +
k (gk(α))− f +(gk(α))+ f +(gk(α))− f +(g(α))+

f−(g(α))− f−(gk(α))+ f−(gk(α))− f−k (gk(α))

6 2d( f , fk)+2d( f (g(α)), f (gk(α)))

6 2d( f , fk)+2Ld(g,gk) ∈ O(2−k)

whereα ∈ I[−K,K]n was arbitrary.

This theorem shows, that the class of functions that are bothinterval Lipschitz and Haus-
dorff Lipschitz from below can be used to build a compositional library for fast converging
Lipschitz functions. In the next section, we address the task of actually constructing func-
tions that fall into this class.

8.2. Construction of Approximations
Having seen how to obtain approximations of interval vectorfields compositionally, this

section outlines a technique for constructing these approximations, given a function that
computes the Lipschitz functionf : Rn → Rm up to an arbitrary degree of accuracy.

More precisely, we assume thatg : Qn×N → Qm is given such that‖ f (x)−g(x,k)‖ 6

2−k. On a practical level, this allows us to compute approximations for a large class of
functions. Moreover, the existence of acomputablefunctiong with the above property is
equivalent to the computability off , and the results of this section show that we obtain
approximations by step functions for everycomputableLipschitz vector field.

The idea of the construction is as follows: Given a rectangleα ⊆ Rn, we compute
g(m(α),k), which gives the value off at the midpointm(α) of α up to an accuracy of
2−k. In order to accommodate for this inaccuracy, we extend thispoint value into a rect-
angle by extending it with 2−k into the direction of each coordinate axis. This rectangle is
then subsequently extended using the Lipschitz constant off , resulting in a rectangle that
contains all valuesf (x) for x∈ α.

While it is straight forward to see that this method producesapproximations of any
Lipschitz functions up to an arbitrary degree of accurracy,more work is needed to show
that these approximations are actually compositional, i.e. Hausdorff Lipschitz from below
in the sense of the previous section and converge exponentially fast.

To formalise the construction, we now assume for the rest of the section thatf : Rn →
Rm satisfies a Lipschitz condition with Lipschitz constantL andg : Qn×N → Qm is such
that‖g(x,k)− f (x)‖ 6 2−k.

DEFINITION 8.8. For a real vectorx = (x1, . . . ,xn) ∈ Rn andλ ∈ [0,∞), we writex⊕λ for
then-dimensional rectangle[x1−λ,x1 + λ]×·· ·× [xn−λ,xn+ λ] with centrex and width
2λ. Given a partitionQ = (q0, . . . ,qk), we denote the set ofn-dimensional rectangles with
endpoints inQ by

R (Q) = {[qi1,q j1]×·· ·× [qin,q jn] | 0 6 ir < jr 6 k for all 1 6 r 6 n}.

Finally, we define the family of functionsf k
Q for k∈ N by

f k
Q =

G

α∈R (Q)

α ց g(m(α),k)⊕ (2−k +
L
2
·w(α)).
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We call thef k
Q’s the approximation functions associated withQ.

It is easy to see that the approximation functions associated with a partition are sound
in the sense that they give enclosures of the approximated functions.

LEMMA 8.9. Let Q∈ P and k∈ N. Then fkQ ⊑ I f .

Proof. We have to showf (x) ∈ f k
Q(α) for all α ∈ IRn and allx ∈ α. This follows from

f (x) ∈ g(m(β),k)⊕ (2−k + L
2 ·w(β)) for all β ≪ α,β ∈ R (Q) by taking suprema.

So supposeβ ∈ R (Q) andβ ≪ α. To see thatf (x) ∈ g(m(β),k)⊕ (2−k + L
2 ·w(β)) it

suffices to show that‖ f (x)−g(m(β),k)‖ 6 2−k + L
2 ·w(β) for all x∈ α. But this follows

from

‖ f (x)−g(m(β),k)‖ 6 ‖ f (x)− f (m(β))‖+‖ f (m(β))−g(m(β),k)‖

6 L · ‖x−m(β)‖+2−k

6 L ·
1
2

w(β)+2−k

where the estimate‖x−m(β)‖ 6 1
2w(β) follows from β ≪ α andx∈ α.

Before we give guarantees on the quality of approximations constructed using this
method, we need to check that the approximations constructed actually form an increasing
chain. This is the content of the following easy lemma.

LEMMA 8.10. Suppose R⊑ Q∈ P and j6 i. Then fjR ⊑ f i
Q.

We now establish one of the criteria for approximations laiddown at the beginning of
the section, i.e. that they converge to a function which is interval Lipschitz. Recall the order
on partitions and their range from Definition 7.1

LEMMA 8.11. Suppose(Qk)k∈N is an increasing sequence of partitions withlimk→∞ |Qk|=
0 and

S

k r(Qk) = R. Then
F

k∈N f k
Qk

satisfies the interval Lipschitz condition with constant
L.

Proof. Pickα∈ IRn. For any givenε > 0, pickk> 0 s.t.|Qk|<
ε
2, 2−k 6 ε andr(Qk)

n ≪α.
By choice ofk, we find β ∈ R (Qk) with β ≪ α and w(β) 6 w(α) + ε. We now have
β ց g(m(β),k)⊕ (2−k + L

2 ·w(β)) ⊑ f k
Qk

andβ ≪ α, whence

w(
G

k∈N

f k
Qk

(α)) 6 w( f k
Qk

(α))

6 w((β ց g(m(β),k)⊕ (2−k +
L
2

w(β)))(α))

6 2 ·2−k+L ·w(β)

6 2 ·2−k+L · (w(α)+ ε)
6 ε+Lw(α)+Lε
6 (1+L)ε+L ·w(α).

As ε > 0 was arbitrary, we conclude thatw(
F

k∈N f k
Qk

(α)) 6 L ·w(α).

COROLLARY 8.12. The function h=
F

k∈N f k
Qk

is an extension of f .
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Figure 3: Approximations associated withg(x,y,k) = (x,y).

Proof. By Lemma 8.9, we havef (x) ∈ h({x}) and Lemma 8.11 shows thath({x}) is a
singleton set.

We have shown how to construct approximations which satisfytwo of the three criteria
needed to put our theory to work. We now turn to the last item and give an estimate on
the convergence speed of thef k

Qk
to h. In the proof, we compare an upper approximation

of ( f k
Qk

)+ with a lower approximation ofh+ for h =
F

k f k
Qk

. The next lemma is a major
stepping stone for establishing a lower approximation ofh. If we recall the definition of
f k
Qk

, we see that the width of the intervalm(β)⊕ (2−k + L
2 ·w(β)) in the step function

β ց m(β)⊕ (2−k + L
2 ·w(β)) only depends on the width ofβ. Hence givenα ∈ IR, it does

not suffice to consider a minimal enclosureR (Q) ∋ β ≪ α to find an upper bound for
f k
Qk

(α). Instead we need to consider all enclosures that have the same width as the minimal
enclosure. This situation is illustrated forf (x,y) = g(x,y,k) = (x,y) in Figure 3, where
the dots indicate the grid points given byQk. Note that( f k

Qk
)+1 (α) = g1(m(β0),k)+2−k +

L
2w(β0) despite the fact thatβ1 is a better approximation ofα.

The next lemma accounts for this situation and gives a lower bound for the upper func-
tion associated withf k

Qk
.

LEMMA 8.13. Suppose Q∈ P with r(Q) ≪ [−K,K] and k∈ N. Then, for all i= 1, . . . ,n
and allα ∈ I[−K,K]n,

( f k
Q)+i (α) > min{ fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)}+

L
2

w(α)

where( f k
Q)+i is the upper function associated with the i-th component of fk

Q.

Proof. Throughout the proof, we fixi with 1 6 i 6 n andα = (α1, . . . ,αn). First note that

{α′ ⊑ α | w(α′) = w(α)}

= {α+(ρ1, . . . ,ρn) | 0∈ ρ j ∈ IR andw(α j )+w(ρ j) 6 w(α)} (4)

whence the midpoint setM(α) = {m(α′) | α′ ⊑ α,w(α′) = w(α)} is

M(α) = m(α)+
1
2
([w(α1)−w(α),w(α)−w(α1)]×·· ·× [w(αn)−w(α),w(α)−w(αn)]).

We first show that

fi(m(β))+
L
2

w(β) > min{ fi(x) | x∈ M(α)}+
L
2

w(α)
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for all β ⊑ α. Let β ⊑ α be given. In casem(β) ∈ M(α) there is nothing to show, and the
claim follows fromw(β) > w(α). Now assumem(β) /∈ M(α).

For an arbitraryx ∈ Rn, we write‖M(α)− x‖ = infy∈M(α) ‖y− x‖ for the distance be-
tweenx and the setM(α). Hence our assumption is‖M(α)−m(β)‖> 0. Pick anyx∈M(α)
s.t. ‖M(α)−m(β)‖ = ‖x−m(β)‖ and let j ∈ {1, . . . ,n} be such that‖M(α)−m(β)‖ =
‖x−m(β)‖= |x j −m(β) j | (recall that‖ · ‖ denotes maximum norm).

We now claim thatw(β j) > w(α)+2‖M(α)−m(β)‖. To see this, recall thatx∈ M(α)
and‖x−m(β)‖ is minimal, and we have two cases, sincex is a boundary point ofM(α):
Case 1: m(β) j < x j = m(α) j −

1
2(w(α)−w(α j ))

Case 2: m(α j)+ 1
2(w(α)−w(α j )) = x j < m(β) j .

We only treat the first case, as the second is symmetric, so assume thatm(β) j < x j . If
β = [b−1 ,b+

1 ]× ·· ·× [b−n ,b+
n ], we havex j −

1
2(b+

j + b−j ) = x j −m(β) j = ‖M(α)−m(β)‖,
whence

b−j = 2x j −2‖M(α)−m(β)‖−b+
j

6 2m(α) j − (w(α)−w(α j))−2‖M(α)−m(β)‖−a+
j

= a+
j +a−j −w(α)+a+

j −a−j −a+
j −2‖M(α)−m(β)‖

= a+
j −w(α)−2‖M(α)−m(β)‖

where we have usedβ ⊑ α to obtaina+
j 6 b+

j in the second line. For the same reason, and
using the last estimate, we now have

w(β j) = b+
j −b−j

> a+
j −a+

j +w(α)+2‖M(α)−m(β)‖

which implies our claimw(β j) > 2‖M(α)−m(β)‖+w(α).
Using this fact, as a consequence of the choice ofx we now have

fi(m(β))+
L
2

w(β) = fi(m(β))− fi(x)+ fi(x)+
L
2

w(β)

> −L‖x−m(β)‖+ fi(x)+
L
2
(w(α)+2‖M(α)−m(β)‖)

= fi(x)+
L
2

w(α)

> min{ fi(x) | x∈ M(α)}+
L
2

w(α)

which concludes the proof of our first statement. We now show the lemma. Asf k
Q =

F

β∈R (Q) β ց g(m(β),k)⊕ (2−k + L
2w(β)) it suffices to show that

gi(m(β),k)+2−k +
L
2

w(β) > min{ fi(x) | x∈ M(α)}+
L
2

w(α)

for all β ≪ α. But this now follows easily:

gi(m(β),k)+2−k +
L
2

w(β) > fi(m(β))+
L
2

w(β)

> min{ fi(x) | x∈ M(α)}+
L
2

w(α)

using our first result and the fact thatβ ⊑ α.

28



We obtain the following immediate corollary, which we use inthe estimate of the con-
vergence speed to give an upper bound onh(α).

COROLLARY 8.14. Suppose(Qk) is an increasing sequence of partitions and h=
F

k∈N f k
Qk

.

Then h+i (α) > min{ fi(m(α′)) | α′ ⊑ α,w(α′) = w(α)}+ L
2w(α) for all 1 6 i 6 n.

Using the last corollary as an upper bound for the value ofh, we can formulate and
prove a statement on the convergence speed as follows:

PROPOSITION 8.15. Suppose(Qk) is an increasing sequence of partitions with|Qk| ∈
O(2−k) and

S

k r(Qk) = R. If h =
F

k f k
Qk

, then d(h, f k
Qk

) ∈ O(2−k).

Proof. Let K > 0. We show thatd(h(α), f k
Qk

(α)) ∈ O(2−k) for all α ∈ I[−K,K]n. Without

loss of generality we can assume thatr(Q0) ≪ [−K,K] and|Qk| 6
1
L ·2

−k.
Suppose now thatα ∈ I[−K,K]n is given and 16 i 6 n. By compactness ofα and

continuity of f , we can findα′ ⊑ α with w(α′) = w(α) s.t.

fi(m(α′)) = min{ fi(m(γ)) | γ ⊑ α,w(γ) = w(α)}.

By Corollary 8.14 we have

h+
i (α) > fi(m(α′))+

L
2

w(α′) (5)

(note thatw(α) = w(α′)). As |Qk| 6 1
L 2−k, we can findβ ≪ α′ with d(α′,β) 6 2|Qk| =

21
L ·2

−k. By definition of f k
Qk

, we have

g(m(β),k)⊕ (2−k +
L
2

w(β)) ⊑ f k
Qk

(α)

hence

( f k
Qk

)+i (α) 6 gi(m(β),k)+2−k +
L
2

w(β). (6)

Combining equations (5) and (6) we obtain

( f k
Qk

)+i (α)−h+
i (α) 6 gi(m(β),k)+2−k +

L
2

w(β)− fi(m(α′))−
L
2

w(α′)

6 fi(m(β))+2 ·2−k+
L
2
(w(β)−w(α′))− fi(m(α′))

6 L · ‖m(β)−m(α′)‖+
L
2

d(α′,β)+2 ·2−k

6
3
2

Ld(α′,β)+2 ·2−k

6 3L|Qk|+2 ·2−k

6 5 ·2−k

where we have used Lemma 2.3 in line 3 and 4 of the estimate. Similarly one shows that
h−i (α)−( f k

Qk
)−i 6 5·2−k, and we conclude thatd(hi(α),( f k

Qk
)i(α)) 6 5·2−k which implies

the claim asi was arbitrary.

In summary, we have the following theorem, which shows, thatthe approximations
satisfy all the conditions discussed at the beginning of thesection.
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THEOREM8.16. Suppose(Qk) is an increasing sequence of partitions with|Qk| ∈O(2−k),
S

k>0 r(Qk) = R and let h=
F

k∈N f k
Qk

. Then

1. h is an extension of f

2. h satisfies an interval Lipschitz condition with Lipschitz constant L

3. d(h, f Qk
k ) ∈ O(2−k).

8.3. Compositionality of Approximations

We have now established conditions which allow to compose function approximations
in a way that the order of magnitude of convergence speed is preserved. On the other hand,
we have described a method to construct fast converging approximations from scratch. In
this section, we show that the approximationsf k

Qk
are amenable to building a library for

approximating Lipschitz functions by showing that their suprema are Hausdorff Lipschitz
from below, which entails that the composition of approximations preserves fast conver-
gence (Theorem 8.7).

For the purpose of this section, we assume thatf : Rn → Rm is a classical Lipschitz
function,(Qk) is an increasing sequence of partitions with|Qk| ∈O(2−k) and

S

k>0 r(Qk) =

R. Furthermore, we assume thatf Qk
k is constructed as in Definition 8.8.

Our main result is to show that the functionsh =
F

k f k
Qk

can be used to build a compo-
sitional library of fast converging approximations to Lipschitz vector fields. In the light of
Theorem 8.7, we therefore have to show that the functionh=

F

k f k
Qk

is Hausdorff Lipschitz
from below.

We fix the functionh =
F

k f k
Qk

. The proof of the Hausdorff Lipschitz property is split
into several lemmas.

LEMMA 8.17. Supposeα′ ⊑ α with w(α) = w(α′). Then there are(x1, . . . ,xn) ∈ Rn s.t.

1. |xi | 6
1
2(w(α)−w(αi)) for all i = 1, . . . ,n

2. m(α′) = m(α)+ (x1, . . . ,xn).

Proof. Supposeα = [α−
1 ,α+

1 ]× ·· · × [α−
n ,α+

n ] and similarly forα′. Then we have, for
i = 1, . . . ,n, thatα′

i = [α−
i −ai,α+

i + ai] where 06 a−i ,a+
i anda−i + a+

i 6 w(α)−w(αi).

Puttingxi =
a+

i −a−i
2 satisfies the hypothesis of the lemma.

LEMMA 8.18. Let α ∈ IRn. Then h+i (α) 6 fi(m(α))+ L
2w(α).

Proof. Let ε > 0 and findk > 0 such that 2−k 6 ε, |Qk| 6 ε andr(Qk)
n ≪ α. By choice of
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k, we can findα0 ∈ R (Qk) with α0 ≪ α andd(α,α0) 6 ε. We calculate

h+
i (α) 6 ( f Qk

k )+i (α)

6 gi(m(α0),k)+2−k +
L
2

w(α0)

6 fi(m(α0))+2 ·2−k+
L
2

w(α0)

6 fi(m(α))+ | fi(m(α0)− fi(m(α))|+2 ·2−k +
L
2

w(α)+
L
2
|w(α0)−w(α)|

6 fi(m(α))+
L
2

w(α)+L‖m(α)−m(α0)‖+
L
2
(w(α0)−w(α))+2 ·2−k

6 fi(m(α))+
L
2

w(α)+Ld(α,α0)+Ld(α,α0)+2 ·2−k

6 fi(m(α))+
L
2

w(α)+2Lε+2ε

which proves the claim, asε was arbitrary.

The next lemma gives the first half of the Hausdorff Lipschitzproperty.

LEMMA 8.19. Let α ⊑ β ∈ IRn. Then h+i (α)−h+
i (β) 6 3Ld(α,β).

Proof. By compactness of the midpoint set

{m(γ) | γ ⊑ β,w(β) = w(γ)}

we findβ′ ⊑ β with w(β′) = w(β) s.t.

h+
i (β) > min{ fi(m(γ)) | γ ⊑ β,w(γ) = w(β)}+

L
2

w(β) = fi(m(β′))+
L
2

w(β),

where the first estimate is Corollary 8.14. By Lemma 8.17, there arex1, . . . ,xn s.t.m(β)+
(x1, . . . ,xn) = m(β′) and|xi | 6

1
2(w(β)−w(βi)). We putx = (x1, . . . ,xn) and observe that,

for i = 1, . . . ,n,

1
2
(w(β)−w(βi)) 6

1
2
(w(α)−w(βi)−w(αi)+w(αi))

6
1
2
(w(α)−w(αi))+

1
2
(w(αi)−w(βi))

6
1
2
(w(α)−w(αi))+d(α,β).

Hence we findyi s.t.|yi | 6
1
2(w(α)−w(αi )) s.t.|xi −yi | 6 d(α,β) for all i = 1, . . . ,n. Now

putα′ = α′
1×·· ·×α′

n where

α′
i =

{

[α−
i ,α+

i +2y1] if yi > 0

[α−
i +2yi,α+

i ] if yi 6 0.

and lety = (y1, . . . ,yn). Thenα′ ⊑ α andw(α′) = w(α). By monotonicity ofh, we have
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h+
i (α) 6 h+

i (α′). Using Corollary 8.14 and Lemma 8.18, this gives

h+
i (α)−h+

i (β) 6 fi(m(α′))+
L
2

w(α)− ( f (m(β′))+
L
2

w(β))

6 L‖m(α′)−m(β′)‖+
L
2
(w(α)−w(β))

6 ‖m(α)+x−m(β)−y‖+Ld(α,β)

6 L‖m(α)−m(β)‖+L‖y−x‖+Ld(α,β)

6 Ld(α,β)+Ld(α,β)+Ld(α,β)

whereh+
i (α) > h+

i (β) follows from monotonicity ofhi .

As a corollary, we obtain a bound on the difference between the upper values ofh.

COROLLARY 8.20. Letα ⊑ β ∈ IRn and1 6 i 6 n. Then|h+
i (α)−h+

i (β)| 6 3Ld(α,β).

Similarly, one proves the dual statement|h−i (α)−h−i (β)| 6 3d(α,β). These two results
together show thath, as constructed, is Hausdorff Lipschitz from below.

THEOREM 8.21. Let α ⊑ β ∈ IRn. Then d(h(α),h(β)) 6 3Ld(α,β). In particular, h is
Hausdorff Lipschitz from below.

Proof. By Corollary 8.20 and its dual, we have for 16 i 6 n, that

d(h(α),h(β)) = max{|h+
i (α)−h+

i (β)|, |h−i (α)−h−i (β)|}

6 max{3Ld(α,β),3Ld(α,β)} = 3Ld(α,β)

Taking maximum overi = 1, . . . ,n establishes the claim.

This shows, together with the results of Section 8.1, that wecan build a compositional
library for domain theoretic approximations of Lipschitz vector fields.

In conjunction with Theorem 7.12 we obtain a framework for solving initial value prob-
lems, which is based on proper data types, and can therefore be directly implemented on
a digital computer. Moreover, working with rational or dyadic numbers, the speed of con-
vergence can also be guaranteed for implementations of our technique.
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