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Abstract. We present a domain-theoretic version of Picard’s theorersdlving
classical initial value problems IR™. For the case of vector fields that satisfy a
Lipschitz condition, we construct an iterative algorithmatt gives two sequences
of piecewise linear maps with rational coefficients, whio\erge, respectively
from below and above, exponentially fast to the unique smtubf the initial
value problem. We provide a detailed analysis of the speaiergence and
the complexity of computing the iterates. The algorithmsugmper data types
based on rational arithmetic, where no rounding of real remals required. Thus,
we obtain an implementation framework to solve initial vaaroblems, which is
sound and, in contrast to techniques based on intervalsisaalso complete: the
unique solution can be actually computed within any degfeequired accuracy.

1 Introduction

We consider the initial value problem (IVP) given by the systof differential equa-
tions

where the vector field : O — R”™ is continuous in a neighbourho@d C R™ of
the origin, and we look for a differentiable function= (y1,...,yn) : [—a,a] —

R", defined in a neighbourhood 6fc R, which satisfies (1). By a theorem of Peano
there is always a solution [9, page 19]. Uniqueness of thetisol is guaranteed, by
Picard’s theorem, if satisfies a Lipschitz condition. The question of computiztaind
the complexity of the initial value problem has been studredifferent contexts in
computable analysis [12,3,8,14,19,17,6].

On the algorithmic and more practical side, standard nuralgpackages for solving
IVP’s try to compute an approximation to a solution with acfied degree of accuracy.
Although these packages are usually robust, their methads@t guaranteed to be
correct and it is easy to find examples where they output imate results [13].

Interval analysis [16] provides a method to give upper angelobounds for the
unique solution in the Lipschitz case with a prescribedrtoiee, and has been devel-
oped and implemented for analytic vector fields [18,1]. lis thpproach, arithmetic
operations are performed on intervals, and outward rogndiapplied if the resulting
interval endpoints are not machine representable. Whiestrategy guarantees sound-
ness, i.e. containment of the exact result in the computedval, one has in general no
control over the rounding, which can produce unduly largerirals. As a consequence,
for an implementation of the framework for solving IVP basednterval analysis, one



cannot in general guarantee completeness, that is, acdneé@ence to the solution.
For the same reason, one has no control over the speed ofrgence.

Domain theory [4] presents an alternative technique, basegroper data types,
to produce a provably correct solution with any given degreaccuracy. Using the
domain of Scott continuous interval valued functions on epact interval, we define
here a domain theoretic Picard operator, whose least fixed pontains any solution
of the IVP. When the vector field is Lipschitz, the solutioruiique and we construct
an iterative algorithm that gives two sequences of pieaeliiear maps with rational
coefficients, which converge, respectively from below abdve, exponentially fast to
the unique solution of the initial value problem. Since thtadypes for representing the
piecewise linear maps with rational coefficients are diyetpresentable on a digital
computer, no rounding of real numbers is required. As a apregce, the implemen-
tation of the domain theoretic approach is also completd,ih we can guarantee the
convergence of the approximating iterates to the solutfothe IVP also for the im-
plementation. To our knowledge, this property is not préseany other approach to
validated solutions of differential equations. Furthereyas a result of the data types
we use, we can give estimates for the speed of convergenbe approximating iter-
ates, which are still valid for an actual implementation of algorithm.

This simplifies the earlier treatment [10], which used a diorfa C* functions [11]
and, at each stage of iteration, required a new approximatidhe derivative of the
solution. The new treatment is much more similar to the @astheorem in that it gives
rise, in the Lipschitz case, to fast convergence of the agiprations to the solution.

We discuss two different bases to represent approximatmtise solutions of the
IVP, namely the piecewise linear and the piecewise congtarations with rational
coefficients. Using piecewise linear functions, there is\aed to compute rectangular
enclosures of the solution, and we therefore avoid the wngpgffect, a well known
phenomenon in interval analysis. This comes at the expdree increase in the size
of the representation of the approximations to the solutitsing the base consisting of
piecewise constant functions, we show that the order offieed of convergence to the
solution remains unchanged, while the space complexityiferepresentation of the
iterates is much reduced.

A prototypical implementation using the GNU multi precisidorary [2] shows that
the resulting algorithms are actually feasible in practaoed we plan to refine the im-
plementation and compare it in scope and performance withiry interval analysis
packages like AWA [1]. Of course we have to bear in mind thadtfiay point arith-
metic used by interval software is executed on highly opstédiprocessors, whereas
the rational arithmetic needed for our implementation i$grened by software.

2 Preliminaries and Notation

For the remainder of the paper, we fix a continuous vector field
v=(v1,...,0,): [-K,K|" — [-M, M]"

which is defined in a compact rectangle containing the oagthconsider the IVP given
by Equation (1). Note that any continuous function on a carhpectangle is bounded,
hence we can assume, without loss of generality,dhakes values ifi—- M, M]".



We construct solutiong : [—a,a] — R™ of Equation (1) where: > 0 satisfies
aM < K. This will guarantee that the expressiofy) is well defined, sincel! is
a bound for the derivative aj. We consider the:-dimensional Euclidean spad®®
equipped with the maximum nortix|| = max{|z1|, ..., |z.|}, @s this simplifies deal-
ing with the Lipschitz conditions, which we introduce lat&pproximations of real
numbers live in the interval domain

IR = {[a,b] | a,b € R,a < b} U{R} with [a,b] C [¢,d] < [¢,d] C [a,b]

ordered by reverse inclusion; the way below relation is @ity [a,b] < [c,d] iff
[¢,d] C (a,b). Forn > 1, the domaifdR"” is isomorphic to the domain ef-dimensional
rectangles{a; X --- X a, | a; € Rforall1 <i <n}, and we do not distinguish
between these two presentations. For a rectaRgle R", the subsefS € R™ | S C
Ris arectanglg of rectangles contained iRl is a sub-domain diR™, which is denoted
by IR. The powerdR™ of the interval domain and the sub-domé&i®, for a rectangle
R, are continuous Scott domainsdlf, ot € R™ with a; < a:r foralll <i¢<n,we
write [a~, o] for the rectangléa; , af] x - -+ x [a;, o;t]. Similarly, if f: X — IR™
is a function, we writef = [f—, f]if f(z) = [f~(z), fT(z)] forallz € X.

The link between ordinary and interval valued function ieyided by the notion
of extensionlf R C R" is a rectangle, we say that : IR — IR"™ is an extension of
f:R—R"Iif

F({xl}’ sy {xn}) = {f(xlv s ’xn)}
for all z € R. Note that every continuous functigh : R — R™ has acanonical
extensiont’ defined by
F=(F,...,F,): IR — IR™ with F;(S) = [irelfsfi(:v), suIS)fi(x)],
T TE

whereS € IR is a rectangle, which is maximal in the set of interval valfigntctions
extendingf. Itis easy to see thdt is continuous wrt. the Scott topology R andIR™
if fis continuous wrt. the Euclidean topology.

We consider the following spaces for approximating the eefield and the solu-
tions to the IVP:

e S = [—a,d] — I[-K, K]", the set of continuous functions wrt. the Euclidean
topology on[—a, a] and the Scott topology oh— K, K™

o V = I[-K,K|"™ — I[-M, M]", the set of continuous functions wrt. the Scott
topology onl[— K, K]"™ andI[— M, M]™.

In order to measure the speed of convergence, as well ascforital convenience
in the formulation of some of our results, we introduce thiéofeing notation, where
X is an arbitrary set:

e Forarectangler = [a~,at], w(a) = ||at — a~ || denotes thevidth of . Simi-
larly, if f: X — IR™is afunctionw(f) = sup,cx w(f(x)) is thewidthof f.

e Foru,u : X — IR with v/(z) C u(x) forall z € X, thewidth ofu’ relative tou
is defined asv, (u') = sup,c x |[u'" () — ut () +u=(z) — o'~ (z)].

Consideringu’ as approximation ta, the relative widthw, (u’) can be understood as
measuring the quality of the approximation.



3 The Picard Operator in Domain Theory

In the classical proof of Picard’s theorem on the existemcaumiqueness of the solution
of the initial value problem (1) one defines an integral ofmran C°[—a, a] by

Y= Az /Ow v(y(t))dt

(with the integral understood componentwise), which carsh@vn to be a contrac-
tion for sufficiently smalla providedwv satisfies a Lipschitz condition [15]. An ap-
plication of Banach’s theorem then yields a solution of thiGal value problem. We

now define the domain-theoretic Picard operator for antyitcantinuous vector fields
u: I[-K, K] — I[-M, M]™ and focus on the special case wheri an extension

of a classical function later. As in the classical proof, Bieard operator is an integral
operator, and we therefore introduce the integral of imtevalued functions.

Definition 1. Supposef = [f~, f"] : [-a,a] — IR is Scott continuous. For €

[—a,a] we let
/0 F(tydt = | / o wt, / £ ()d]

whereo = sgn(z) is the sign ofz. If f = (f1,...,fn) : [—a,a] — IR™, we let

Jo F@®)dt = (J5 f)dt, ..., [§ falt)dt).

Note that, if we integrate in the positivedirection, thenf— contributes to the lower
function associated with the integral paindf* contributes to the upper function. If we
integrate in the negativedirection, the roles of ~ andf*+ are swapped. The following
shows that our definition is meaningful:

Lemma 1. Suppos¢ : [—a,a] — IR is Scott continuous.

(i) f~ andfT are Lebesgue integrable
(i) [y f(t)dt € Rforall z € [—a,al.

Proof. For Scott continuoug, the functionsf—, f* are lower (resp. upper) semi con-
tinuous, hence Lebesgue integrabler K sgn(x), theno f~7 < o f° andfo”” fo@®)dt <
Jy [ (t)dt follows from the definition of the ordinary integral. Fimalf, f(¢)dt is ei-
ther compact or the whole @&, sincef* (t) = oo iff f~(t) = —oc0, forall ¢t € [—a, a.

The following lemma shows that integration is compatibléwtaking suprema.
Lemma 2. Letf : [—a,a] — IR™.

(i) The function\z. fom f(t)dt is Scott continuous.
(i) The function[ : f — Ax. foz f(t)dt is Scott continuous.

Proof. We assume: = 1 from which the general case follows.¢fz) = [ f(t)dt,
theng—, g™ are continuous, henggis Scott continuous. The second statement follows
from the monotone convergence theorem.



The domain theoretic Picard operator can now be defined lasvil

Definition 2. Suppose: € V. Thedomain theoretic Picard operatéy, : S — S is
defined byP, (y) = Az. [ u(y(t))dt.

Lemma 3. P, is well defined and continuous.

Proof. That P, (y) € S follows from our assumptionM < K.Lemma 2 shows that
P,(y), fory € S, andP, itself are continuous.

In the classical proof of Picard’s theorem, one construgiist®ns of IVP’s as fix-
point of the (classical) Picard operator. The domain thisoproof replaces Banach’s
theorem with Klenee’s theorem in the construction of a fixeshpof the (domain the-
oretic) Picard operator. Unlike the classical case, whaeeahooses an arbitrary initial
approximation, we choose the functign = At.[— K, K]™ with the least possible in-
formation as initial approximation.

Theorem 4. Letu € V andy 1 = Pu(yr). Theny = | |,y yx satisfiesP, (y) = y.
Proof. Follows immediately from the Kleene’s Theorem, see e.gTfreorem 2.1.19].

The bridge between the solution of the domain-theoretimiixipequation and the
classical initial value problem is established in the failog proposition, wheréf :
[—a,a] — I[- K, K]™ denotes the functionz.{f(x)}, for f : [—a,a] — [- K, K]™.

Proposition 5. Suppose: is an extension af andy is the least fixpoint of,.

() If f:[—a,a] = I[—K, K]|" solves (1) thedf C y.
(i) If y has width0, theny~ = y*+ solves (1).

Proof. For the first statement, note thif is a fixed point of P, andy is the least
such. The second statement follows from the fundamentakéme of calculus; note
thaty~ = y implies the continuity of both.

The previous proposition can be read as a soundness regaty Eolution of the
IVP is contained in the least fixpoint of the domain theorBiitard operator.

4 The Lipschitz Case

We can ensure the uniqueness of the solution of the IVP byiniaguhat the vector
field satisfies an interval version of the Lipschitz propaRgcall that for metric spaces
(M,d) and(M’,d’), a functionf : M — M’ is Lipschitz, if there isL. > 0 such that
d'(f(z), f(z)) < L-d(x,z) forall z, 2 € M. The following definition translates this
property into an interval setting.

Definition 3 (Lipschitz Condition). Suppose: : I[-K, K" — I[-M, M|™. Then
u is interval Lipschitz if there is someé > 0 such thatw(u(a)) < L - w(«) for all
a € I[-K, K|". In this case/ is called aLipschitz constantor w.



The following Proposition describes the relationship ledwthe classical notion
and its interval version.

Proposition 6. Forv : [— K, K| — [-M, M]"™, the following are equivalent:

(i) vis Lipschitz
(i) The canonical extension efsatisfies an interval Lipschitz condition
(iii) v has an interval Lipschitz extension.

Note that every interval Lipschitz function induces a t@atl continuous classical
function.

Corollary 7. Suppose: is interval Lipschitz. Themw(u(a)) = 0 whenevens(a) =
0, and the induced real valued functian given bya(z) = z iff u({z}) = {z}is
continuous.

In order to guarantee that the sequence of approximatiahg teolution of the IVP
does converge to a width-zero function, we make the follgweissumption.

For the remainder of the paper,denotes an extension of which satisfies an
interval Lipschitz condition with Lipschitz constahtsuch thatz. < 1. For later use,
we fixc € Rwith ol < ¢ < 1.

In case this assumption is not valid, ied. > 1, we picka’ < a such that'L < 1
and divide the intervdl-a, a] into subintervals of lengtk o’. Replacing: by o’ allows
us to compute solutions on each subinterval. As we will shothe full version, we
can use a glueing process to obtain a solution defined on tbeewh[—a, a|; this is as
in the classical theory [9, page 13].

Assuming the Lipschitz condition, we have the followingimsite, which guaran-
tees that the least fixed point &Y%, is of width 0:

Lemma 8. w(P,(y)) < aL-w(y)forally e S.

The above estimate allows us to show that — in the Lipschie eahe least fixed point
of the domain-theoretic Picard operator has wilthe. solves the initial value problem,
as shown in Proposition 5.

Proposition 9. Lety,y1 = P,(yx) for k € N. Thenw(yx) < c*w(yo). In particular,
Y = | Jpen yr satisfiesP, (y) = y andw(y) = 0.

Proof. Follows immediately fromuL < ¢ < 1 by induction.

In order to be able to compute the integrals, we now consigigreximations tau;
the basic idea is that every continuous vector field can beoappated by a sequence
of step functions (i.e. functions taking only finitely manglwes), which allows us to
compute the integrals involved in calculating the apprations to the solution effec-
tively. The key property which enables us to use approxiomatalso to the vector field
is the continuity of the mapping — P,,.

Lemma 10. ThemapP : V — S — S, u — P,, is continuous.

Proof. Follows from continuity ofu and the monotone convergence theorem.



This continuity property allows us to compute solutiongie tlassical initial value
problem by means of a converging sequence of approximations

Theorem 11. Suppose: = | J,cyur andyxr1 = Py, (yx) for k € N. Theny =
Lyen i Satisfiesy = P, (y) andw(y) = 0.

Proof. Follows from Theorem 4 and continuity ef — P, by the interchange-of-
suprema law (see e.g. [4, Proposition 2.1.12]).

We have seen that the Lipschitz condition on the vector fieklges that the ap-
proximations of the solution converge exponentially fatoposition 9). In presence
of approximations of the vector field, the speed of convergenill also depend on
how fast the vector field is approximated. The followingmstie allows to describe the
speed of convergence of the iterates if the vector field is@pmated by an increasing
chain of vector fields.

Lemma 12. Suppose’ C v andy € S. Thenw(Py (y)) < aL - w(y) + a - w, (v).

As a corollary we deduce that the approximations convergementially fast, if the
approximations of the vector field do so too.

Proposition 13. Suppose = | |,y ux andyy1 = Py, (yr). Thenw(yx) < *w(yo)
providedw,, (uy) < ¢ - 2M (c — alL).

Given a representation afin terms of step functions, Theorem 11 gives rise to an
algorithm for computing the solution of the initial valueoptem. Our next goal is to
show that this algorithm can be restricted to bases of thgemive domains, showing
that it can be implemented without loss of accuracy. We thiea gn estimate of the
algebraic complexity of the algorithm.

5 An Implementation Framework for Solving IVP’s

We now show that the algorithm contained in Theorem 11 iséddmplementable by
showing that the computations can be carried out in the bafdbe domains. In fact,
we demonstrate that every increasing chain of (intervalad) vector field§uy)xen,
where eachy, is a base element df, gives rise to a sequence of base elements, of
which approximate the solution and converge to it.

In view of the algorithm contained in Theorem 11, we consalample step func-
tions as base df and piecewise linear function as baseSofNote that in this setup, the
domain-theoretic Picard operator computes integrals efeuise constant functions,
hence produces piecewise linear functions.

We begin by introducing the bases which we are going to wotk.wi

Definition 4. LetD C Rand assumethata = ag < --- < ap = awithag,...,a; €
D, Bo,...,0k € I[-K, K|} andm, ..., v € I[-M, M|}, whereRp denotes the set
of rectangles, which are contained mand whose endpoints lie iR. We consider the
following classes of functions:



(i) The classSE of piecewiseD-linear functiong—a, a] — I[- K, K",

f: (aO?"')ak)\IA/(B()?"')/Bk)

wheref(z)* = B, + %(ﬁf — Bj-,) for € [a;_1,a;]. Every component of

a D-linear function is piecewise linear and takes value®mt ag, a; . . ., ak.
(i) The setS§ of piecewiseD-constant functions-a, a] — 1[- K, K",

_ c Bi x € [ai—1,a]°
f ((lo,...,ak)\ (6177ﬁn)’x’_>{611|_|61 CC:CL»L'and1<’L'<k
wherern denotes the greatest lower bound. The components/afcanstant function
assume constant valuesin which only change atg, a1, ..., ax.
(iii) The setVp of finite sups of step functiods- X, K| — I[-M, M]",

f= 1] B N\vram| ful1<i<k g <a}

1<j<k

(iv) Forany f as above, we put'(f) = k and call it thecomplexity of representa-
tion of f.

Since we will not consider different representations fa siame functions, we al-
low ourselves to blur the distinction between a function @sdepresentation as step
function. Note that any computable vector fieldcan be approximated by a sequence
of basis element&:;, ) ,en in Vg, and such approximating sequences can be constructed
from a library of elementary functions.

If D is dense irnR, it is well known that the sets defined above are bases of their
respective superspaces:

Proposition 14. SupposeD C Ris dense and-a,a € D.

(i) Vpis abase ol .
(i) S§ andSk are bases o§.

We can now show that the Picard operatrassociated with a simple step function
u restricts to an endofunction on the set of basis elementseo§pace of linear step
functionsSk.

Lemma 15. Supposé C R is a subfieldy € Vp andy € S5. Then, there i € S§
with AV'(f) < 3N (y)N(u) andu o y(z) = f(x) for all but finitely manyr € [—a, al.
Moreover,f can be computed in tim@ (N (u)AN (y)).

Now that we have a basis representation ofy, it's easy to obtain a basis repre-
sentation ofP, (y) by integration. Note that computing integrals can be penat over
a base defined over a subringi®dfwe will make use of this fact later.

Lemma 16. Supposed C Ris a subring and ley(z) = fom f(z)dx for f € S§. Then
g € S5 and N (g) = N(f). Furthermoreg can be computed i@ (N (f)) steps.



Summing up, we have the following estimate on the algorithduced by Theorem
11 if we compute over the base of piecewise linear functions.

Proposition 17. SupposeD C R is a subfieldy € Vp andy € S&.

() Puly) € Sp
(i) P.(y) can be computed in tim@ (N (u)N (y)).
(i) N(Pu(y)) € ON ()N (y)).

We can now summarise our results as follows:

Theorem 18. SupposeD C R is a subfield and: = | |, ur With up € Vp. If
Yk+1 = Py, (yr), then

(i) yr € SEforallk e N
(i) y = |pen yr has width0 andy~ = y* solves the IVP (1).
(ii)) w(yx) € O(cF) if wy (ur) € O(cF).

Since the elements & for D = Q, the set of rational numbers, can be represented
faithfully on a digital computer, the theorem — togethetwRroposition 5 — guarantees
soundness and completeness also for implementations dbthain theoretic method.
We also provide a guarantee on the speed of convergencetkconditionu,, (ug) €
O(c*) can always be ensured by the library used to construct theeseg(uy) of
approximations to the vector field.

Also, computing over the base of piecewise linear functielrsinates the need
of computing rectangular enclosures at every step of thepatation. This avoids the
well-known wrapping effect of interval analysis, but it cegmat the cost of a high com-
plexity of the representation of the iterates. The nextisegbresents an alternative,
which uses piecewise constant functions only.

6 Computing with Piecewise Constant Functions

We have seen that the time needed to computg) is quadratic in terms of the com-
plexity of the representation af andy. However, the complexity of the representation
of P, (y) is also quadratic in general. This implies that

N(yg+1) € ON (ug) ... N (uy)),

if u=|],cnur andygr1 = Py, (y&)-

The blow up of the complexity of the representation of thesites is due to the fact
that each interval on which is linear is subdivided when computingo ¥, since we
have to intersect linear functions associated withith constant functions induced by
u, as illustrated by the left diagram in Figure 1.

This can be avoided if we work with piecewise constant fuordionly. The key
idea is to transform the linear step functié)(y) into a simple step function before
computing the next iterate: on every interval, replace tppeu (linear) function by
its maximum and the lower function by its minimum. We now depethe technical
apparatus which is needed to show that the approximationbtsined still converge
to the solution. Technically, this is achieved by making plaetitions of the interval
[—a, a] explicit.



Fig. 1. Subdivision of Intervals (left) and Flattening (right)

Definition 5 (Partitions).

(i) A partitionof [—a, a] is a finite sequencgy, . . ., qx) of real numbers such that
—a = qo < -+ < qr = a; the set of partitions of—a, a] is denoted byP. If D C R
thenPp C P is the subset of partitions ¢f-a, a] whose points lie iD.

(i) Thenorm|Q)| of a partition@ = (qo, - . ., gr) IS given bY Q| = maxi <<k ¢; —
qi—1-

(iii) A partition @ = (qo, - . ., gx) refinesa partitionR = (ro, ..., ) if {ro,..., 1} C
{qo, - - ., qx}; thisis denoted byr < Q.

We are now ready for the definition of the flattening functipmanich transforms
piecewise linear functions to piecewise constant funstion

Definition 6. Supposé&) € P. Theflattening functionaFy : S — S associated with
Q is defined by

FQ(f) = (QO7" -an)\? (717' .. a’yk)
wherey;, = [{f(z) | € [gi—1,¢]} for1 < i < k.

Note that, geometrically speakingy computes an enclosure of semi continuous
functions into rectangles, as illustrated by the right diagin Figure 1.

Lemma 19. Fy, is well defined, that isFo ( f) is continuous, iff is continuous.

In order to reduce the complexity of the representationsefterates, we want to
apply the flattening functional at every step of the compaitafT he following lemma
is the stepping stone in proving that this does not affectemgence to the solution.

Lemma 20. SupposéQ)ken is an increasing sequence of partitions with, _, ., |Qr| =
0. Then| |, oy Fo, = id.

Proof. This follows from the fact that for every upper semi continadunctionf :
[—a, a] — R and every decreasing chaig C «; C ... of compact intervals contain-
ing z with w(a) — 0 ask — oo one hasf (z) = infren sup{f(z) | z € ax}, and the
dual statement for lower semi continuous functions.

10



The last lemma puts us in the position to show that the apgicaf the flattening
functional at every stage of the construction does not atfez convergence of the
iterates to the solution.

Theorem 21. Suppose: = | |, o uk, (Qk)ren IS an increasing sequence of partitions

with limy, .o [Qx| = 0 @andysy1 = Fg, (Pu, (yx)). Theny = | |, . yx satisfiegy =
P,(y) andw(y) = 0.

Proof. Follows from the interchange-of-suprema law (see e.g.{dp&sition 2.1.12]),
the previous lemma and Theorem 11.

We now show that the speed of convergence is essentiallfaated if we apply
the flattening functional at every stage of the computafidris result hinges on the
following estimate:

Lemma 22. Suppose’ € V withw' C v and@ € P,y € D. Thenw(Fgo (P (y))) <
aL-w(y) +a-wy(u') +254|Q|.

This lemma implies that flattening does not affect the spéedmavergence.

Proposition 23. Suppose: = | |, o ur Withw, (ug) < - M(c—aL)and(Qy)ren is
an increasing sequence of partitions Wi, | < ¢*- % (c—aL). Thenw(yi) < c*w(yo)
if yo+1 = Fo, (Pu, (yi)) forall k > 0.

We now show that the application of the flattening functicata¢évery step avoids
the blow up of the size of the iterates. As a consequence]dloeitam with flattening
can be implemented using a base of functions defined oversedeibring ofR, such
as the dyadic numbers.

Lemma 24. Supposé C Ris a subring and) € Pp. ThenFy, restricts to a mapping
SE — s€.

The complexity of the algorithm underlying Theorem 21 over base¥’, andS§
can now be summarised as follows, whaféQ) = & for a partition@ = (qo, - - -, qx)-

Lemma 25. SupposeD C R is a subringy € 8§ andu € Vp.

() Fo(Pu(y)) € Sp andN (Fo(Pu(y)) = N(Q)
(i) Fo(P.(y)) can be computed in tim@(max (N (u) - N (y), N (Q)).

We can now summarise our results concerning soundness amueteness of the
algorithm with flattening as follows:

Theorem 26. SupposéD C R is a subring and: = | |, . ux Withuy, € Vp. Further-
more, assuméQ; ) ke IS an increasing sequence of partitions withi;, o |Qx| = 0
andykJrl = FQk (Puk)(yk)

() yx € S§ forall k € NandN (yx) = N(Q)-
(i) y = [ren yx has widtho andy~ = y* solves the IVP (1)
(iii) w(ys) € O(c™), if bothw, (ux) and| Qx| € O(ck).

11



Note that, for a subrind? C Q of the rational numbers, the elementsigf and
8§ can be faithfully represented on a digital computer. Heneecan guarantee both
soundness and completeness also for an implementatiore afdimain theoretic ap-
proach where furthermore the size of the iterates are balableve by the size of the
partitions.
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