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Abstract

We present a domain-theoretic version of Picard’s theorem f
solving classical initial value problems IR". For the case of vec-
tor fields that satisfy a Lipschitz condition, we construtiterative
algorithm that gives two sequences of piecewise linear mafts
rational coefficients, which converge, respectively froetdw and
above, exponentially fast to the unique solution of theiahitalue
problem. We provide a detailed analysis of the speed of agevee
and the complexity of computing the iterates. The algoritisas
proper data types based on rational arithmetic, where nodiog
of real numbers is required. Thus, we obtain an sound imph¢are
tion framework to solve initial value problems. In partiayglthe use
of rational arithmetic guarantees that implementationswftech-
nigue will adhere to the bounds on convergence speed anklralge
complexity.

1. Introduction

We consider the initial value problem (IVP) given by the sysbof differential equations
Vi(X) =Vi(y1,.--,¥n), ¥i(0)=0 (i=1,...,n) Q)

where the vector field : O — R" is continuous in a neighbourho@ C R" of the ori-

gin, and we look for a differentiable function= (y1,...,yn) : [-a,a] — R", defined

in a neighbourhood of & R, that satisfies (1). By a theorem of Peano there is always
a solution [, page 19]. Uniqueness of the solution is guaranteed, byrdPsctheorem,

if v satisfies a Lipschitz condition. The question of computzbdnd the complexity

of the initial value problem has been studied in differemteats in computable analy-
sis [12, 3, 6, 14, 20, 17, 5].

On the algorithmic and more practical side, standard nuwakpackages for solving
IVPs try to compute an approximation to a solution with a et degree of accuracy.
Although these packages are usually robust, their methedsa guaranteed to be correct
and it is easy to find examples where they output inaccuratetes13].

Interval analysis16] provides a method to give upper and lower bounds for theumiq
solution in the Lipschitz case with a prescribed toleranmue lzas been developed and im-
plemented for analytic vector field4§, 1]. These approaches are concerned with the cor-
rectness of the computed values and deliver interval vahegsare guaranteed to contain
the true solution of the problem. Typically, implementasmf interval analysis techniques
represent real numbers as floating point intervals, and angtwounding is applied if the
resulting interval endpoints are not machine represeatabl
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While this strategy guarantees soundness, i.e. containaighe exact result in the
computed interval, one has in general no control over thadmg, which can produce un-
duly large intervals, depending on the accurracy of the dyig floating point numbers.
While it is intuitively clear that more precise floating pbimumbers give more accurate
results, there is no general guarantee of actual conveegenihe solution. For the same
reason, one has no control over the speed of convergence.

Domain theory 4] presents an alternative technique, based on proper data,t{o pro-
duce a provably correct solution with any given degree ofigacy. Using the domain of
Scott continuous interval valued functions on a compaetvat, we define a domain the-
oretic Picard operator, whose least fixed point containssahytion of the IVP. When the
vector field is Lipschitz, the solution is unique and we cansttan iterative algorithm that
gives two sequences of piecewise linear maps with ratiooefficients, which converge,
respectively from below and above, exponentially fast ®uhique solution of the initial
value problem. Since the data types for representing tteepiise linear maps with rational
coefficients are directly representable on a digital coraputto rounding of real numbers
is required. The implementation of the domain theoreticagph is also complete, that is,
we can guarantee the convergence of the approximatingdteta the solution of the IVP
also for the implementation. This property is not preseririyg other approach to validated
solutions of differential equations. Furthermore, as altesf the data types we use, we
can give estimates for the speed of convergence of the ajppatirg iterates, which are
still valid for an actual implementation of our algorithm.

This simplifies the earlier treatment, discussed in deta[Bi, which used a domain
for C! functions P, 10]. That approach requires, at each stage of the iteratioewaap-
proximation to the derivative of the solution. The new treaht is much more similar to
the classical theorem in that it gives rise, in the Lipschase, to fast convergence of the
approximations to the solution. As regards the questiorofputability of the solution of
the IVP in the Lipschitz case, the two domain-theoretic teghes lead to the same result
as those in computable analysi®[ 20, 19, 21]: if the vector field is computable then the
unique solution of the IVP is also computab® Corollary 6.3].

We discuss two different bases to represent approximatmtie solutions of the IVP,
namely the piecewise linear and the piecewise constantiunscwith rational (or dyadic)
coefficients. Using piecewise linear functions, we avoid tomputation of rectangular
enclosures of the solution which gives tighter bounds onsthiation. This comes at the
expense of an increase in the size of the representatiorecdgproximations to the so-
lution. Using the base consisting of piecewise constanttfans, we show that the order
of the speed of convergence to the solution remains unclaamgdéle the time and space
complexity for the representation of the iterates is mucuced.

Our approach relies on approximating the vector field witle@eence of (interval val-
ued) step functions, which converge exponentially fasttingerval extension of the vec-
tor field. We discuss two techniques for obtaining such segee First, we show how to
compose two sequences of approximations such that the itiopoof the approxima-
tions still converges exponentially fast. Our second tégpinmis based on a function which
computes the values of the vector field to an arbitrary degfesccuracy, and we show
how this gives rise to step functions with the desired propgr

A prototypical implementation using the GNU multi precisiibrary [2] shows that the
resulting algorithms are actually feasible in practice] are plan to refine the implemen-
tation and compare it in scope and performance with existitgrval analysis packages
like AWA [1], bearing in mind that floating point arithmetic used by mtd software is
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executed on highly optimised processors, whereas thenadtarithmetic needed for our
implementation is performed by software.

2. Preliminaries and Notation
For the remainder of the paper, we fix a continuous vector field
v=(Vy,...,Vn) :O—R"

whereO C R" is a subset oR" with 0 € O and consider the IVP given by Equation (1).
Our aim is to approximate solutioys [—a,a] — R" of the initial value problem (1).

We use basic notions from domain theory, see elgl]]. Our work is based on the
intervaldomainR = {[a",a"||a~ <a',a ,a” e R}U{R}, ordered by reverse inclusion,
i.e.a C Biff B C a. We write | =R for the least element dfR. The way below relation
on IR is given bya <« B iff B C a®, where(-)° denotes the interior of a set. For> 1,
the domainR" is isomorphic to the domain af-dimensional rectangle; x --- x dp |
a; € IR forall 1 < i < n}, and we do not distinguish between these two presentafians.
a rectangléA € IR", the subse{Se IR" | SC A} of rectangles contained iA is a sub-
domain ofl R", which is denoted byA.

We consider th@-dimensional Euclidean spa&®' equipped with the maximum norm
IIX|]| = max{|x4],...,|Xa|}, as this simplifies dealing with the Lipschitz conditionsigh
we introduce later.

The powerd R" of the interval domain and the sub-domé# for a rectangléd € IR",
are continuous Scott domains.df ,at € R" with o;” < a;" for all 1 <i < n, we write
[a~,at] for the rectangléa o] x --- x [a,, 04 ]. Similarly, if f : X — IR" is a function,
we write f = [f~, 7] if f(x) = [f~(x), fT(x)] forall x e X.

The link between ordinary and interval valued function isypded by the notion of
extensionlf A€ IR" is a rectangle, we say thgt A — IR" is an extension of : A— R"
if

g({x1},...,{x}H) ={f(xa,..., %)}

for all x € A. Note that every continuous functidn: A — R" has a canonical maximal
extensiorl f defined byl f = (I f1,...,1fy) : IA— IR" where

1fi(S) = fi(S) incasefi(S)is bounded
"L otherwise

for a rectangleéS € 1A (fi(S) denotes direct image). This extension is maximal in the set o
interval valued functions extendinfg It is easy to see thaf is continuous w.r.t. the Scott
topology onlA andIR" if f is continuous w.r.t. the Euclidean topology.

If PeIR"andQ € IR™, we write IP = 1Q (resp.P = 1Q) for the set of continuous
functions w.r.t. the Scott topology di® (resp. the Euclidean topology &) and the Scott
topology onl Q. The following operations mediate betweldh=- 1Q andP =- 1Q; this is
asin P.

LEMMA 2.1. Suppose R IR, Q € IR and consider the following operations:

£:(P=IR)>f—Aa.[ [f(X) e (IP=IR)

I:IP=IR)> f—Af({x}) € (P=IR)
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Then both/ and‘E are continuous/ o ‘E = id andid C ‘Eo 1.

For the proof, seelll], 11-3.9. In order to measure the speed of convergence, dsaw/éor
technical convenience in the formulation of some of ouritsswe introduce the following
notation.

Thewidth of a compact intervalla, b] is given asw([a,b]) = b—a and its midpoint is
m([a,b]) = a—gb. We putw(L) =o. Fora = (az,...,dn) € IR" we letw(a) = max{w(a;) |
1<i<n}andm(a) = (m(ay),...,m(ay)). If X is a set andf : X — IR" is a function,
the width of f is given asw(f) = sup{w(f(x)) | x € X}. In the special case whek¥eC R,
we letwy (f) = sup{e *Xw(f(x)) | x € X} and callwg (f) theweighted widthof f w.r.t.
the weighta; this givesw(f) = wp(f). We will use the weighted width to show that the
domain theoretic Picard operator is a contraction.

Given two intervalsa = [a~,a"] and = [b~,b"] € IR, their Hausdorff distances
d(a,B)=max{|at —b*|,|a~ —b~|}. Similarly, fora = (a1,...,0,) andB = (B1,...,Bn) €
IR", we letd(a,B) = max{d(a;,Bi) | 1 < i < n} and define the distance of two functions
f,g: X — IR"asd(f,g) =sup{d(f(x),g(x)) | xe X}.

Consideringg as an approximation té, we view the distancd(f,g) as a measure of
the quality of the approximation. We mention two simple leaminking distance, width
and weighted width.

LEMMA 2.2. Let f:[—a,a] — IR". Thenw(f) <w(f) < e®wy(f)forall a> 0.
For the next lemma, recall thai(-) denotes the midpoint of a rectangle.

LEMMA 2.3. Suppose, 3 € IR" are compact. Then

(i) [Im(a) —m(B)|[ < d(a,B)
(i) 0<w(B)—w(a) < 2d(a,B) incaseB C a.

The proof of both lemmas is a straightforward calculatiard therefore omitted.

Finally, if x < y are real numbers, jgartition of [x,y] is a finite sequencgy, ..., qk) of
real numbers such that=qo < --- < gk =y, and the set of partitions ¢k, y| is denoted by
P[x,y]. Thenormof a partitionQ = (qp, . ..,0k) is denoted byQ| = max{qi — gi_1 | 1 <
i <k}.

3. Picard Operator in Domain Theory

In the classical proof of Picard’s theorem on the existemckumiqueness of the solution
of the initial value problem (1) one defines an integral opmranC®[—a, a] by

Yo AX. /oxv(y(t))dt

(with the integral understood componentwise), which carst@vn to be a contraction
for sufficiently smalla providedv satisfies a Lipschitz conditiori$]. An application of
Banach’s theorem then yields a solution of the initial vgtueblem. We now define the
domain-theoretic Picard operator for arbitrary Scott amndus vector fieldsi: |1A — IB,
for A,B € IR", and focus on the special case wheig an extension of a classical function
later. As in the classical proof, the Picard operator is aegral operator, and we therefore
introduce the integral of interval-valued functions.
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DEFINITION 3.1. Supposé = [f~, f*]:[—a,a] — IR is Scott continuous. Fore [—a, a]

we let
/of(t)dt:[/o f*°<X>(t)dt,/o £90 (t)di]

whereo(x) = sgn(x) is the sign o and fO(t) = 1. If f = (fy,..., fy) : [-a,a — IR", we
let [5 f()dt = ([ fa(t)dt,..., 5 fa(t)dt).

Note that, if we integrate in the positivedirection, thenf ~ contributes to the lower
function associated with the integral 6fand f* contributes to the upper function. If we
integrate in the negativedirection, the roles of ~ andf* are swapped to ensure that the
lower value of integral is indeed smaller than the upper @althe following shows that
our definition is meaningful:

LEmMMA 3.2. Suppose f[—a,a] — IR is Scott continuous.
() f~ and f* are measurable.
(i) f3ft)dte IR forallx € [—a,a).
Proof. For Scott continuous$, the functionsf —, f* are lower (resp. upper) semi continu-
ous, hence measurabledifx) = sgr(x), thena(x) f 9% < a(x) f9%) and [ f~°X (t)dt <
Jo £909(t)dt follows from the definition of the ordinary integral. Fingllve have to show
that /3 f ¥ (t)dt = ooiff [ f~(t)dt=—oo, butthisis clearag’(t) = wiff f~(t)=—c. O
The following lemma shows that integration is compatibléwtaking suprema.

LEMMA 3.3. Let f:[—a,a] — IR".
(i) The function\x. [5 f(t)dt is Scott continuous.

(i) The function/ : ([—a,al = IR") — ([—a,a] = IR"), defined by - Ax. [§ f(t)dt,
is Scott continuous.

Proof. We assumen = 1 from which the general case follows.dfx) = J f(t)dt, then
g~,g" are continuous, hencgis Scott continuous. The second statement follows from the
monotone convergence theorem. O

In the following, we are interested in solutiogs [—a,a] — R" of the initial value
problem (1), and we fix the domain of definitibra, a] of a solution for the remainder of
the paper. In order to define the domain theoretic Picardaipemwe assume that

u:lA — 1B, where either

e A=[—K,K]",B=[-M,M]" anda > 0 satisfieaM < K, or
e A=B=R"anda> 0is arbitrary.

The restriction on the lifetima of a solution in the first case is due to the fact that, for a
solutionz: [—a,a] — R" of the IVP (1), we have that=v(z) <M, i.e.M is a bound on the
derivative ofz. As z(0) = 0, we can only guarantee thzt) < Mt, which gives rise to the
restrictionaM < K for the expressior(z(t)) to be well-defined for all € [—a, a]. Clearly
this restriction is not necessaryifis defined on all of R".

DEFINITION 3.4. Suppose € |A=-1B. Thedomain theoretic Picard operato,P([—a,a] =
IA) — ([—a,a = IA) is defined byP,(y) = Ax. [ u(y(t))dt.

LEmMMA 3.5. P, is well defined and continuous.
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Proof. In caseA = [—K,K]" andB = [-M, M]", it follows from the assumptioaM < K
that P,(y) € ([0,a] = IA) whenevery € [0,a] = IA. Lemma 3.3 shows tha,(y), for
y € [0,a) = I A, andP, itself are continuous. O

In the classical proof of Picard’s theorem, one construmitstons of IVPs as fixpoint of
the (classical) Picard operator. The domain theoreticfrepaces Banach’s theorem with
the domain theoretic fixpoint theorem in the constructiota difked point of the (domain
theoretic) Picard operator. Unlike the classical case revbae chooses an arbitrary initial
approximation, we need to choose an initial (interval vée)fanctionyp which is invariant
under the Picard operator, thatyis = P, (Yo).

THEOREM3.6. Supposey: [—a,a] — | A satisfies yC Py(yo) and let w1 = Pu(yx). Then
Y = Lken Yk satisfies Ry) =.

Proof. Follows immediately from the domain theoretic fixpoint them, see e.g4] The-
orem 2.1.19], applied to the directed complete partial pfdg = {f : [—a,a] — |A|yo C
fl. O

For computing solutions of IVPs, we will takg = At.[—K,K]" in the case thati :
I[—K,K]" — I[—M,M]" is defined in a bounded neighbourhood of the origin, and the re
strictionaM < K will ensure that/o C P,(yo). This situation is discussed in detail in Section
4. In the unbounded case, we need to takeuch that the (unique) solutia@of problem
(1) satisfieg/p C z, see Section 5 for details.

The bridge between the solution of the domain-theoretiaiixpequation and the clas-
sical initial value problem is established in the followimgposition, wher&f : [—a,a] —
I[—K,K]" denotes the functiokx.{ f(x)}, for f : [—a,a] — [-K,K]".

PROPOSITION3.7. Supposey: [—a,a] — | A satisfies y C Py(yo) and ye yo is the least
fixpoint of the restricted Picard operatoP (7o) — (Vo).

(i) If f :[—a,a] — |A solves (1) andyC Sf, then yC Sf.

(i) If y has widthO, theny = y* solves (1).
Proof. For the first statement, note thaf is a fixed point ofP, andy is the least such.

The second statement follows from the fundamental theofealoulus; note thagy =y*
implies continuity from the left and from the right. O

The previous proposition can be read as a soundness resaiinfng that the problem
(1) admits a unique solutionwith yp C z, then the least fixpoint of the domain theoretic
Picard operator will satisfy C z

4. Picard Operator for Lipschitz Vector Fields

We now specialise our discussion to the case whefe K,K]" — [-M,M]|" is defined
in a compact neighbourhood of the origin, and we fix an infeextensioru : 1[—K,K]" —
I[—M,M]" of v; the unbounded case will be discussed in Section 5.

This allows us to consider the following spaces for apprating the vector field and
the solutions to the IVP, whege> 0 is withaM < K:

e ¥V =I[-K,K]"=I[-M,M]" for approximations of the vector field
e S=[—a,a = I[-K,K]" for approximate solutions.
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It is clear that in this setup, witaM < K, the functionyg = At.[-K,K]" : [-a,a] —
I[—K,K]" satisfies/o = Py(Yo)-

We can ensure the uniqueness of the solution of the IVP byinieguhat the vector field
satisfies an interval version of the Lipschitz property. &kthat for metric space@M,d)
and(M’,d’), a functionf : M — M’ is Lipschitz, if there id. > 0 such thad'(f (x), f(2)) <
L-d(x,z) for all x,z€ M. The following definition translates this property into aeirval
setting, see alsdlf].

DEFINITION 4.1 (Lipschitz Condition). Suppose: I[—K,
interval Lipschitz if there is somke > 0 such thatv(u(a)) <
In this casel is called aninterval Lipschitz constarfor u.

K|" — I[-M,M]". Thenu is
L-w(a) foralla € I[-K,K]".

The following Proposition describes the relationship besw the classical notion and
its interval version.

ProPOSITION4.2. Forv: [—K,K]" — [-M,M]", the following are equivalent:
(i) vis Lipschitz
(i) The canonical extension of v satisfies an interval Lisccondition
(i) v has an interval Lipschitz extension.

Proof. If v is Lipschitz, then the canonical extensionvo$atisfies an interval Lipschitz
condition. Now assume that is an extension off which is interval Lipschitz, and let
X=(Xt,...,Xn),Y= (Y1,.--,¥n) € [-K,K]". LetR(X,y) denote the rectanghe; x --- x an,
wherea; = [x;,Yi] in casex <y anda; = [yi,X] otherwise. Sincel extendsv, we have
v(x) € u({x}) C u(R(x,y)) by monotonicity. Hencei (R(x,y)) < vi(x) < u (R(x,y)) for
all 1 <i < n. Similarly u; (R(x,y)) < Vi(y) < U (R(x,y)). Now

IV(x) =vy)ll = max [vi () —vi(y)] < maxu’ (R(xy)) — i (R(xY))
= gi%W(ui(R(x,y))) <L-w(R(xy)) =L[x=yl,
as required. O

Note that every interval Lipschitz function induces a taadl continuous classical func-
tion.

COROLLARY 4.3. Suppose u is interval Lipschitz. Thefufo)) = 0 whenever o) = 0,
and the induced real valued functiengiven byu(x) = z iff u({x}) = {z}, is continuous.

We now show that the least fixpoint of the Picard operator@ased withu has indeed
width zero, ifu satisfies an interval Lipschitz condition. We assume for#meainder of the
paper thati is an extension of that satisfies an interval Lipschitz condition with Lipsizhi
constant.. In order to show that the least fixpoint®f has width zero, we use the weighted
width, introduced in Section 2. The following lemma is theastial step for showing that
the least fixpoint of the domain theoretic Picard operattualty has width 0 on the whole
of [—a,a]. This is most conveniently expressed as a statement abouitthle space of
solutions introduced at the beginning of Section 4.

LEMMA 4.4. Letye S. Then w (Pu(y)) < Swq(y).
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Proof. For thei-th componenP,(y); of P,(y) we calculate

wa(Puy) = sup & [ a0 (y) -y

te[—a,al

t
< sup e*“m/ o(t)-L-e e X w(y(x))dx
0

te[—a,a

[t]

<L-wy(y)- sup e*“m/ e™dx
te[-a.a) 0

L

<
S O(Wa (y)

as required. O

Recall thaty(x) = [—K,K]", hencew(yo) = Wy (Yo) = 2K for all a > 0. This gives us the
following for the (not weighted) width of the iteratgg.

THEOREMA4.5. Let 1 = Py(yk) for all k € N. Then wyi) € 0(2X). In particular, y=
Llken Yk is real-valued and solves (1).

Proof. Puta = 2L in Lemma 4.4. Then, by induction one obtaims (yx) < 2*kW2L(yo),
hencew(yy) < 2 ke?'w(yp) by Lemma 2.2. It follows from Proposition 3.7 thasolves
the initial value problem. O

The last result is a simplification, and at the same time amisation to higher di-
mensions, of Theorem 7.2 of(] and Theorem 6.1 ofd], which give a domain theoretic
proof that the unique solution of the initial value problesn& time dependent, computable
scalar field is computable.

Although the above theorem tells us that the itergiesf the Picard operator will con-
verge to the unique solution, we need to take a further stegtically be able to compute
the iterates. In particular, we need a way to effectively pate the integrals involved in
the definition ofP,. For this reason, we now consider approximations;tthe basic idea
is that every continuous vector field can be approximated gcaience of step functions
(i.e. functions taking only finitely many values), whichaails us to compute the integrals
involved in calculating the approximations to the solutéifectively (they reduce to a fi-
nite sum). The key property which enables us to use apprdidmsalso to the vector field
is the continuity of the mapping— P,, which is similar to the approach d8[Section 6].

LEMMA 4.6. Themap R ¥ — (5 = ), u— Py, is continuous.
Proof. Follows from continuity ofu and the monotone convergence theorem. O

This continuity property allows us to compute solutionstie tlassical initial value
problem by means of a converging sequence of approximadiomns

PROPOSITION4.7. Suppose k= | |y Uk and Y1 = Py, (Yk) for k € N. Then y=| |,y Yk
satisfies y= Py(y).

Proof. Follows from Theorem 3.6 and continuity of— R, by the interchange-of-suprema
law (see e.g.4, Proposition 2.1.12]). O



We have seen that the Lipschitz condition on the vector fiakliges that the approx-
imations of the solution converge exponentially fast (Tieeo 4.5). In the presence of
approximations of the vector field, the speed of convergenit@lso depend on how fast
the vector field is approximated. The following estimat@waB us to describe the speed
of convergence of the iterates if the vector field is appratied by an increasing chain of
vector fields.

LEMMA 4.8. LetrC uand ye S. Then w (P (y)) < Swa(y) + Zd(u,r).
Proof. For thei-th componenk (y); we calculate using Lemma 4.4

WP ) = sup e [ e y) Ty

te[—a,a)

t
< sup e [V (y00) -y (y(x) + 2d(u,r))dx
te[-aa 0
< sup e Mtw(Py(y)i)+ sup e . |t|-2d(u,r)
te[-aa te[-aa)

L 2
< = -
X GWG(y)+ eC(d(u’r)

where the estimate for the second term follows fréifi/a) =0, f”(1/a) < 0 for f(x) =
X- e X, O

Using this estimate, we can now prove fast convergence iafiproximations of the
vector field converge fast, too.

THEOREMA4.9. SUppOSe & | Jicy Uk With d(u, ux) € O(27%). For k> 0, put Yy 1 = Py, (Vi)
and y=| |y Yk- Then wyy) € 0(27¥) andy is real-valued and solves (1).

Proof. We show thawva_ (yk) < 2 Koy (Yo) by induction ork; this will imply thatw(y) €
0(27%). Without loss of generality, we assume thiit;, uy) < 2% 1Le-w(yo). There is
nothing to show for the cade= 0. For the general case, we invoke Lemma 4.8 and obtain

1 2
< — _
Wat (Yir1) < 4W4L(Yk)+ 4Led(u’ Uk)

1 1,
< 212 kW4|_(yo)+12 KWy (Yo)

_ 27(k+1)W4L(y0)
as required. In combination with Lemma 2.2 this yieldyy) < 27 K- e@w(yo) € 0(27X).
([l

Given a representation afin terms of step functions, Proposition 4.7 gives rise to an
algorithm for computing the solution of the initial valuegtstlem and Theorem 4.9 provides
an estimate on the speed of convergence.

We conclude with a brief remark on the maximal lifetime ofigans before we extend
the method to vector fields defined on the whol&Rof

REMARK 4.10. Recall that we have assurma < K throughout the section whekt is a
bound on the absolute value of the vector field e, K]". If we drop this restriction and
use a modified Picard operatef defined byP,,(y) = At.Py(y)(t) N [-K,K]", the ensuing
iteratesyy will still converge to a solution of the problem providggdt) € (—K,K)" for all
te[—aal.



In the next section, the method is extended to deal with vdtls defined on the
whole of R".

5. Picard’s method for unbounded vector fields

In the previous section, we have shown how to construct domhaioretic solutions of
initial value problems given by a vector field defined on aaagle[—K, K] containing the
origin.

In practice, one often encounters the situation wkei@" — R" is defined on the whole
of the n-dimensional Euclidean space, which renders the limitatibv being defined on
some hyper-rectangle-K,K]" extremely restrictive: For the equation to be well-defined,
one has to impose the restrictiaM < K which poses an upper limit to the lifetineeof
any solution. The next example illustrates this situation.

ExamMPLE 5.1. Consider the IVR = y+ 1 with initial conditiony(0) = 0. This problem
has the solutiory(t) = € — 1, which is defined on the whole real line. However, the re-
quirementaM < K forces us to consider the vector field as being of typé—K,K] —
[—(K+1),K+1] (i.e.M = K+ 1) and subsequently < %32, which restricts the domain
of definition of the constructed solution to the inter{-ah, a] of width < 2.

One situation where the global existence of solutions tosli&particularly important
are linear boundary value problems, i.e. differential e of the form

y=Ay+g with boundary conditions involving(a) andy(b)

whereAis a (possibly time dependemtx n-matrix. Clearly we need to construct solutions
in this case at least in the intenval b].

In this section, we extend the construction of domain thigoselutions to vector fields
defined over the whole af-dimensional Euclidean space. Classically, this is acudwy
constructing solutions locally, and then applying the egten theoremT]. In the domain
theoretic setting, this is captured by amalgamating thallfigpoint iterations into one,
albeit on a larger function space, so that a single iterayeme yields the solution on the
whole time interval.

For the remainder of the section, we fix a vector figldR" — R" that satisfies the
Lipschitz condition with Lipschitz constaht and an extension: IR" — IR" that is in-
terval Lipschitz with the same constdntThe problem that we face is the following: if we
assume that the range of the classical vector fiel&k" — R" is unbounded, we cannot
start the iteration with the everywhere undefined functige- Ax. L, sinceyp is already a
fixpoint of the Picard operator.

ExAMPLE 5.2. Supposeg: R — R is the identity functiorv(x) = x with extensioru(a) =
o for a € IR. Then the functiotly = Ax. L is the least fixed point d®;:

t t t
Pu(y)(t) = / u(y(x))dx—= / u(L)dx— / Ldx=1.
0 0 0
Note that the corresponding IMP= v(y), y(0) = 0 has the unique solutio{t) = 0.

Therefore, a more sophisticated technique is called fom@ve introduce local a priori
bounds for solutions of IVPs. The idea is to fix a partition @éction 2)Q = (qo, ..., 0k)
of the interval[0,a] on whose symmetric expansidra,a] about 0 which we want to
construct a solution of the equation. We then define constgnsuch that the (unique)
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solutionz: [—a,a] — R" satisfies||z(t)|| < K; on every interval—q;, q;i] induced by the
partition. This allows us to takg to be the least function satisfyirigK;, K;] C y(t) for all

t € [—qi,q] and alli = 0,...,k as starting point of the iteration, or equivalently, to abta
a meaningful least fixpoint of the Picard operator in the sgag = {f : [-a,a] — IR" |
Yo f}.

DEFINITION 5.3. Suppos® = (do, ..., 0k) € P[0,a] with |Q| < 4. Define the constants

o_ _alvol
(1-2LQl)
foralli =0,...,k. We drop the superscrif if the partitionQ is clear from the context.

The constanti(iQ are called thdocal a priori boundsinduced by the partitio®@ and we
define the inducedlobal boundby KQ = KS.

We collect some straightforward properties, which will z=d later.
LEMMA 5.4. Suppose @ (do, ..., 0k) € P[0,a] with [Q| < 4.

1. KO > K2 + (6 — 6i-1)[V(0)]| + 2L QK  for all 1< < k.

2. K?, <KPforall 1<i <k

Proof. Throughoutthe proof, we drop the superscfiptor the first item, we fix Ki<n
and calculate

_ Ga[VO)[ + (@ —gi-1) VO |

“ T-2Q)
2 G lVO)[[ + (2 —2LQD" K(ai — gi-1) [V(O)
- (1-2LQ)
_ K1 L (@-a-y)vO)]
T 1-2LQ] 1-20Q
Hence
Ki(1—2L[Q|) > Ki—1+ (g — gi—1)[V(0)|
i.e.

Ki > Ki—1+ (0 — Gi-1)[|v(0)[| + 2L QK.

For the second claim note that<0|Q| < 5, henceg— > 1, and therefore_; =

GO _ GOl _ .
A2y T S ey = K- =

The following proposition justifies our choice of terminglp Note that we assume that
v satisfies the Lipschitz condition with Lipschitz constant

PROPOSITIONS.5. Suppose @ (qo,-..,0k) € P[0,a] with |Q| < 2—1L and z. [-a,a] — R"
is the unique solution of the IVP (1). Thér(t)| < K; for allt € [—q;, q;].

Proof. We show that|z(t)|| < K for all t € [—q;,qi] by induction oni. Fori = 0, there
is nothing to show. Now suppose<0i. If t € [—gi_1,qi—1], the result follows from the
induction hypothesis in conjunction with Lemma 5.4. Let[qgi_1, G].

11



Asz(t) = [Sv(z(x))dx we have the following estimate.

<UL v+ [ v

<21 ||+/ V(2 dx
260+ [ V(z09) - (@) + () o
<Ja)+ [ '71L||z<x>—z<o>|| + [v(z(0) dx

i
< |1z 1) + /q Lz + [v(0)|dx
i—1
<lzai-1)|| + (@ —a-1)L  sup  [[Z(¥)]| + (g — Gi—1)|[V(0)]].
Xe[gi—1,Gi]
Hence, asjj — g1 < |Q| < 2|Q| we obtain that

sup [[z(¥)[| < [lz(gi~1)[| +2[QIL  sup [[z(X)[| + (i — Gi—1)[[V(O)].
X€([0i-1,0i] X€(qi-1,0]

By rearranging and using the induction hypothdigi®;i_1)|| < Ki_1, we obtain that

sup [|z(})[[(1—2|QIL) < Ki—1+ (g — gi—1)[[V(O) |
X€[0i—1,0i]

and the result follows from Lemma 5.4. Similarly, the clasestablished fdre [—q;, —¢i_1].
|

Actually, one can prove the same statement with a sharpeitiesfi of K; and show that

Iz < (i'““’Q‘L on|0,qj]. However, as we shall see later, we need the a priori bounds of

Definition 5.3 when we move to interval valued functions.
For later reference, we include the following lemma, which e used to show that
the Picard operator, which we introduce in the next sectowgll-defined.

LEMMA 5.6. Suppose @ (do, ..., 0k) € P[0,a] with |Q| < 4. Then
i
Gilv0)ll + % 2LK;[QI <K
=1

foralli =0,...,k.

Proof. We proceed by induction o where there is nothing to show for the case 0
(recall thatKg = qo = 0). Now suppose > 0. The induction hypothesis together with
Lemma 5.4 gives

VO + Y 25/Q
=

i—1
= G-l [V(O)[| + 3 2LK;|Q|+ (ai — Gi-1)[IV(0) || + 2LKi[Q|
=1

< Kic1+ (6 — Gi-1)[[v(0) | + 2LK{|Q < K
as required. O
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Figure 1: The se$g for Q = (do, 1,02, 3)

We now introduce the space, on which we construct domairrdiesolutions.

DEFINITION 5.7. Suppos® = (o, ..., k) is a partition of[0,a] with |Q| < 4+ and take
the a priori bound; and the global bounK® as in Definition 5.3. We let

So={f:[-aa = I[-K K" | f | (—q,q) I M.[-K;,K{] forall 1 < i < k}

and writeyoQ = Lh<i<k[—ai,Gi] \ [-Ki,Ki] for the least element afq, where the step
function a ™\, B is defined byx — B iff x € a°, andx — L, otherwise. We callSg the
solution space associated wifh and drop the sub/superscri@tif the partition is clear
from the context.

Graphically, the seflg is the set of functions whose interval values are bounded by
a double staircase, illustrated in Figure 1. Using Lemma We can now show that the
Picard operator maps to So.

LEMMA 5.8. Let Qe [0,a] with |Q| < 4. Then R(y) € Sq ify € So.

Proof. Suppos& = (qp, .. .,0k). By monotonicity ofR, it suffices to show the statement
fory = yo, asyp is the least element ¢f.

We show, by induction o that[—K;, Ki]" C Py(y)(t) forall t € [—q;, q;]. Fori = 0 there
is nothing to show, so supposg 0.

As yp C At.0, we have, by monotonicity of integration, tHa{yo) C Py(At.0), hence

Puse) = [ uo0)dx [ u)dx={ [ vty = {t-v0)

t-v(0) € Py(yo) (2)

forallt € [0,a].
Moreover, the width oP,(yo) can be estimated using the fact thas interval Lipschitz
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as follows fort € [gi_1,q]:

w(Pu(Yo)( /W (Yo(x

:Z/ dx+/ dx
j=1/0j-1

i—1
< Y 2LKj(g —gj-1) + 2LKi(t — Gi-1)
j=1

forallt € [gi—1,qi]. Hence
i i
WRO)(1) < 3 20K1(0; ~0j-1) < 3 2K Q) 3)

PuttingW = 25:12LK,- (9j —gj—1), Equation (2) combined with Equation (3) yields
[=ailV(0) ], Gl [V(O)[I]™ + [, W™ E t[v(0)]] + [, W™ C Pu(yo)(t)

forallt € [gi—1,0i].

By Lemma 5.6 we have thaj||v(0)|| + W < K;, therefore[—K;,Ki]" C Pu(yo)(t) for
all t € [gi_1,qi] as required. By an analogous argument, the same relatials fott €
[—ai, —qi—1]- Note that for 0< t < q;, we have by induction hypothesis thatK;, Ki|" C
[—Ki—1,Ki—1]" E Py(¥o)(t), hence the proof is complete. O

Since the estimate on convergence speed (Theorem 4.9)newelid also in this ex-
tended setting, we have:

THEOREM5.9. Suppose @ ?[0,a] is a partition with|Q| < 5 and let 1 = Pu(yk).
Then wyk) € 0(27¥) and y= | |,y Yk is real-valued and solves (1).

Proof. The estimate on the convergence speed is identical to thef pfarheorem 4.9,
and the result follows, sincgis a real-valued fixpoint of,. O

We now discuss the case where the extensioffithe classical vector field is given
in terms of an increasing sequence of approximatioas| |,y Ux. For this, we need to
reconsider the measure of convergence speed afitteu.

DEFINITION 5.10. Ifr,u:IR" — IR™andK > 0, therestricted distance l(r,u) is given
by
dk (r,u) = sup{d(r (@), u(a)) | a € I[-K,K]"}.

If u=[x=0Uk We say thatle(u,ux) € 0(27%) if, for all K > 0 we have thati (u,uy) €
0(27%).

That is, we say that the sequer{eg) converges exponentially fast tp if it converges
exponentially fast on all compact sets; notationally thiggiflected using the subscript'™
in the statemendc(u, uy) € 0(27%).

We now establish that working with approximatiofug) of u does not destroy conver-
gence to a solution, and give an estimate of the converggreesls

First, note that for/ C u, it is no longer guaranteed thgy (y) € So for all y € Sg. This
problem is addressed in the next lemma, whefg 2 {2y |y € So}-
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LEMMA 5.11. Suppose @ P[0,a] with [Q| < 4, U T u with dyo(u,u') < 3/v(0)[|. Then
Py (y) € 25q for all y with y € 25q.

Proof. Similar to the proof of Lemma 5.8 it suffices to show the claion §y = 2yp =
Liza,[=0i,ai] \ [-2Ki, 2Ki] and verify thatv(0) € Py(y)(t) for all t € [0,a]. We have,

fort € [gi—1,qi:
WR/()(0) = [ Wi (y00))x
Gi

< [ wuy0)) + 2dyca(u )

i
=1

i
< Z4K,—L(q,— —0j-1) +ai[[v(0)].
i=

Again, if we letW = 3, 4KjL(q; —0j 1)+ [[v(0), we haveRy (y)(t) 3 [—ail[v(0)]], ail v(0)[|]"+
[~V W™, and asg||v(0) || +W < 261[[v(0) | + ¥ (aj — @ -1)4LK; < 2K; by Lemma 5.6,
the result follows. O

We now show, that the order of the convergence speed of tredteto the solution
remains unaffected, if we compute the iterates using appations of the vector field.
This is similar to Lemma 4.8, except that we need an additiooradition on the distance
of uandu'.

LEMMA 5.12. Suppose @& P[0,a) with [Q| < 5+ and U C u with dyo(u, ') < ||v(0)]
and ye 25q. Then w (Py(y)) < SWa(y) + 2o (u,U).
Proof. As for Lemma 4.8. O

Moving from weighted width to ordinary width, we obtain theaim result of this sec-
tion: fast convergence of the Picard iterates for unbounvaetbr fields.

THEOREM5.13. Suppose &= | Uk with ds(u, ug) € O(27K). Fork> 0, put y, 1 = Pu (Yk)
and y=| |,yk. Then B(y) =y and wyk) € 0(2K).

Proof. As in the proof of Theorem 4.9, but invoking Lemma 5.12 indteLemma 4.8.
O

Our next goal is to show that this algorithm can be restrittelases of the respective
domains, showing that it can be implemented without losscofieacy. We then give an
estimate of the algebraic complexity of the algorithm.

6. An Implementation Framework for Solving IVPs

We now show that the algorithm contained in Proposition 4.indeed implementable
by showing that the computations can be carried out in thedafsthe domains. In fact, we
demonstrate that every increasing chain of (interval \@wector fields(uy)ken, Where
eachug is a base element of/, gives rise to a sequence of base elements,afhich
approximate the solution and converge to it. Our discussaestricted to the situation
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where the vector field : [-K,K]" — [-M,M]" is defined on a rectangle containing the
origin, but all the results adapt to the unbounded settirtirad in Section 5. Recall that
in this case we have to make the assumptdh < K on the lifetime of a solution to
guarantee well-definedness of the problem.

In view of the algorithm contained in Proposition 4.7, we sioler simple step func-
tions as base of/ and piecewise linear function as base%fNote that in this setup,
the domain-theoretic Picard operator computes integrfaisecewise constant functions,
hence produces piecewise linear functions.

We begin by introducing the bases which we are going to wotk.wi

DEFINITION 6.1. LetD C R and assume thata=ag < --- <ax=awithag,...,ax € D,
Bo,...,Bkel[—K,K]} andys, ...,y € [[-M,M]}, wherel Rp denotes the set of rectangles,
which are contained iR and whose endpoints lie ID. We consider the following classes
of functions:

() The classsy of piecewiseD-linear functiong—a, a] — 1[—K,K]",

f = (20, @) \" (Bo, -, )

where f(x)* = B ; + ;:2;11(8?[ —Bj ) for x € [aj-1,aj]. Every component of &-

linear function is piecewise linear andat a; . . . ,ax takes values iD.
(i) The sets§ of piecewiseD-constant functions-a,a] — 1[-K,K]",

Bi Xe [aiflaai]o

J— C =
f=(a0,...,a)\" (B1, .-, Bn),x {BilHBi x=aand 1<i <Kk

where denotes the greatest lower bound @ny? is interior relative to the interval-a, aJ.
The components of @-constant function assume constant values,iwhich only change
atagp,a, ..., a.
(ili) The set1} of finite suprema of consistent step functiohsK,K]" — [ [—-M,M]",
f= L] BiNyiixe= | J{y [1<i<kBy<x},
1<j<k
where(Bi \, ¥i)1<i<k are consistent ig? N B§ #0 = yiny; #O0forall 1 <i, j <k

(iv) Foranyf asabove, we put/(f) =kand call it thecomplexity of representatiasf
f. In more detail, we let the complexity of representatioriveg by A ((ap, . .., a)\" (Bo, . .., Bk)) =

N((a0,--,8)\F (B, Br)) = N(LUrcj<kBj i) =k.

The notation\((-), that measures the size of representations, is &.iS{nce we will
not consider different representations for the same fonstiwe allow ourselves to blur
the distinction between a function and its representatsostep function. The last section
shows, how to obtain a representatioruas a supremum of step functions.

If Dis dense irR, it is well known that the sets defined above are bases ofibsec-
tive superspaces:

PROPOSITIONG.2. Suppose BC R is dense and-a,a € D.
(i) S5ands§ are bases of.
(i) 1p is a base ofl/.
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We can now show that the Picard opera®rassociated with a simple step function
restricts to an endofunction on the set of basis elementsedffiace of linear step functions
5'5, and give estimates for the algebraic complexity of the pduce. The following lemma
covers the operation of applying the vector field to an apnaxion of the solution, and
simplifies Algorithm 4.4 of g].

LEMMA 6.3. Suppose B R is a subfield, & 75 and ye S5. Then we can effectively find
f € 85 with A((f) < 3A(y)A(u) and uoy(x) = f(x) for all but finitely many > [—a, a].
Moreover, f can be computed in tind® A (u)2A((y)).

Proof. First suppose = [\, y consists of a single step function ane (ay, ...,ax)\- B
with B = (Bo,...,Bx). In every open intervalaj_1,a;) we can find an open (possibly
empty) subintervabij C (aj_1,a;) such thaty(x) < y iff x € a; for all x € (aj_1,3;):
putaj = Nicicn{X € (aj-1,3)) | Yi(X) € BP}. As D C R is a subfield, we hava™ € D.
This gives

Y XeoiU---Udg
u(y(x)) =
() {L otherwise

for all but finitely manyx € [—a, a]. Sincea; can be computed in constant time (for every
subinterval(aj_1,a;)) and thea; are pairwise disjoint intervals satsfiyirlg+ <a for

all j <k, we can computé € S5 with f(x) = u(y(x)) for all but finitely manyx in time
O(AL(y)). Moreover, since; splits every subintervdlaj_1,a;) in at most three parts, we
can achieve\'(f) < 3A((y).

Incaseu = [J1<j<VYj \ Bj, we haveuoy = | |1 (Yj . Bj) oy. For everyj, we can
computef; with fj(x) = (y; "\, Bj)(y(x)) for all but finitely manyy in O(A((y)) algebraic
steps. Hence syf; can be performed ID(A(u)?- A (y)) steps, taking into account that
we needO(A(u)?) steps to compute the support points whese/ changes its (piecewise
constant) value. Note that the interyala, a) is subdivided into at most® (y) A (u) parts.
We haveuoy(x) = f(x) for all but finitely manyx by construction. O

Now that we have a basis representationoy, it is easy to obtain a basis representation
of P,(y) by integration. Note that computing integrals can be penfed over a base defined
over a subring ofR; we will make use of this fact later. We now consider inteigraiof
base functions, which plays the part of function updatinigotithm 3.3) of B].

LEMMA 6.4. Suppose X R is a subring and let (x) = [ f (x)dx for f € S§. Then ge S5
and A (g) = A(f). Furthermore, g can be computedd{A/(f)) steps.

Proof. Let f = (ap,...,a)\®(B1,...,Bk). First suppose @ {a,...,ax}. Every compo-
nent fi = [f, ;"] consists of a pair of piecewise constant functions. On eirgsrval
[aj_1,a;], for 1< j <k the integral oﬁ‘ii can be computed by multiplying the width of the
interval by the value ofii, henceg € 55 sinceD C R is a subring. This computation takes
constant time, henogcan be computed in tim@(A((f)), and clearlyA((g) = AL(f). In
case Of {ap,...,a} we insert 0 as additional partition point and obtajifg) = A(f)+1
andg can be computed iO(A((f) +1) = O(A(f)) steps. O

Summing up, we have the following estimate on the algorithduced by Proposition
4.7 if we compute over the base of piecewise linear functions

PROPOSITIONG.5. Suppose DC R is a subfield, & 75 and y< S5.
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() Pu(y) € 55
(ii) Pu(y) can be computed in tim@(A((u)?A(y)).

(i) AL(Pu(y)) € O(N(WALY))-

Proof. Lemma 6.4 provides us with= (ap, ..., ax)\* (B, ..., Bk) with A(f) € O(A(u)-
A(y)) such thauoy = f for all but finitely many arguments. Hence

P00 = [ (wey)tyt= [ f(oet

and the claims follow from Lemma 6.4. O

We can now summarise our results for computing with piecewisear functions as
follows:

THEOREM 6.6. Suppose BC R is a subfield and u= | oy Uk With uc € b. If Y1 =
Pu (Yk), then

(i) yke S5forallke N
(i) Y = Lken Yk has widthO and y =y* solves the IVP (1).
i)y w(yk) € 0(27%) if d(u,uy) € 0(27%).

Since the elements of}; for D = Q, the set of rational numbers, can be represented
faithfully on a digital computer, the theorem — togetheritroposition 3.7 — guarantees
soundness and completeness also for implementations afaimain theoretic method,
albeit at the expense of an exponential number of internegiaints. (This is addressed
in the next section.) We also provide a guarantee on the spleeshvergence, since the
conditiond(u,ux) € O(27%) can always be ensured by the library used to construct the
sequencéui) of approximations to the vector field, which is discussedent®n 8.

Also, computing over the base of piecewise linear functelminates the need of com-
puting rectangular enclosures at every step of the comipatakhis increase in accurracy
comes at the expense of a high complexity of the representafithe iterates. The next
section presents an alternative, which uses piecewisdartrfanctions only.

7. Computing with Piecewise Constant Functions

We have seen that the time needed to comBy(t@ is quadratic in the complexity of the
representation ofi and linear in that ofy. However, the complexity of the representation
of P,(y) is as in Proposition 6.5 (iii). This implies that

N(Ykr1) € O(N(Uo) ... A(uk)),

if U= [gen Uk andyicr1 = Py (Yi)-

The blow up of the complexity of the representation of theaites is due to the fact
that each interval on whichis linear is subdivided when computing y, since we have
to intersect linear functions associated wjthwith constant functions induced hy as
illustrated by the left diagram in Figure 2.

This can be avoided if we work with piecewise constant forddionly. The key idea is
to transform the linear step functidh(y) into a simple step function before computing the
next iterate: on every interval, replace the upper (lindamgtion by its maximum and the
lower function by its minimum. We now develop the technigapparatus which is needed
to show that the approximations so obtained still conveegthé solution. Technically,
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Figure 2: Subdivision of Intervals (left) and Flatteningyfit)

this is achieved by using partitions of the interyala, a, where we use the following
terminology. (Recall tha®’[x, y] denotes the set of partitions pty].)
DEFINITION 7.1 (Partitions). Suppose< y are real numbers.

() If D CRthen®p[x,y] C P[xY] is the subset of partitions dk,y] whose points lie
in D.

(i) The sizeof a partitionQ = (qo, ..., 0k) is given byA(Q) =

(iii) A partition Q = (do,...,0«) refinesa partitionR = (ro,...,r) if {ro,...,rn} C
{qo, - ..,0k}; this is denoted bR C Q.

(iv) Therangeof a partitionQ = (o, .. .,qk) is denoted by (Q) = [qo, Gk]-
We are now ready for the definition of the flattening functipmdnich transforms piece-

wise linear functions to piecewise constant functions. fdilewing definition uses the
notation introduced at the beginning of Section 4.

DEFINITION 7.2. Suppos€ € P[—a, a). Theflattening functional § : § — § associated
with Q is defined by

FQ(f) = (q07""qk)\c(yl7""yk)
wherey =[{f(x) [x€ [ai-1,q]} for 1 <i <k

Note that, geometrically speakinp computes an enclosure of semi continuous func-
tions into rectangles, as illustrated by the right diagrariigure 2.

LEMMA 7.3. Fq is well defined and continuous.

Proof. SinceFg(f) is a step functionfFg(f) is continuous, andrg is well defined. We
now show thatfyg is continuous. Leff € § and assumé = | |,y fn. First suppose that
X € [qi,gi+1]°. We obtain, by Lemma 2.1, that

L Fo(fa) ) = ][ () | X € [ai, Giyal} = || E(fa)([a, Gita])
neN neN neN
= (|| fo)([a,Gir1]) =Z(f)([ai,Gi+1])
neN
=[ {Fe0 [x€ [ai,aival} = Fo(f)(%)-
Forx € {qo,...,0k}, the claim follows from continuity of | : IR" x IR" — IR". O

19



In order to reduce the complexity of the representationshefiterates, we apply the
flattening functional at every step of the computation. Téiéving lemma is the stepping
stone in proving that this does not affect convergence tostietion. In the context of
partitions, we understand increasing in terms of the ref@r@norderC, introduced in
Definition 7.1.

LEMMA 7.4. Suppos€Qk)ken IS @n increasing sequence of partitions [efa,a) with
liMy_e | Qx| = 0. Then| Jyey Fo, = id.

Proof. This follows from the fact that for every upper semi contingdéunctionf : [—a,a] —
R and every decreasing chaipg D a1 O ... of compactintervals containingwith w(ay) —

0 ask — o one had (x) = infyen sup{ f (X) | x € ok}, and the dual statement for lower semi
continuous functions. O

The last lemma puts us in the position to show that the apicaf the flattening
functional at every stage of the construction does not affecconvergence of the iterates
to the solution.

PROPOSITION7.5. Suppose &= | |y Uk, (Qk)ken iS an increasing sequence of partitions
with limy . |Qk| = 0 and 11 = Fo, (Pu, (Yk)). Then y= | |y Yk satisfies y= Py(y).

Proof. Follows from the interchange-of-suprema law (see @gPfoposition 2.1.12]), the
previous lemma and Proposition 4.7. O

We now show that the speed of convergence is essentialljaated if we apply the
flattening functional at every stage of the computationsTasult hinges on the following
estimate on Lipschitz functions, whose Lipschitz conshhig not related to the Lipschitz
constant of the vector field.

LEMMA 7.6. Suppose & ([9; .07 ].---,[0n.97]) : [—a,a — IR" is Scott continuous and,
foralli € {1,...,n}, either g or g, satisfies a Lipschitz condition with Lipschitz constant
N. If Q is a partition, then WFo(g)) < w(g) + N|Q.

Proof. Fix 1 <i < n, supposex € [—a,a] and choose two consecutive partition points
g-,qt of Q such thatx € [q~,q*]. Since upper (resp. lower) semi continuous functions
attain their suprema (resp. infima) on compact intervaksettarex—,x* € [g~,q"] such
that, for allx € [q~,q"], we haveFg(g); (X) = g; (x~) andFg(g);" (x) = gi" (x*), where
Fo(9)i = [Fo(9); ,Fo(g);"] denotes théth component oFg(g). If we assume w.l.0.g. that
g;" is Lipschitz continuous, we obtain farc [q—,q"] that

Fo(9)i" (X) — Fo(9)i (¥) = [gi" (x") — g7 (x7)]
<G (XY) =g ) [+ 16 (x ) — g (X))
<NIX"—x7[+w(gi)
< N|Q| +w(g)
as required. O

For the weighted width, we have the following corollary:

COROLLARY 7.7. Under the hypothesis of the previous lemma(R(g)) < wa(9) +
N|QI.
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Proof. This follows from calculating

W (Fo(g)) = sup e “Mw(Fq(g)(t)) < sup e “M(w(g)+N|Q|)
te[—a,al te[—a,a
< Wa(9) +N|Q|
as claimed. O

The last corollary allows us to estimate the width of an ieraomputed after applying
the flattening functional.

LEMMA 7.8. Let U € ¥ with U Cu, ye S and Q€ P[—a,a]. Then w(Fo(Pu(y))) <
GWa (y) + gd(u,u) + £1Q].

Proof. By definition, the upper and lower functions associated i components of
g = Py(y), being integrals of functions bounded M, satisfy a Lipschitz condition with
Lipschitz constany; we have% < M by assumption. The claim follows from Lemma 4.8
and Corollary 7.7. O

We can now establish the main result of this section: Apgjyire flattening functional
at every step of the computation does not affect the orddreo§peed of convergence.

PROPOSITION7.9. Suppose = | |y Uk With d(u,uk) € 0(27) and (Qu)ker is an in-
creasing sequence i#[—a,a) with |Q«| € 0(27%). If yk;1 = Fo (Pu (Y)), then wy) €
0(27X). In particular, y= | |, Yk is real valued and solves the IVP (1).

Proof. We can assume by relabeling the indices of the sequencedthat) < 2.
eLw(yo) and|Qx| < 27¥- 3w(yo). We show thatwe (yk) < 2 *weL (o), which implies the
claim with the help of Lemma 2.2. There is nothing to showKet 0. For the inductive
step we have by Lemma 7.8

1. 1
WeL (Fo, (Pu (Yk))) < =WeL (Yo) + 52 kwer (Yo) + EK

< =27%(weL (Yo) + WeL (Yo) + WeL (Yo))

—(k+1)

ol Ol

N

WeL (Yo)

as required. O

We now show that the application of the flattening functicaiagvery step avoids the
blow up of the size of the iterates. As a consequence, theitdgowith flattening can
be implemented using a base of functions defined over a deibsimg of R, such as the
dyadic numbers.

LEMMA 7.10. Suppose BC R is a subring and Q¢ Py[—a,a]. Then Iy restricts to a
mappingss — SS.

Proof. Supposef = (ay,...,a)\- (Bo,...,B) € S5 andQ = (qo, ..., %) € Po[—a,a.

If Fo(f) = (do,.--, )\ (y1,---,¥), then the vertices of thg are elements of the set
Urcicn{ fi (0), i (a0),- .., fi" (ak), f; (ak)}, which can be computed from the vertices
of the3;’s without forming quotients. O

The complexity of the algorithm underlying Theorem 7.5 otfes baseslp and 58
can now be summarised as follows; recall thatQ) = k is the size of a partitiolQ =

(qu s 7qk)-
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PROPOSITION7.11. Suppose BC R is a subring, ye S5 and ue 74p.

(i) Fo(Pu(y)) € S5 and A (Fo(Pu(y))) = A(Q)
(i) Fo(Pu(y)) can be computed in time(max(A((u) - AL(y), N(Q)))-

Proof. Forthe first statement, assume that (ag, ..., ax)\& (B, ...,Bx) andu = Lhcj< Vi N\
3i. Thenuoy = (ag,...,a)\E (By,...,Bl), whereB, = [ 1{8j | Bm < yj}. Clearlyuoy €

S5 Computinguoy takesO(A((u) - A(y)) steps, since we have to match every step func-
tion in u against everm. By Lemma 6.4 we have th&(y) € S5, and finallyFg(Pu(y)) €

S5 by Lemma 7.10. Computing,(y) from uoy takes timeO(A((u) - AL(y)) andFo(Pu(y))

can be computed i®(max A (u) - A(y), A\.(Q)) steps, hence the bound on the complex-

ity. O

Note the complexity reduction compared to Proposition 6tbcv is achieved since
Py(f) does not changes its value in the subinter{als; 1]. We can now summarise our
results concerning soundness and completeness of théthaigaevith flattening as follows:

THEOREM7.12. Suppose B R is a subring and u= | |y Uk With ug € b . Furthermore,
assumdQy)ken is an increasing sequence of partitions wiithy ... |Qx| = 0 and Y1 =

For (Pu) (Yk)-
(i) yk €SS forallk € Nand A (yk) = N(Qx).
(i) ¥ = Llken Yk has widthO and y- = y* solves the IVP (1)
(iiy w(yk) € 0(27), if both d(u,uy) and|Qx| € 0(27%).

Note that, for a subrin@® C Q of the rational numbers, the elementsidf and.SS can
be faithfully represented on a digital computer. Hence we gaarantee both soundness
and completeness also for an implementation of the domauwréhic approach where fur-
thermore the representation complexity of the iteratedbartmded above by the size of the
partitions.

8. Approximating Continuous Functions

The theory outlined in the previous sections depends ontarval vector fieldy, given
in terms of a supremura = | |,y Uk Of step functions. In order to apply our theory, the
following assumptions must be satisfied:

1. uis an extension of the classical vector field
2. usatisfies an interval Lipschitz condition
3. The interval distance(u,ux) converges exponentially fast.

This section shows how to obtain a sequefuggcn Which satisfies the above assump-
tions. We discuss two techniques for constructing apprasions of vector fields: first, we
discuss compositions of approximations and then we showtboanstruct interval valued
approximations from a function that computes the value efuctor field to an arbitrary
degree of accuracy.

8.1. Composition of Approximations
In this section we assume that we have two functpnsk” — IR™andf : IR™ — | RK,
approximated by sequences of step functiggg and (fn), and show how to use these
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approximations to compute approximationsfefg, subject to the conditions laid down at
the beginning of the section.

We begin with an example showing that composition of appnations does not nec-
essarily preserve the convergence speed.

ExAMPLE 8.1. This example shows thatfif=| |, fx andg= | |, gk, and both(fx) and(gx)
converge exponentially fast, then this is not necessatily for the compositiogo f, even
if both f andg are interval Lipschitz. Consider the continuous functiorf0, ) — [0,2]
given by

x<1

1 - ;2
h(x) = { logo(1%%)
1 x>1
where log is the dyadic logarithm (logarithm w.r.t. base 2). Cledlis differentiable in
[0,1), and elementary analysis shows that i (x) < ﬁ < 2forxe [0,1), henceh(x) < 2x
for all x e R. Therefore the Scott continuous functibnlR — IR with f(x) = [0, h(w(x))]
satisfies the interval Lipschitz conditiov( f (x)) < 2w(x). Puttingfy = f, we clearly have
thatd(f, fx) < 27X Note thatf is a non-maximal interval extension of the constant zero
function.

For g(x) = [0,w(x)] andgk(x) = [0,w(x) + 2~k~1] we also have thag is interval Lip-
schitz andd(g,gk) = 21 < 2. We show that the compositiofy o gk only converges
linearly fast tof o g. Consider the intervak, = [0,1—2%"1]. Thend(fxogk, fog) >
d( (@), F(9(%))) = h(W(GK (%)) — h(W(g(%))) = (1) —h(1—27K"1) = L5, show-
ing that function composition does not preserve exponkrtiavergence speed.

As this example shows, we need extra conditions to ensutednaposition of approx-
imations preserves the speed of convergence. We proposasader functions which are
Hausdorff Lipschitz from below:

DEFINITION 8.2. Supposé : IR" — IR™ Thenf is Hausdorff Lipschitz from beloyiff
d(f(a), f(B)) <L-d(a,B)

for someL >0 and alla C B, a,B € IR".

Note that we only require the estimate to holdif 3, hence Hausdorff Lipschitz from
below is a weaker condition than being Lipschitz w.r.t. theusldorff metric ol R" and
IR™, respectively.

We briefly relate this condition to the interval Lipschitzndhtion we have introduced
before. Recall thaf is interval Lipschitz, ifw(f(a)) < L-w(a) for someL > 0 and all
o € dom(f), i.e. f increases the width of its argument only linearly.

REMARK 8.3. The notions “interval Lipschitz” and “Hausdorff Ligsitz from below” are
unrelated, as shown by the following examples:

1. The functionf in Example 8.1 is interval Lipschitz, but not Hausdorff Lahétz from
below.

2. The functiomx.[0,1] : IR — IR is Hausdorff Lipschitz from below, but not interval
Lipschitz.

It is easy to see that the maximal extension of a classicadhipz function is also
Hausdorff Lipschitz from below, but the converse is not timigeneral.
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PROPOSITION8.4. Suppose f R" — R™ satisfies a Lipschitz condition with Lipschitz
constant L. Thend f(a),1 f(B)) < Ld(a,B) for all compacta C B € IR".

Proof. Supposen,3 € IR". Denote the minimal distance between a poimt R" and a
compact set C R" by dn(x, ¢). By definition of Hausdorff distance, we find, for alE a an
elementyy € B s.t.||x—yx|| < d(a,B). Hence we have, for all € a, thatdm(f (), f(b)) <
L|Ix—yx|| < Ld(a,B). Therefored(l f (a),l f(B)) < Ld(a,B). O

The next example shows that functions which are Hausdopf$d¢hitz from below are
not necessarily maximal.

EXAMPLE 8.5. Suppose- : IR x IR — R is the maximal extension of the subtraction
function, i.e.[a”,a"] — [b~,b™] = [a~ — bT,a” — b~]. Then the functionf : IR — IR,

X — X—Xis both interval Lipschitz and Hausdorff Lipschitz from bel (actually it is even
Lipschitz w.r.t. the Hausdorff distance), but not maximesd, the functiomx.0 satisfies

f C Ax.0.

What makes functions that are Hausdorff Lipschitz from teitractive for our pur-
poses is that the set of such functions is closed under catigrgsn contrast to maximal
extensions.

LEMMA 8.6. Suppose f IR" — IR™ and g: IR™ — IR are Hausdorff Lipschitz from
below. Then so is gf.

Proof. Follows immediately from monotonicity af. O

Proposition 8.4 and Example 8.5 lead us to think of functitias are Hausdorff Lips-
chitz from below as functions that are close to being maxiex&nsions, without actually
being maximal. In particular, these functions are closedenrtomposition, which makes
them attractive for building libraries.

We are now in the position to prove the promised result on amsitipnality of approx-
imations; in particular we establish a guarantee of the emgence speed of composed
approximations.

THEOREMS8.7. Suppose g: IR" — IR™and f : IR™ — IR! are monotone sequences of
Scott continuous functions with=f | | fx and g= | |, gk that satisfy the following require-
ments:

1. Both f and g are interval Lipschitz and f is Hausdorff Lipi$z from below
2. d(f, fx),d(g,gk) € 0(275).

Then fog is interval Lipschitz and the extension of a classical fiomcand d fx o gk, f o
g) € 0(27%). Moreover, if g is also Hausdorff Lipschitz from below, tiseris fog.

Proof. Only the statement on the convergence speed requires pueadenote the Haus-
dorff Lipschitz constant of by L and assume w.l.0.g. thiat 1; the general result then fol-
lows by taking the maximum over the component$ oésp.fi. Note thad([a—,a"],[b~,b™]) £
|a- —b~|+]at —b*| < 2d([a,a"],[b~,b™]). Using this fact, the claim follows from the
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following calculation:

d(fog(a), frogk(a)) = " (gk(
J(gk(ﬂ))

@) — £ (g(@)) + F~(9(e)) — fi (G(c)
—E (gl) +  (g(0) — T (g(o)
£ (g(@)) — f(aK(@) + (oK

< 2d(f, f) + 24 F(g(a)), f(gh(c)

< 2d(1, 1) +2Ld(g.99 € 02

wherea € | [—K,K]" was arbitrary. O

a)) = fi (g (a))
)

This theorem shows, that the class of functions that areibtgthval Lipschitz and Haus-
dorff Lipschitz from below can be used to build a composiéiibrary for fast converging
Lipschitz functions. In the next section, we address thie ¢hsictually constructing func-
tions that fall into this class.

8.2. Construction of Approximations

Having seen how to obtain approximations of interval vefiedds compositionally, this
section outlines a technique for constructing these appratons, given a function that
computes the Lipschitz functioh: R" — R™ up to an arbitrary degree of accuracy.

More precisely, we assume thgt Q" x N — QM is given such thalf f (x) — g(x,K) || <
2K On a practical level, this allows us to compute approxioraifor a large class of
functions. Moreover, the existence otamputabldunctiong with the above property is
equivalent to the computability of, and the results of this section show that we obtain
approximations by step functions for everymputablé.ipschitz vector field.

The idea of the construction is as follows: Given a rectangle R", we compute
g(m(a),k), which gives the value of at the midpointm(a) of o up to an accuracy of
2K In order to accommodate for this inaccuracy, we extendphiat value into a rect-
angle by extending it with 2 into the direction of each coordinate axis. This rectangle i
then subsequently extended using the Lipschitz constahtrelulting in a rectangle that
contains all values(x) for x € a.

While it is straight forward to see that this method produapproximations of any
Lipschitz functions up to an arbitrary degree of accurrawgre work is needed to show
that these approximations are actually compositionalHaaisdorff Lipschitz from below
in the sense of the previous section and converge expolg faist.

To formalise the construction, we now assume for the resi@fection thaf : R" —
R™ satisfies a Lipschitz condition with Lipschitz constardandg: Q" x N — QM is such
that||g(x, k) — f(X)|| <27,

DEFINITION 8.8. For areal vector= (Xg,...,X,) € R"andA € [0, ), we writex A for
then-dimensional rectanglx; — A, X1+ A] X --- X [Xn — A, Xn + A] with centrex and width
2\. Given a partitiorQ = (qp, - - ., 0k), we denote the set aFdimensional rectangles with
endpoints imQ by

R(Q) = {[ay,qj; ] x -+ > [Ghin, dlj] | O<ir < Jr <kforall 1<r < nj.
Finally, we define the family of function% fork € N by

=] 0(\g(m(cx),k)@(Z’k+%-w(cx)).
aeR(Q)
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We call thefé’s the approximation functions associated w@h

It is easy to see that the approximation functions assatiatth a partition are sound
in the sense that they give enclosures of the approximatedi@ins.

LEMMA 8.9. Let Qe 2 and ke N. Then g CIf.

Proof. We have to showf (x) € fé(a) for all a € IR" and allx € a. This follows from
f(x) € g(m(B),k) @ (27 + 5 -w(p)) forall B < o, B € R (Q) by taking suprema.

So suppos@ € R (Q) andP < a. To see thatf (x) € g(m(B),k) & (27K + 5 - w(p)) it
suffices to show thaf f(x) — g(m(B),k)|| < 27¥+ 5 -w(B) for all x € a. But this follows
from

1) —g(m(B), )| < [[£0) = F(MB) ]| + [[f(M(B)) —g(m(B), k)|
<L-[x—m(B)[|+27
1 _
<L-Sw(B)+2 k
where the estimatx— m(B)|| < 3w(B) follows fromB < o andx € . O

Before we give guarantees on the quality of approximatiamsstructed using this
method, we need to check that the approximations consttacteially form an increasing
chain. This is the content of the following easy lemma.

LEMMA 8.10. Suppose R Q € P and j<i. Then ﬁg f(ig.

We now establish one of the criteria for approximations ksvn at the beginning of
the section, i.e. that they converge to a function whichtisriral Lipschitz. Recall the order
on partitions and their range from Definition 7.1

LEMMA 8.11. SupposéQx)ken is an increasing sequence of partitions wlithy .., |Qk| =
0andUyr(Qk) =R. Then| ey fgk satisfies the interval Lipschitz condition with constant
L.

Proof. Picka € IR". Forany givere >0, pickk > 0s.t.[Qq| < §, 2 k< gandr(Q)" < a.
By choice ofk, we find B € R (Qk) with B < a andw(p) < w(a) + . We now have
B\ g(m(B),k) & (2745 -w(B)) C f§, andB < a, whence

w( || £, (0)) < w(f& (a)
keN

<W((B\ 9m(B).K) & (2 + Sw(B)) (@)
<2-27%+L-w(p)
<2-27%4 L (w(a)+¢)

<e+Lw(a)+Le

< (1+L)e+L-w(a).

As g > 0 was arbitrary, we conclude thaf| |, fék(a)) <L-w(a). O

COROLLARY 8.12. The function h= | |,y fCSk is an extension of f.
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Figure 3: Approximations associated wilx, y, k) = (X,y).

Proof. By Lemma 8.9, we havé (x) € h({x}) and Lemma 8.11 shows tha{{x}) is a
singleton set. O

We have shown how to construct approximations which satgfyof the three criteria
needed to put our theory to work. We now turn to the last iterh give an estimate on
the convergence speed of tlf@k to h. In the proof, we compare an upper approximation

of (f('s )* with a lower approximation of™ for h = | |, fé . The next lemma is a major
stepping stone for establishing a lower approximatiomh.of we recall the definition of
fék, we see that the width of the intervai(B) ® (27 + 5 - w(p)) in the step function

BN\.m(B)® (2 4+ % -w(pB)) only depends on the width @ Hence giveru € IR, it does
not suffice to consider a minimal enclosuR{Q) > B < a to find an upper bound for
fék(a). Instead we need to consider all enclosures that have thewddth as the minimal

enclosure. This situation is illustrated féfx,y) = g(x,y,k) = (x,y) in Figure 3, where
the dots indicate the grid points given Bx. Note that( fgk)f(a) = g1(M(Bo), k) +27K+
%W(Bo) despite the fact thdi; is a better approximation af.

The next lemma accounts for this situation and gives a lowant for the upper func-
tion associated witH .

LEMMA 8.13. Suppose @ 2 with r(Q) < [-K,K] and ke N. Then, foralli=1,...,n
and alla € 1[—-K,K]",

(f§)i" (o) = min{fi(m(a')) | o’ C &, w(a’) = w(a)} + %W(G)

Where(fé)fr is the upper function associated with the i-th componengof f
Proof. Throughout the proof, we fikwith 1 <i < nanda = (a4,...,0n). First note that

{o' Ca|w(a’) =w(o)}

={0a+(p1,....pn) | 0 € pj € IR andw(a;) +w(pj) <w(a)} (4)

whence the midpoint séfi(a) = {m(a’) | o’ C a,w(a’) =w(a)} is
M(a) = m(a) + %([W(Gl) —w(o), w(a) —w(ag)] x -+ x [w(dn) —w(a),w(a) —w(an)]).

We first show that

fi(M(B) + 5W(B) > min{ () | x € M(@)} + sw(c)
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forall BC a. Let C a be given. In casen(p) € M(a) there is nothing to show, and the
claim follows fromw(3) > w(a). Now assumen(f3) ¢ M(a).

For an arbitraryx € R", we write [M(a) — || = infycp(q) ||y — X|| for the distance be-
tweenx and the seM (a). Hence our assumption i (a) —m(B)|| > 0. Pick anyx € M(a)
s.t. [[M(a) —=m(B)|| = [x—m(B)|| and letj € {1,...,n} be such thatM(a) — m(B)| =
[x—m(B)| = |x; —m(B);| (recall that] - || denotes maximum norm).

We now claim thatv(B;) > w(a) + 2||M(a) —m(B)||. To see this, recall thate M(a)
and||x—m(B)|| is minimal, and we have two cases, sixds a boundary point o (a):
Case 1: niB); < xj =m(a); — 3(w(a) —w(a;))

Case 2: nfaj) + 3 (w(a) —w(a;)) = Xj < m(B);.

We only treat the first case, as the second is symmetric, soresthatm(f); < x;. If
B = [by,bf] > - x [by,bi], we havexj — 3(bf +bj) = x; —m(B); = [M(a) — m(B)]
whence

by = 2x; — 2|[M(a) — m(B)|| — by
< 2m(a)j — (w(o) —w(aj)) —2[M(a) —m(B)|| — aj
=a/ +a; —w(a)+a —a; —a; —2|[M(a) - m(B)]|

=a/ —w(a) - 2[M(a) —m(B)|

where we have usefiC a to obtainaj+ < bj+ in the second line. For the same reason, and
using the last estimate, we now have

w(Bj) = b —bj
>af —af +w(a)+2|M(a) —m(B)|

which implies our clainw(Bj) > 2|[M(a) — m(B)|| + w(a).
Using this fact, as a consequence of the choicewé now have

f(M(B) + 5W(B) = fi(m(B)) — fi(x)+ () + w(B)

Z —Llx=m(B)[| + fi(x) + %(W(G) +2[[M(a) —m(B)]))
= fi(x) + %W(G)
> min{fi(x) | xe M(a)} + %W(G)

which concludes the proof of our first statement. We now shioevlemma. AsfX =
Lgex (@) B\ 9(m(B),k) & (27%+ Lw(p)) it suffices to show that

(M(B).K)+2 -+ w(B) > min{fi(x) | x & M ()} + Sw(c)

for all B < a. But this now follows easily:

G(m(B),K)-+ 27K+ w(B) > i(m(B)) + Swi)

. L
> min{fi(x) | xe M(a)} + §W(G)
using our first result and the fact thHa a. O
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We obtain the following immediate corollary, which we usehie estimate of the con-
vergence speed to give an upper boundhm).

COROLLARY 8.14. Suppos€Q) is an increasing sequence of partitions ane h . f('sk.
Then i (a) > min{fi(m(a’)) | &' C a,w(a’) = w(a)} + Sw(a) forall 1 <i < n.

Using the last corollary as an upper bound for the valud,offe can formulate and
prove a statement on the convergence speed as follows:

PrROPOSITION8.15. SupposgQx) is an increasing sequence of partitions witBy| €
0(27%) andUyr(Qu) = R. Ifh = | f§ . then dh, f§ ) € 0(27%).

Proof. LetK > 0. We show that(h(a), fék(a)) € 0(27%) for all a € I[-K,K]". Without

loss of generality we can assume thd@o) < [—K,K] and|Qy| < 27K
Suppose now thatt € 1[—K,K]" is given and 1< i < n. By compactness oft and
continuity of f, we can findo’ C a with w(a’) = w(a) s.t.

fi(m(a’)) = min{ fi(m(y)) | y C o, w(y) = w(a)}.
By Corollary 8.14 we have

ht(a) > fi(m(a')) + %W(d') (5)

(note thatw(a) = w(a’)). As |Q«| < £27%, we can findB < o with d(o’,B) < 2|Q«| =
2¢ -27X. By definition of f§ , we have

o(m(B).K) & (2 K+ Sw(B)) C 15 (@)
hence

(187 (@) < 6 (M(B). ) +2 7+ Sw(B) ©)

Combining equations (5) and (6) we obtain

(1807 (@)~ (@) < i(m(B).K)+2 %+ Zw(B) — fi(m(a)) — sw(c!)

< (M(B)) +2: 27+ S (w(B) ~w(a) ~ fy(m(a’))
<L @) — (et | + Sal(a’,B) +2-2°*

< ng(a/,B) +2.27k
<3LIQ+2:27
<5.2°%
where we have used Lemma 2.3 in line 3 and 4 of the estimatédla8iyrone shows that

h-(a)— (fék)f <5-27%, and we conclude thaihi (a), (§, )i(a)) < 5-2 ¥ which implies

1
the claim as was arbitrary. O

In summary, we have the following theorem, which shows, thatapproximations
satisfy all the conditions discussed at the beginning ostwdion.
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THEOREMS8.16. Suppos€Qy) is an increasing sequence of partitions wi@x| € 0(2¥),
Ukso(Qk) = R and let h= | . &, . Then

1. his an extension of f
2. h satisfies an interval Lipschitz condition with Lipszhibnstant L

3. d(h, £) € 0(27%).

8.3. Compositionality of Approximations

We have now established conditions which allow to composetfon approximations
in a way that the order of magnitude of convergence speeesepred. On the other hand,
we have described a method to construct fast convergingappations from scratch. In
this section, we show that the approximatid‘é;g are amenable to building a library for
approximating Lipschitz functions by showing that theipsema are Hausdorff Lipschitz
from below, which entails that the composition of approxiimas preserves fast conver-
gence (Theorem 8.7).

For the purpose of this section, we assume thaR" — R™ is a classical Lipschitz
function,(Qy) is an increasing sequence of partitions Wih| € 0(27%) andUy= o (Q«) =

R. Furthermore, we assume tH@qk is constructed as in Definition 8.8.

Our main result is to show that the functioms= | |, fé can be used to build a compo-
sitional library of fast converging approximations to Ltiﬁmi;tz vector fields. In the light of
Theorem 8.7, we therefore have to show that the fundtien |, fék is Hausdorff Lipschitz
from below.

We fix the functionh = | |, fék. The proof of the Hausdorff Lipschitz property is split
into several lemmas.

LEMMA 8.17. Suppose’ C o with w(a) = w(a’). Then there aréxy, ..., X,) € R" s.t.

1 Ix| <
2. ma’)

NI

(w(a) —w(aj)) foralli =1,...,n

m(a) + (X1, -..,X%n)-

Proof. Supposex = [a;,a7] x -+ x [a,,0,] and similarly fora’. Then we have, for
i=1,...,n thata = [0 —&;,0;" +&] where 0< & ,a" anda;” +a" < w(a) —w(a;).

Puttingx; = a“'+EB“7 satisfies the hypothesis of the lemma. O
LEMMA 8.18. Leta € IR™. Then i (a) < fi(m(a)) + 5w(a).

Proof. Lete > 0 and findk > 0 such that 2 < ¢, |Q«| < £ andr(Qx)" < a. By choice of
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k, we can findog € R (Q) with ap < o andd(a, ap) < €. We calculate
hi" (o) < (729 (@)
L
< gi(m(0g), k) +27 5+ Ew(ao)
L
< ﬁ(ﬂKGo))+-2-2*k+—§m(ao)

< fi(m(a)) + | fi(m(ap) — fi(m(a))| +2- 27K+ %w(a) + %|w(ao) —w(a)]

< fi(m(@)) + () +L|m(a) ~ m(ao)| + 5 (w(cto) ~w(er)) +2-2°*

< fi(m(a)) + %W@()+Ld(oucxo)+L0I<0u0(o)+2~2’k

< fi(m(a)) + %w(a) +2le+2¢

which proves the claim, aswas arbitrary. O

The next lemma gives the first half of the Hausdorff Lipschpitaperty.
LEMMA 8.19. Leta C B € IR". Then K (a) — h" (B) < 3Ld(a,B).

Proof. By compactness of the midpoint set

{m(y) [ YE B,w(B) =w(y)}
we findp’ C B with w(B’) = w(B) s.t.

. L L
hi"(B) = min{fi(m(y)) | yC B, w(y) =w(B)} + SW(R) = fi (m(B")) + SW(P),
where the first estimate is Corollary 8.14. By Lemma 8.17retegex, ..., X, s.t. m(B) +
(X1, -, Xn) = m(B') and|x| < 3(w(B) —w(Bi)). We putx = (xi,...,X,) and observe that,
fori=1,...,n,

2 W(B) —w(B)) < 3 (i) () —w(ai) +wia))
< 5(@) —w(e)) + Fwiet) ~w(By)
< 5(@) i)+t B).

Hence we findj; s.t. yi| < 5(w(o) —w(ai)) s.t.|x —yi| < d(a,B) foralli=1,...,n. Now
puta’ = aj x --- x ay, where

,_Jloraf +2y] iy >0
ol o +2yi,0] ify <.

and lety = (y1,...,Y¥n)- Thena’ C a andw(a’) = w(a). By monotonicity ofh, we have
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h'(a) < h(a’). Using Corollary 8.14 and Lemma 8.18, this gives

hy (@)~ (B) < fi(m(@)) + Sw(a) — (f(m(§)) + Sw(B))

< Lfm(a’) = m(B)| + %(W(G) —w(B))
[m(a) +x—m(B) —y|| + Ld(a, B)
[m(ar) —m(B)|| + L[|y —X|| +Ld(a,B)
d(a,B) +Ld(a,B) + Ld(a,B)

whereh" (a) > h" (B) follows from monotonicity ofh;. O

<
<L
<L

As a corollary, we obtain a bound on the difference betweenufiper values di.
COROLLARY 8.20. Leta C B € IR" and1 < i < n. Thenh (a) — h(B)| < 3Ld(a,B).

Similarly, one proves the dual statemémt (a) —h (B)| < 3d(a, B). These two results
together show that, as constructed, is Hausdorff Lipschitz from below.

THEOREM 8.21. Leta C B € IR". Then dh(a),h(B)) < 3Ld(a,B). In particular, h is
Hausdorff Lipschitz from below.

Proof. By Corollary 8.20 and its dual, we have forli < n, that

d(h(a), h(B)) = max{|h" (o) — b" (B)], Iy (o) — by (B)[}
< max{3Ld(a,B),3Ld(a,B)} = 3Ld(a,B)

Taking maximum over = 1,...,n establishes the claim. O

This shows, together with the results of Section 8.1, thatarebuild a compositional
library for domain theoretic approximations of Lipschitezotor fields.

In conjunction with Theorem 7.12 we obtain a framework fdwsty initial value prob-
lems, which is based on proper data types, and can theredodadxctly implemented on
a digital computer. Moreover, working with rational or dy@adumbers, the speed of con-
vergence can also be guaranteed for implementations oéohnique.
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