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Abstract. We present a domain-theoretic version of Picard’s theorem for solving
classical initial value problems inRn. For the case of vector fields that satisfy a
Lipschitz condition, we construct an iterative algorithm that gives two sequences
of piecewise linear maps with rational coefficients, which converge, respectively
from below and above, exponentially fast to the unique solution of the initial
value problem. We provide a detailed analysis of the speed ofconvergence and
the complexity of computing the iterates. The algorithm uses proper data types
based on rational arithmetic, where no rounding of real numbers is required. Thus,
we obtain an implementation framework to solve initial value problems, which is
sound and, in contrast to techniques based on interval analysis, also complete: the
unique solution can be actually computed within any degree of required accuracy.

1 Introduction

We consider the initial value problem (IVP) given by the system of differential equa-
tions

ẏi(x) = vi(y1, . . . , yn), yi(0) = 0 (i = 1, . . . , n) (1)

where the vector fieldv : O → Rn is continuous in a neighbourhoodO ⊆ Rn of
the origin, and we look for a differentiable functiony = (y1, . . . , yn) : [−a, a] →
Rn, defined in a neighbourhood of0 ∈ R, which satisfies (1). By a theorem of Peano
there is always a solution [9, page 19]. Uniqueness of the solution is guaranteed, by
Picard’s theorem, ifv satisfies a Lipschitz condition. The question of computability and
the complexity of the initial value problem has been studiedin different contexts in
computable analysis [12,3,8,14,19,17,6].

On the algorithmic and more practical side, standard numerical packages for solving
IVP’s try to compute an approximation to a solution with a specified degree of accuracy.
Although these packages are usually robust, their methods are not guaranteed to be
correct and it is easy to find examples where they output inaccurate results [13].

Interval analysis [16] provides a method to give upper and lower bounds for the
unique solution in the Lipschitz case with a prescribed tolerance, and has been devel-
oped and implemented for analytic vector fields [18,1]. In this approach, arithmetic
operations are performed on intervals, and outward rounding is applied if the resulting
interval endpoints are not machine representable. While this strategy guarantees sound-
ness, i.e. containment of the exact result in the computed interval, one has in general no
control over the rounding, which can produce unduly large intervals. As a consequence,
for an implementation of the framework for solving IVP basedon interval analysis, one



cannot in general guarantee completeness, that is, actual convergence to the solution.
For the same reason, one has no control over the speed of convergence.

Domain theory [4] presents an alternative technique, basedon proper data types,
to produce a provably correct solution with any given degreeof accuracy. Using the
domain of Scott continuous interval valued functions on a compact interval, we define
here a domain theoretic Picard operator, whose least fixed point contains any solution
of the IVP. When the vector field is Lipschitz, the solution isunique and we construct
an iterative algorithm that gives two sequences of piecewise linear maps with rational
coefficients, which converge, respectively from below and above, exponentially fast to
the unique solution of the initial value problem. Since the data types for representing the
piecewise linear maps with rational coefficients are directly representable on a digital
computer, no rounding of real numbers is required. As a consequence, the implemen-
tation of the domain theoretic approach is also complete, that is, we can guarantee the
convergence of the approximating iterates to the solution of the IVP also for the im-
plementation. To our knowledge, this property is not present in any other approach to
validated solutions of differential equations. Furthermore, as a result of the data types
we use, we can give estimates for the speed of convergence of the approximating iter-
ates, which are still valid for an actual implementation of our algorithm.

This simplifies the earlier treatment [10], which used a domain for C1 functions [11]
and, at each stage of iteration, required a new approximation of the derivative of the
solution. The new treatment is much more similar to the classical theorem in that it gives
rise, in the Lipschitz case, to fast convergence of the approximations to the solution.

We discuss two different bases to represent approximationsto the solutions of the
IVP, namely the piecewise linear and the piecewise constantfunctions with rational
coefficients. Using piecewise linear functions, there is noneed to compute rectangular
enclosures of the solution, and we therefore avoid the wrapping effect, a well known
phenomenon in interval analysis. This comes at the expense of an increase in the size
of the representation of the approximations to the solution. Using the base consisting of
piecewise constant functions, we show that the order of the speed of convergence to the
solution remains unchanged, while the space complexity forthe representation of the
iterates is much reduced.

A prototypical implementation using the GNU multi precision library [2] shows that
the resulting algorithms are actually feasible in practice, and we plan to refine the im-
plementation and compare it in scope and performance with existing interval analysis
packages like AWA [1]. Of course we have to bear in mind that floating point arith-
metic used by interval software is executed on highly optimised processors, whereas
the rational arithmetic needed for our implementation is performed by software.

2 Preliminaries and Notation

For the remainder of the paper, we fix a continuous vector field

v = (v1, . . . , vn) : [−K, K]n → [−M, M ]n

which is defined in a compact rectangle containing the originand consider the IVP given
by Equation (1). Note that any continuous function on a compact rectangle is bounded,
hence we can assume, without loss of generality, thatv takes values in[−M, M ]n.
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We construct solutionsy : [−a, a] → Rn of Equation (1) wherea > 0 satisfies
aM ≤ K. This will guarantee that the expressionv(y) is well defined, sinceM is
a bound for the derivative ofy. We consider then-dimensional Euclidean spaceRn

equipped with the maximum norm‖x‖ = max{|x1|, . . . , |xn|}, as this simplifies deal-
ing with the Lipschitz conditions, which we introduce later. Approximations of real
numbers live in the interval domain

IR = {[a, b] | a, b ∈ R, a ≤ b} ∪ {R} with [a, b] ⊑ [c, d] ⇔ [c, d] ⊆ [a, b]

ordered by reverse inclusion; the way below relation is given by [a, b] ≪ [c, d] iff
[c, d] ⊆ (a, b). Forn ≥ 1, the domainIRn is isomorphic to the domain ofn-dimensional
rectangles{α1 × · · · × αn | αi ∈ IR for all 1 ≤ i ≤ n}, and we do not distinguish
between these two presentations. For a rectangleR ⊆ Rn, the subset{S ∈ IRn | S ⊆
R is a rectangle} of rectangles contained inR is a sub-domain ofIRn, which is denoted
by IR. The powersIRn of the interval domain and the sub-domainIR, for a rectangle
R, are continuous Scott domains. Ifα−, α+ ∈ Rn with α−

i ≤ α+

i for all 1 ≤ i ≤ n, we
write [α−, α+] for the rectangle[α−

1 , α+

1 ] × · · · × [α−
n , α+

n ]. Similarly, if f : X → IRn

is a function, we writef = [f−, f+] if f(x) = [f−(x), f+(x)] for all x ∈ X .
The link between ordinary and interval valued function is provided by the notion

of extension. If R ⊆ Rn is a rectangle, we say thatF : IR → IRn is an extension of
f : R → Rn if

F ({x1}, . . . , {xn}) = {f(x1, . . . , xn)}

for all x ∈ R. Note that every continuous functionf : R → Rn has acanonical
extensionF defined by

F = (F1, . . . , Fn) : IR → IRn with Fi(S) = [ inf
x∈S

fi(x), sup
x∈S

fi(x)],

whereS ∈ IR is a rectangle, which is maximal in the set of interval valuedfunctions
extendingf . It is easy to see thatF is continuous wrt. the Scott topology onIR andIRn

if f is continuous wrt. the Euclidean topology.
We consider the following spaces for approximating the vector field and the solu-

tions to the IVP:

• S = [−a, a] → I[−K, K]n, the set of continuous functions wrt. the Euclidean
topology on[−a, a] and the Scott topology onI[−K, K]n

• V = I[−K, K]n → I[−M, M ]n, the set of continuous functions wrt. the Scott
topology onI[−K, K]n andI[−M, M ]n.

In order to measure the speed of convergence, as well as for technical convenience
in the formulation of some of our results, we introduce the following notation, where
X is an arbitrary set:

• For a rectangleα = [α−, α+], w(α) = ‖α+ − α−‖ denotes thewidth of α. Simi-
larly, if f : X → IRn is a function,w(f) = supx∈X w(f(x)) is thewidthof f .
• For u, u′ : X → IR with u′(x) ⊑ u(x) for all x ∈ X , thewidth ofu′ relative tou

is defined aswu(u′) = supx∈X ‖u′+(x) − u+(x) + u−(x) − u′−(x)‖.

Consideringu′ as approximation tou, the relative widthwu(u′) can be understood as
measuring the quality of the approximation.
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3 The Picard Operator in Domain Theory

In the classical proof of Picard’s theorem on the existence and uniqueness of the solution
of the initial value problem (1) one defines an integral operator onC0[−a, a] by

y 7→ λx.

∫ x

0

v(y(t))dt

(with the integral understood componentwise), which can beshown to be a contrac-
tion for sufficiently smalla providedv satisfies a Lipschitz condition [15]. An ap-
plication of Banach’s theorem then yields a solution of the initial value problem. We
now define the domain-theoretic Picard operator for arbitrary continuous vector fields
u : I[−K, K]n → I[−M, M ]n and focus on the special case whereu is an extension
of a classical function later. As in the classical proof, thePicard operator is an integral
operator, and we therefore introduce the integral of interval-valued functions.

Definition 1. Supposef = [f−, f+] : [−a, a] → IR is Scott continuous. Forx ∈
[−a, a] we let

∫ x

0

f(t)dt = [

∫ x

0

f−σ(t)dt,

∫ x

0

fσ(t)dt]

whereσ = sgn(x) is the sign ofx. If f = (f1, . . . , fn) : [−a, a] → IRn, we let
∫ x

0
f(t)dt = (

∫ x

0
f1(t)dt, . . . ,

∫ x

0
fn(t)dt).

Note that, if we integrate in the positivex-direction, thenf− contributes to the lower
function associated with the integral off andf+ contributes to the upper function. If we
integrate in the negativex-direction, the roles off− andf+ are swapped. The following
shows that our definition is meaningful:

Lemma 1. Supposef : [−a, a] → IR is Scott continuous.

(i) f− andf+ are Lebesgue integrable
(ii)

∫ x

0
f(t)dt ∈ IR for all x ∈ [−a, a].

Proof. For Scott continuousf , the functionsf−, f+ are lower (resp. upper) semi con-
tinuous, hence Lebesgue integrable. Ifσ = sgn(x), thenσf−σ ≤ σfσ and

∫ x

0
f−σ(t)dt ≤

∫ x

0
fσ(t)dt follows from the definition of the ordinary integral. Finally

∫ x

0
f(t)dt is ei-

ther compact or the whole ofR, sincef+(t) = ∞ iff f−(t) = −∞, for all t ∈ [−a, a].

The following lemma shows that integration is compatible with taking suprema.

Lemma 2. Letf : [−a, a] → IRn.

(i) The functionλx.
∫ x

0
f(t)dt is Scott continuous.

(ii) The function
∫

: f 7→ λx.
∫ x

0
f(t)dt is Scott continuous.

Proof. We assumen = 1 from which the general case follows. Ifg(x) =
∫ x

0
f(t)dt,

theng−, g+ are continuous, henceg is Scott continuous. The second statement follows
from the monotone convergence theorem.
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The domain theoretic Picard operator can now be defined as follows:

Definition 2. Supposeu ∈ V . Thedomain theoretic Picard operatorPu : S → S is
defined byPu(y) = λx.

∫ x

0
u(y(t))dt.

Lemma 3. Pu is well defined and continuous.

Proof. ThatPu(y) ∈ S follows from our assumptionaM ≤ K. Lemma 2 shows that
Pu(y), for y ∈ S, andPu itself are continuous.

In the classical proof of Picard’s theorem, one constructs solutions of IVP’s as fix-
point of the (classical) Picard operator. The domain theoretic proof replaces Banach’s
theorem with Klenee’s theorem in the construction of a fixed point of the (domain the-
oretic) Picard operator. Unlike the classical case, where one chooses an arbitrary initial
approximation, we choose the functiony0 = λt.[−K, K]n with the least possible in-
formation as initial approximation.

Theorem 4. Letu ∈ V andyk+1 = Pu(yk). Theny =
⊔

k∈N yk satisfiesPu(y) = y.

Proof. Follows immediately from the Kleene’s Theorem, see e.g. [4,Theorem 2.1.19].

The bridge between the solution of the domain-theoretic fixpoint equation and the
classical initial value problem is established in the following proposition, whereIf :
[−a, a] → I[−K, K]n denotes the functionλx.{f(x)}, for f : [−a, a] → [−K, K]n.

Proposition 5. Supposeu is an extension ofv andy is the least fixpoint ofPu.

(i) If f : [−a, a] → I[−K, K]n solves (1) thenIf ⊑ y.
(ii) If y has width0, theny− = y+ solves (1).

Proof. For the first statement, note thatIf is a fixed point ofPu andy is the least
such. The second statement follows from the fundamental theorem of calculus; note
thaty− = y+ implies the continuity of both.

The previous proposition can be read as a soundness result: Every solution of the
IVP is contained in the least fixpoint of the domain theoreticPicard operator.

4 The Lipschitz Case

We can ensure the uniqueness of the solution of the IVP by requiring that the vector
field satisfies an interval version of the Lipschitz property. Recall that for metric spaces
(M, d) and(M ′, d′), a functionf : M → M ′ is Lipschitz, if there isL ≥ 0 such that
d′(f(x), f(z)) ≤ L · d(x, z) for all x, z ∈ M . The following definition translates this
property into an interval setting.

Definition 3 (Lipschitz Condition). Supposeu : I[−K, K]n → I[−M, M ]n. Then
u is interval Lipschitz if there is someL ≥ 0 such thatw(u(α)) ≤ L · w(α) for all
α ∈ I[−K, K]n. In this case,L is called aLipschitz constantfor u.
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The following Proposition describes the relationship between the classical notion
and its interval version.

Proposition 6. For v : [−K, K]n → [−M, M ]n, the following are equivalent:

(i) v is Lipschitz
(ii) The canonical extension ofv satisfies an interval Lipschitz condition
(iii) v has an interval Lipschitz extension.

Note that every interval Lipschitz function induces a totaland continuous classical
function.

Corollary 7. Supposeu is interval Lipschitz. Thenw(u(α)) = 0 wheneverw(α) =
0, and the induced real valued function̄u, given byū(x) = z iff u({x}) = {z} is
continuous.

In order to guarantee that the sequence of approximations tothe solution of the IVP
does converge to a width-zero function, we make the following assumption.

For the remainder of the paper,u denotes an extension ofv, which satisfies an
interval Lipschitz condition with Lipschitz constantL such thataL < 1. For later use,
we fix c ∈ R with aL < c < 1.

In case this assumption is not valid, i.e.aL > 1, we picka′ < a such thata′L < 1
and divide the interval[−a, a] into subintervals of length< a′. Replacinga by a′ allows
us to compute solutions on each subinterval. As we will show in the full version, we
can use a glueing process to obtain a solution defined on the whole of [−a, a]; this is as
in the classical theory [9, page 13].

Assuming the Lipschitz condition, we have the following estimate, which guaran-
tees that the least fixed point ofPu is of width0:

Lemma 8. w(Pu(y)) ≤ aL · w(y) for all y ∈ S.

The above estimate allows us to show that – in the Lipschitz case – the least fixed point
of the domain-theoretic Picard operator has width0, i.e. solves the initial value problem,
as shown in Proposition 5.

Proposition 9. Let yk+1 = Pu(yk) for k ∈ N. Thenw(yk) ≤ ckw(y0). In particular,
y =

⊔

k∈N yk satisfiesPu(y) = y andw(y) = 0.

Proof. Follows immediately fromaL < c < 1 by induction.

In order to be able to compute the integrals, we now consider approximations tou;
the basic idea is that every continuous vector field can be approximated by a sequence
of step functions (i.e. functions taking only finitely many values), which allows us to
compute the integrals involved in calculating the approximations to the solution effec-
tively. The key property which enables us to use approximations also to the vector field
is the continuity of the mappingu 7→ Pu.

Lemma 10. The mapP : V → S → S, u 7→ Pu, is continuous.

Proof. Follows from continuity ofu and the monotone convergence theorem.
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This continuity property allows us to compute solutions to the classical initial value
problem by means of a converging sequence of approximationsof u.

Theorem 11. Supposeu =
⊔

k∈N uk and yk+1 = Puk
(yk) for k ∈ N. Theny =

⊔

k∈N yk satisfiesy = Pu(y) andw(y) = 0.

Proof. Follows from Theorem 4 and continuity ofu 7→ Pu by the interchange-of-
suprema law (see e.g. [4, Proposition 2.1.12]).

We have seen that the Lipschitz condition on the vector field ensures that the ap-
proximations of the solution converge exponentially fast (Proposition 9). In presence
of approximations of the vector field, the speed of convergence will also depend on
how fast the vector field is approximated. The following estimate allows to describe the
speed of convergence of the iterates if the vector field is approximated by an increasing
chain of vector fields.

Lemma 12. Supposeu′ ⊑ u andy ∈ S. Thenw(Pu′ (y)) ≤ aL · w(y) + a · wu(u′).

As a corollary we deduce that the approximations converge exponentially fast, if the
approximations of the vector field do so too.

Proposition 13. Supposeu =
⊔

k∈N uk andyk+1 = Puk
(yk). Thenw(yk) ≤ ck·w(y0)

providedwu(uk) ≤ ck · 2M(c− aL).

Given a representation ofu in terms of step functions, Theorem 11 gives rise to an
algorithm for computing the solution of the initial value problem. Our next goal is to
show that this algorithm can be restricted to bases of the respective domains, showing
that it can be implemented without loss of accuracy. We then give an estimate of the
algebraic complexity of the algorithm.

5 An Implementation Framework for Solving IVP’s

We now show that the algorithm contained in Theorem 11 is indeed implementable by
showing that the computations can be carried out in the basesof the domains. In fact,
we demonstrate that every increasing chain of (interval valued) vector fields(uk)k∈N,
where eachuk is a base element ofV , gives rise to a sequence of base elements ofS,
which approximate the solution and converge to it.

In view of the algorithm contained in Theorem 11, we considersimple step func-
tions as base ofV and piecewise linear function as base ofS. Note that in this setup, the
domain-theoretic Picard operator computes integrals of piecewise constant functions,
hence produces piecewise linear functions.

We begin by introducing the bases which we are going to work with.

Definition 4. LetD ⊆ R and assume that−a = a0 < · · · < ak = a with a0, . . . , ak ∈
D, β0, . . . , βk ∈ I[−K, K]nD andγ1, . . . , γk ∈ I[−M, M ]nD, whereRD denotes the set
of rectangles, which are contained inR and whose endpoints lie inD. We consider the
following classes of functions:
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(i) The classSL
D of piecewiseD-linear functions[−a, a] → I[−K, K]n,

f = (a0, . . . , ak)ցL (β0, . . . , βk)

wheref(x)± = β±
j−1

+
x−aj−1

aj−aj−1

(β±
j − β±

j−1
) for x ∈ [aj−1, aj]. Every component of

a D-linear function is piecewise linear and takes values inD at a0, a1 . . . , ak.
(ii) The setSC

D of piecewiseD-constant functions[−a, a] → I[−K, K]n,

f = (a0, . . . , ak)ցC (β1, . . . , βn), x 7→

{

βi x ∈ [ai−1, ai]
o

βi−1 ⊓ βi x = ai and1 < i < k

where⊓ denotes the greatest lower bound. The components of aD-constant function
assume constant values inD, which only change ata0, a1, . . . , ak.

(iii) The setVD of finite sups of step functionsI[−K, K]n → I[−M, M ]n,

f =
⊔

1≤j≤k

βj ց γj : x 7→
⊔

{γj | 1 ≤ j ≤ k, βj ≪ x}.

(iv) For anyf as above, we putN (f) = k and call it thecomplexity of representa-
tion of f .

Since we will not consider different representations for the same functions, we al-
low ourselves to blur the distinction between a function andits representation as step
function. Note that any computable vector fieldu can be approximated by a sequence
of basis elements(uk)k∈N in VQ, and such approximating sequences can be constructed
from a library of elementary functions.

If D is dense inR, it is well known that the sets defined above are bases of their
respective superspaces:

Proposition 14. SupposeD ⊆ R is dense and−a, a ∈ D.

(i) VD is a base ofV .
(ii) SC

D andSL
D are bases ofS.

We can now show that the Picard operatorPu associated with a simple step function
u restricts to an endofunction on the set of basis elements of the space of linear step
functionsSL

D.

Lemma 15. SupposeD ⊆ R is a subfield,u ∈ VD andy ∈ SL
D. Then, there isf ∈ SC

D

with N (f) ≤ 3N (y)N (u) andu ◦ y(x) = f(x) for all but finitely manyx ∈ [−a, a].
Moreover,f can be computed in timeO(N (u)N (y)).

Now that we have a basis representation ofu ◦ y, it’s easy to obtain a basis repre-
sentation ofPu(y) by integration. Note that computing integrals can be performed over
a base defined over a subring ofR; we will make use of this fact later.

Lemma 16. SupposeD ⊆ R is a subring and letg(x) =
∫ x

0
f(x)dx for f ∈ SC

D . Then
g ∈ SL

D andN (g) = N (f). Furthermore,g can be computed inO(N (f)) steps.
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Summing up, we have the following estimate on the algorithm induced by Theorem
11 if we compute over the base of piecewise linear functions.

Proposition 17. SupposeD ⊆ R is a subfield,u ∈ VD andy ∈ SL
D.

(i) Pu(y) ∈ SL
D

(ii) Pu(y) can be computed in timeO(N (u)N (y)).
(iii) N (Pu(y)) ∈ O(N (u)N (y)).

We can now summarise our results as follows:

Theorem 18. SupposeD ⊆ R is a subfield andu =
⊔

k∈N uk with uk ∈ VD. If
yk+1 = Puk

(yk), then

(i) yk ∈ SL
D for all k ∈ N

(ii) y =
⊔

k∈N yk has width0 andy− = y+ solves the IVP (1).
(iii) w(yk) ∈ O(ck) if wu(uk) ∈ O(ck).

Since the elements ofSL
D for D = Q, the set of rational numbers, can be represented

faithfully on a digital computer, the theorem – together with Proposition 5 – guarantees
soundness and completeness also for implementations of thedomain theoretic method.
We also provide a guarantee on the speed of convergence, since the conditionwu(uk) ∈
O(ck) can always be ensured by the library used to construct the sequence(uk) of
approximations to the vector field.

Also, computing over the base of piecewise linear functionseliminates the need
of computing rectangular enclosures at every step of the computation. This avoids the
well-known wrapping effect of interval analysis, but it comes at the cost of a high com-
plexity of the representation of the iterates. The next section presents an alternative,
which uses piecewise constant functions only.

6 Computing with Piecewise Constant Functions

We have seen that the time needed to computePu(y) is quadratic in terms of the com-
plexity of the representation ofu andy. However, the complexity of the representation
of Pu(y) is also quadratic in general. This implies that

N (yk+1) ∈ O(N (u0) . . .N (uk)),

if u =
⊔

k∈N uk andyk+1 = Puk
(yk).

The blow up of the complexity of the representation of the iterates is due to the fact
that each interval on whichy is linear is subdivided when computingu ◦ y, since we
have to intersect linear functions associated withy with constant functions induced by
u, as illustrated by the left diagram in Figure 1.

This can be avoided if we work with piecewise constant functions only. The key
idea is to transform the linear step functionPu(y) into a simple step function before
computing the next iterate: on every interval, replace the upper (linear) function by
its maximum and the lower function by its minimum. We now develop the technical
apparatus which is needed to show that the approximations soobtained still converge
to the solution. Technically, this is achieved by making thepartitions of the interval
[−a, a] explicit.
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Fig. 1. Subdivision of Intervals (left) and Flattening (right)

Definition 5 (Partitions).

(i) A partitionof [−a, a] is a finite sequence(q0, . . . , qk) of real numbers such that
−a = q0 < · · · < qk = a; the set of partitions of[−a, a] is denoted byP . If D ⊆ R

thenPD ⊂ P is the subset of partitions of[−a, a] whose points lie inD.
(ii) Thenorm|Q| of a partitionQ = (q0, . . . , qk) is given by|Q| = max1≤i≤k qi −

qi−1.
(iii) A partition Q = (q0, . . . , qk) refinesa partitionR = (r0, . . . , rl) if {r0, . . . , rl} ⊆

{q0, . . . , qk}; this is denoted byR ≤ Q.

We are now ready for the definition of the flattening functional, which transforms
piecewise linear functions to piecewise constant functions.

Definition 6. SupposeQ ∈ P . Theflattening functionalFQ : S → S associated with
Q is defined by

FQ(f) = (q0, . . . , qk)ցC (γ1, . . . , γk)

whereγi =
d
{f(x) | x ∈ [qi−1, qi]} for 1 ≤ i ≤ k.

Note that, geometrically speaking,FQ computes an enclosure of semi continuous
functions into rectangles, as illustrated by the right diagram in Figure 1.

Lemma 19. FQ is well defined, that is,FQ(f) is continuous, iff is continuous.

In order to reduce the complexity of the representations of the iterates, we want to
apply the flattening functional at every step of the computation. The following lemma
is the stepping stone in proving that this does not affect convergence to the solution.

Lemma 20. Suppose(Qk)k∈N is an increasing sequence of partitions withlimk→∞ |Qk| =
0. Then

⊔

k∈N FQk
= id.

Proof. This follows from the fact that for every upper semi continuous functionf :
[−a, a] → R and every decreasing chainα0 ⊆ α1 ⊆ . . . of compact intervals contain-
ing x with w(αk) → 0 ask → ∞ one hasf(x) = infk∈N sup{f(x) | x ∈ αk}, and the
dual statement for lower semi continuous functions.
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The last lemma puts us in the position to show that the application of the flattening
functional at every stage of the construction does not affect the convergence of the
iterates to the solution.

Theorem 21. Supposeu =
⊔

k∈N uk, (Qk)k∈N is an increasing sequence of partitions
with limk→∞ |Qk| = 0 andyk+1 = FQk

(Puk
(yk)). Theny =

⊔

k∈N yk satisfiesy =
Pu(y) andw(y) = 0.

Proof. Follows from the interchange-of-suprema law (see e.g. [4, Proposition 2.1.12]),
the previous lemma and Theorem 11.

We now show that the speed of convergence is essentially unaffected if we apply
the flattening functional at every stage of the computation.This result hinges on the
following estimate:

Lemma 22. Supposeu′ ∈ V with u′ ⊑ u andQ ∈ P , y ∈ D. Thenw(FQ(Pu′(y))) ≤
aL · w(y) + a · wu(u′) + 2K

a
|Q|.

This lemma implies that flattening does not affect the speed of convergence.

Proposition 23. Supposeu =
⊔

k∈N uk with wu(uk) ≤ ck ·M(c−aL) and(Qk)k∈N is
an increasing sequence of partitions with|Qk| ≤ ck · a

2
(c−aL). Thenw(yk) ≤ ckw(y0)

if yk+1 = FQk
(Puk

(yk)) for all k ≥ 0.

We now show that the application of the flattening functionalat every step avoids
the blow up of the size of the iterates. As a consequence, the algorithm with flattening
can be implemented using a base of functions defined over a dense subring ofR, such
as the dyadic numbers.

Lemma 24. SupposeD ⊆ R is a subring andQ ∈ PD. ThenFQ restricts to a mapping
SL

D → SC
D .

The complexity of the algorithm underlying Theorem 21 over the basesVD andSC
D

can now be summarised as follows, whereN (Q) = k for a partitionQ = (q0, . . . , qk).

Lemma 25. SupposeD ⊆ R is a subring,y ∈ SC
D andu ∈ VD.

(i) FQ(Pu(y)) ∈ SC
D andN (FQ(Pu(y)) = N (Q)

(ii) FQ(Pu(y)) can be computed in timeO(max(N (u) · N (y),N (Q)).

We can now summarise our results concerning soundness and completeness of the
algorithm with flattening as follows:

Theorem 26. SupposeD ⊆ R is a subring andu =
⊔

k∈N uk with uk ∈ VD. Further-
more, assume(Qk)k∈N is an increasing sequence of partitions withlimk→∞ |Qk| = 0
andyk+1 = FQk

(Puk
)(yk).

(i) yk ∈ SC
D for all k ∈ N andN (yk) = N (Qk).

(ii) y =
⊔

k∈N yk has width0 andy− = y+ solves the IVP (1)
(iii) w(yk) ∈ O(cn), if bothwu(uk) and|Qk| ∈ O(ck).

11



Note that, for a subringR ⊆ Q of the rational numbers, the elements ofVD and
SC

D can be faithfully represented on a digital computer. Hence we can guarantee both
soundness and completeness also for an implementation of the domain theoretic ap-
proach where furthermore the size of the iterates are bounded above by the size of the
partitions.
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