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Abstract. We introduce a domain-theoretic computational model for multi-
variable differential calculus, which for the first time gives rise to data types for
differentiable functions. The model, a continuous Scott domain for differentiable
functions ofn variables, is built as a sub-domain of the product ofn + 1 copies
of the function space on the domain of intervals by tupling together consistent
information about locally Lipschitz (piecewise differentiable) functions and their
differential properties (partial derivatives). The main result of the paper is to show,
in two stages, that consistency is decidable on basis elements, which implies that
the domain can be given an effective structure. First, a domain-theoretic notion
of line integral is used to extend Green’s theorem to interval-valued vector fields
and show that integrability of the derivative information is decidable. Then, we
use techniques from the theory of minimal surfaces to construct the least and the
greatest piecewise linear functions that can be obtained from a tuple ofn + 1

rational step functions, assuming the integrability of then-tuple of the derivative
part. This provides an algorithm to check consistency on therational basis ele-
ments of the domain, giving an effective framework for multi-variable differential
calculus.

1 Introduction

We introduce a domain-theoretic computational model for multi-variable differential
calculus, which for the first time gives rise to data types fordifferentiable functions.
The model is a continuous Scott domain for differentiable functions ofn variables. It
allows us to deal with differentiable functions in a recursion theoretic setting, and is thus
fundamental for applications in computational geometry, geometric modelling, ordinary
and partial differential equations and other fields of computational mathematics. The
overall aim of the framework is to synthesize differential calculus and computer science,
which are two major pillars of modern science and technology.

The basic idea of the model is to collect together the local differential properties of
multi-variable functions by developing a generalization of the concept of a Lipschitz
constant to an interval vector Lipschitz constant. The collection of these local differ-
entiable properties are then used to define the domain-theoretic derivative of a multi-
variable function and the primitives of an interval-valuedvector field, which leads to
a fundamental theorem of calculus for interval-valued functions, a theorem that has no
counterpart in classical analysis. This fundamental theorem is then used to construct
the domain of differentiable functions as a sub-domain of the product ofn + 1 copies



of the function space on the domain of intervals by tupling together consistent informa-
tion about locally Lipschitz (piecewise differentiable) functions and their differential
properties (partial derivatives). The base of this domain is a finitary data type, given
by consistent tuples ofn + 1 step functions, where consistency means that there exists
a piecewise differentiable function, equivalently a piecewise linear function, which is
approximated, together with itsn partial derivatives where defined, by then + 1 step
functions.

The geometric meaning of the finitary data type and consistency is as follows. Each
step function is represented by a finite set ofn+1 dimensional rational hyper-rectangles
in, say, [0, 1]n × R such that any two hyper-rectangles have non-empty intersection
whenever the interior of their base in[0, 1]n have non-empty intersection. Such a set of
hyper-rectangle gives a finitary approximation to a real-valued function on the unit cube
[0, 1]n if in the interior of the base of each hyper-rectangle the graph of the function is
contained in that hyper-rectangle. A collection ofn + 1 such sets of hyper-rectangles
could thus provide a finitary approximation to a function andits n partial derivatives.
Consistency of this collection means that there exists a piecewise differentiable func-
tion which is approximated together with its partial derivatives, where defined, by the
collection. For a consistent tuple, there are a least and a greatest piecewise differen-
tiable function which satisfy the function and the partial derivative constraints. Figure 1
shows two examples of consistent tuples forn = 2 and in each case the least and great-
est functions consistent with the derivative constraints are drawn. In the first case, on
the left, there is a single hyper-rectangle for function approximation and the derivative
approximations in thex andy directions over the whole domain of the function are
given respectively by the constant intervals[n, N ] and[m, M ] with n, m > 0. In the
second case, on the right, there are two intersecting hyper-rectangles for the function
approximation and the derivative approximations are the constant intervals[0, 0] and
[m, M ] with m > 0.
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Fig. 1. Two examples of consistent function and derivative approximations

The main question now is whether consistency of then + 1 step functions is actu-
ally decidable. This problem is, as we have seen, very simpleto state but it turns out
to be very hard to solve, as it requires developing some new mathematics. The main
result of the paper is to show, in two stages, that consistency is decidable on basis el-
ements. As in classical differential multi-variable calculus, an interval-valued function
may fail to be integrable. Thus, in the first stage, we introduce a domain-theoretic no-



tion of line integral, which we use to establish a necessary and sufficient condition for
an interval-valued Scott continuous vector function to be integrable: zero must be con-
tained in the line integral of the interval-valued vector field with respect to any closed
path. This extends the classical Green’s Theorem for a vector field to be a gradient [9,
pages 286-291] to interval-valued vector fields. We thus obtain a main result of this pa-
per: an algorithm to check integrability for rational step functions, i.e., givenn rational
step functions, to check if there exists a piecewise differentiable function whose partial
derivatives, where defined, are approximated by these step functions.

Finally, we use techniques from the theory of minimal surfaces to construct the least
and the greatest piecewise linear functions obtained from atuple ofn + 1 rational step
functions, in which then-tuple of the derivative part is assumed to be integrable. These
surfaces are obtained by, respectively, maximalizing and minimalizing the lower and
the upper line integrals of the derivative information overpiecewise linear paths. The
maximalization and minimization are achieved for a piecewise linear path which can all
be effectively constructed. The decidability of consistency is then reduced to checking
whether the minimal surface is below the maximal surface, a task that can be done
in finite time. This leads to an algorithm to check consistency of an n + 1 tuple and
to show that consistency is decidable on the rational basis elements of the domain for
locally Lipschitz functions, giving an effective framework for multi-variable differential
calculus.

In the last section, we mention two applications of our framework, each worked out
in detail in a follow-up paper. In the first, the domain for differential functions allows
us to develop a domain-theoretic version of the inverse and implicit function theorem,
which provides a robust technique for construction of curves and surfaces in geometric
modelling and CAD. Our second application is a domain-theoretic adaption of Euler’s
method for solving ordinary differential equations, wherewe use the differential prop-
erties of the vector field defining the equation to improve thequality of approximations
to the solution.

Due to the large number of new concepts in the paper and lack ofspace, nearly all
proofs had to be omitted.

1.1 Related work

This work represents an extension of the domain-theoretic framework for differential
calculus of a function of one variable introduced in [6] and its applications in solving
initial value problems [5, 8]. The extension to higher dimension is however far more
involved than the extension of classical differential calculus to higher dimensions.

The domain-theoretic derivative is closely related to the so-called generalized (or
Clarke’s) gradient, which is a key tool in nonsmooth analysis, control theory and opti-
mization theory [3, 4]. For any locally Lipschitz function,the domain-theoretic deriva-
tive at a point gives the smallest hyper-rectangle, with sides parallel to the coordinate
planes, which contains the Clarke’s gradient.

In computable analysis, Pour-El and Richards [11] relate the computability of a
function with the computability of its derivative. Weihrauch’s scheme [13] leads to par-
tially defined representations, but there is no general result on decidability. Interval



analysis [10] also provides a framework for verified numerical computation. There, dif-
ferentiation is performed by symbolic techniques [12] in contrast to our sequence of
approximations of the functions.

1.2 Notations and terminology

We use the standard notions of domain theory as in [1]. LetD0[0, 1]n = [0, 1]n → IR

be the domain of all Scott continuous functions of type[0, 1]n → IR; we often write
D0 for D0[0, 1]n. A functionf ∈ D0 is given by a pair of respectively lower and upper
semi-continuous functionsf−, f+ : [0, 1]n → R with f(x) = [f−(x), f+(x)]. Given a
domainA, we denote byAn

s the smash product, i.e.,a ∈ An
s if a = (a1, · · · , an) ∈ An

with ai 6= ⊥ for all i = 1, · · · , n or a = ⊥. Let (IR)m×n
s denote the set of allm × n

matrices with entries inIR, where for such a matrix either all components are non-
bottom or the matrix itself is bottom. We use standard operations of interval arithmetic
on interval matrices. Bya = [a, a] ∈ (IR)m×n, wherea, a ∈ R

m×n, we denote an
interval matrix with (i, j) entry given by the interval[aij , aij ]. We identify the real
numberr ∈ R with the singleton{r} ∈ IR. And similarly for interval vectors and
functions. We will use thesign function given by the multiplicative group homomor-
phismσ : R → {−, 0, +}. We write ‖x‖ =

√

∑n
i=1 x2

i for the standard Euclidean
norm ofx = (x1, · · · , xn) ∈ R

n. The classical derivative of a mapf : [0, 1]n → R at
y ∈ [0, 1], when it exists, is denoted byf ′(y). We will reserve the notationdf

dx
exclu-

sively in this paper for the domain-theoretic derivative which will be introduced later.
The interior of a setA ⊂ R

n is denoted byA◦ and its closure by cl(A).

2 Ties of functions of several variables

The local differential property of a function is formalizedin our framework by the
notion of an interval Lipschitz constant.

Definition 1. The continuous functionf : [0, 1]n → IR hasan interval Lipschitz con-
stantb ∈ (IR)1×n

s in a ∈ (I[0, 1])n if for all x, y ∈ a◦ we have:b(x−y) ⊑ f(x)−f(y).
Thesingle-step tieδ(a, b) ⊆ D0[0, 1] of a with b is the collection of all functions in
D0[0, 1] which have an interval derivativeb in a.

For example, ifn = 2, the information relation above reduces tob1(x1 − y1)+ b2(x2−
y2) ⊑ f(x) − f(y). For a single-step tieδ(a, b), one can think ofb as a Lipschitz
interval vector constant for the family of functions inδ(a, b). A classical Lipschitz
would requirek = |bi| = |bi| ≥ 0 for all i = 1 · · ·n. By generalizing the concept
of a Lipschitz constant in this way, we are able to obtain essential information about
the differential properties of the function, which includes what the classical Lipschitz
constants provide:

Proposition 1. If f ∈ δ(a, b) for a◦ 6= ∅ and b 6= ⊥, thenf(x) is maximal for each
x ∈ a◦ and the induced functionf : a◦ → R is Lipschitz: for allu, v ∈ a◦ we have
|f(u) − f(v)| ≤ k‖u − v‖, wherek = max1≤i≤n(|bi|, |bi|).

The following proposition justifies our definition of interval derivative.



Proposition 2. For f ∈ C1[0, 1]n, the following three conditions are equivalent:
(i) f ∈ δ(a, b), (ii) ∀z ∈ a◦. f ′(z) ∈ b and (iii) a ց b ⊑ f ′.

When the components ofa andb are rational intervalsδ(a, b) is a family of functions
in D0 with a finitary differential property. For the rest of this section, we assume we are
in dimensionn ≥ 2.

Definition 2. A step tieof D0 is any finite intersection
⋂

1≤i≤n δ(ai, bi) ⊂ D0. A tie of
D0 is any intersection∆ =

⋂

i∈I δ(ai, bi) ⊂ D0. Thedomainof a non-empty tie∆ is
defined as dom(∆) =

⋃

i∈I{a
◦
i | bi 6= ⊥}.

A non-empty step tie with rational intervals gives us a family of functions with afinite
set of consistent differential properties, and a non-emptygeneral tie gives a family of
functions with a consistent set of differential properties. The following result sums up
the main relation between step ties and step functions.

Proposition 3. For any indexing setI, the family of step functions(ai ց bi)i∈I is con-
sistent if

⋂

i∈I δ(ai, bi) 6= ∅.

Let (T 1[0, 1],⊇) be the dcpo of ties ofD0 ordered by reverse inclusion. We are
finally in a position to define the primitives of a Scott continuous function; in fact now
we can do more and define:

Definition 3. The primitive map
∫

: ([0, 1]n → (IR)1×n
s ) → T 1 is defined by

∫

(
⊔

i∈I ai ց bi) =
⋂

i∈I δ(ai, bi). We usually write
∫

(f) as
∫

f and call it theprimi-
tivesof f .

Proposition 4. The primitive map is well-defined and continuous.

For n ≥ 2, as we are assuming here, the primitive map will have the empty tie in
its range, a situation which does not occur forn = 1. Therefore, we have the following
important notion in dimensionsn ≥ 2.

Definition 4. A mapg ∈ [0, 1]n → (IR)1×n
s is said to beintegrableif

∫

g 6= ∅.

Example 1.Let g ∈ [0, 1]2 → (IR)1×2
s ) be given by g = (g1, g2) =

(λx1.λx2.1, λx1.λx2.x1). Then ∂g1

∂x2
= 0 6= 1 = ∂g2

∂x1
, and it will follow that

∫

g = ∅.

3 Domain-theoretic derivative

Given a Scott continuous functionf : [0, 1]n → IR, the relationf ∈ δ(a, b), for some
intervalsa andb, provides, as we have seen, finitary information about the local differ-
ential properties off . By collecting all such local information, we obtain the complete
differential properties off , namely its derivative.

Definition 5. Thederivativeof a continuous functionf : [0, 1]n → IR is the map

df

dx
=

⊔

f∈δ(a,b)

a ց b : [0, 1]n → (IR)1×n
s .



Theorem 1. (i) df
dx

is well-defined and Scott continuous.
(ii) If f ∈ C1[0, 1]n then df

dx
= f ′.

(iii) f ∈ δ(a, b) iff a ց b ⊑ df
dx

.

We obtain the generalization of Theorem 1(iii) to ties, which provides a duality
between the domain-theoretic derivative and integral and can be considered as a variant
of the fundamental theorem of calculus.

Corollary 1. f ∈
∫

g iff g ⊑ df
dx

.

The following proposition relates the domain theoretic derivative to its classical
counterpart.

Proposition 5. (i) Let f : [0, 1]n → IR be Scott continuous. Suppose for somez ∈
[0, 1]n, f(z) is not maximal, thendf

dx
(z) = ⊥.

(ii) If df
dx

(y) = c ∈ (IR)1×n
s is maximal, thenf sends elements to maximal elements

in a neighborhoodU of y and the derivative of the induced restrictionf : U → R

exists aty andf ′(y) = c.

In the full version of the paper, we formulate the relation between the domain-
theoretic derivative with two other notions of derivative,namely Dini’s derivative and
Clarke’s gradient. We express the domain-theoretic derivative in terms of lower and
upper limits of the Dini’s derivatives and we show that, for Lipschitz functions, the
domain-theoretic derivative gives the smallest hyper-rectangle containing the Clarke’s
gradient.

4 Domain for Lipschitz functions

We will construct a domain for locally Lipschitz functions and forC1[0, 1]n. The idea is
to useD0 to represent the function and[0, 1]n → (IR)1×n

s to represent the differential
properties (partial derivatives) of the function. Note that the domain[0, 1]n → (IR)1×n

s

is isomorphic to the smash product(D0)n
s ; we can writeg ∈ [0, 1]n → (IR)1×n

s as
g = (g1, · · · , gn) ∈ (D0)n

s with dom(g) = dom(gi) for all i = 1, · · · , n. Consider the
consistencyrelation

Cons ⊂ D0 × (D0)n
s ,

defined by(f, g) ∈ Cons if ↑f ∩
∫

g 6= ∅. For a consistent(f, g), we think off as the
function partor thefunction approximationandg as thederivative partor thederivative
approximation. We will show that the consistency relation is Scott closed.

Proposition 6. Let g ∈ (D0)n
s and (fi)i∈I be a non-empty family of functionsfi :

dom(g) → R with fi ∈
∫

g for all i ∈ I. If h1 = infi∈I fi is real-valued thenh1 ∈
∫

g.
Similarly, if h2 = supi∈I fi is real-valued, thenh2 ∈

∫

g.

Let R[0, 1] be the set of partial maps of[0, 1] into the extended real line. Consider
the two dcpo’s(R[0, 1],≤) and(R[0, 1],≥). Define the mapss : D0×(D0)n

s → (R,≤)
andt : D0 × (D0)n

s → (R,≥) by

s : (f, g) 7→ inf{h : dom(g) → R |h ∈

∫

g & h ≥ f−}



t : (f, g) 7→ sup{h : dom(g) → R |h ∈

∫

g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are∞
and−∞, respectively. Note that given a connected componentA of dom(g) with A ∩
dom(f) = ∅, thens(f, g)(x) = −∞ andt(s, f)(x) = ∞ for x ∈ A. In words,s(f, g)
is the least primitive map ofg that is greater than the lower part off , whereast(f, g) is
greatest primitive map ofg less that the upper part off .

Proposition 7. The following are equivalent:

(i) (f, g) ∈ Cons.
(ii) s(f, g) ≤ t(f, g).
(iii) There exists a continuous functionh : dom(g) → R with g ⊑ dh

dx
andf ⊑ h on

dom(g).

Moreover,s andt are well-behaved:

Proposition 8. The mapss andt are Scott continuous.

This enables us to deduce:

Corollary 2. The relationCons is Scott closed.

We can now sum up the situation for a consistent pair of function and derivative infor-
mation.

Corollary 3. Let (f, g) ∈ Cons. Then in each connected componentO of the domain
of definition ofg which intersects the domain of definition off , there exist two locally
Lipschitz functionss : O → R andt : O → R such thats, t ∈ ↑f ∩

∫

g and for each
u ∈ ↑f ∩

∫

g, we have withs(x) ≤ u(x) ≤ t(x) for all x ∈ O.

We now can define a central notion of this paper:

Definition 6. Define

D1 = {(f, g) ∈ D0 × (D0)n
s : (f, g) ∈ Cons}.

From Corollary 2, we obtain our first major result:

Corollary 4. The posetD1 is a continuous Scott domain, i.e. a bounded complete
countably based continuous dcpo.

The collection of step functions of the form(f, g) ∈ D0 × (D0)n
s , wheref ∈ D0 and

g ∈ (D0)n
s are step functions, forms a basis ofD1. The rational basis ofD1 is the

collection of all rational step functions(f, g), i.e., those whose domains and values are
defined over rational numbers.We will show in Section 6 that for rational step functions
f ∈ D0 andg ∈ (D0)n

s , the mapss andt will be piecewise linear, and can be effectively
constructed to test the consistency of(f, g).

Let C0[0, 1]n andC1[0, 1]n be, respectively, the collection of real-valuedC0 and
C1 functions. LetΓ : C0[0, 1]n → D1[0, 1]n be defined byΓ (f) = (f, df

dx
) and letΓ 1

be the restriction ofΓ to C1[0, 1]n.



Theorem 2. The mapsΓ and Γ 1 are respectively embeddings ofC0[0, 1]n and
C1[0, 1]n into the set of maximal elements ofD1.

Furthermore,Γ restricts to give an embedding for locally Lipschitz functions
(where df

dx
6= ⊥ for all x) and it restricts to give an embedding for piecewiseC1 func-

tions (wheredf
dx

is maximal except for a finite set of points).

5 Integrability of derivative information

In this section, we will derive a necessary and sufficient condition for integrability and
show that on rational basis elements integrability is decidable.

Let g = (g1, . . . , gn) ∈ (D0)n
s be a step function. Recall that acrescentis the

intersection of an open set and a closed set. The domain dom(g) of g is partitioned into a
finite set of disjoint crescents{Cj : j ∈ Ii}, in each of which the value ofgi is constant,
where we assume that the indexing setsIi are pairwise disjoint fori = 1, . . . , n. The
collection

{
⋂

1≤i≤n

Cki
: ki ∈ Ii, 1 ≤ i ≤ n}

of crescents partition dom(g) into regions in which the value ofg is a constant interval
vector; they are called theassociated crescentsof g, which play a main part in deciding
integrability as we will see later in this section. Each associated crescent has boundaries
parallel to the coordinate planes and these boundaries intersect at points, which are
called thecornersof the crescent. A point of the boundary of an associated crescent is
a coaxial pointof a point in some associated crescent if the two points have precisely
n− 1 coordinates in common. Clearly, each point has a finite number of coaxial points.
In Figure 2, an example of a step functiong is given with its associated crescents,
the interval in each crescent gives the value ofg in that crescent. A solid line on the
boundary of a crescent indicates that the boundary is in the crescent, whereas a broken
line indicates that it is not. The coaxial points of the corners are illustrated on the picture
on the right.
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Fig. 2. Crescents of a step function (left); the corners and their coaxial points (right)



A path in a connected regionR ⊂ R
n is a continuous mapp : [0, 1] → R with

endpointsp(0) andp(1). If p is piecewiseC1, respectively piecewise linear, then the
path is called a piecewiseC1, respectively piecewise linear. The spaceP (R) of piece-
wiseC1 paths inR is equipped with theC1 norm. A pathp is non-self-intersectingif
p(r) = p(r′) for r < r′ impliesr = 0 andr′ = 1. We will be mainly concerned with
piecewise linear paths in this paper. For these paths, thereexists a strictly increasing
sequence of points(ri)0≤i≤k for somek ∈ N with 0 = r0 < r1 < · · · rk−1 < rk = 1
such thatp is linear in[ri, ri+1] for 0 ≤ i ≤ k−1. The pointsp(ri) for i = 0, · · · , k, are
said to be thenodesof p; the nodesp(ri) for i = 1, · · · , k−1 are called theinnernodes.
The line segment{p(r) : ri ≤ r ≤ ri+1} is denoted byp([ri, ri+1]). If p(0) = p(1),
the path is said to beclosed.

A simplepath in a regionR ⊂ R
n is a non-self-intersecting piecewise linear map.

We now consider simple paths in the closure cl(O) of a connected componentO ⊆
dom(g).

Recall that given a vector fieldF : R → R
n in a regionR ⊂ Rn and a piecewise

C1 pathp : [0, 1] → R, the line integral ofF with respect top from 0 to w ∈ [0, 1]

is defined as
∫ 1

0 F (p(r)) · p′(r) dr, when the integral exists. Here,u · v =
∑n

i=1 uivi

denotes the usual scalar product of two vectorsu, v ∈ R
n.

We define a generalization of the notion of scalar product forvectors of type:u ∈
(IR)n andv ∈ R

n. Fora = [a, a] ∈ (IR)n
s , let a− = a, a+ = a anda0 = 1. We define

thedirection dependent scalar productas the strict map

−⊙− : (IR)n
s × R

n → R⊥

with u ⊙ v =
∑n

i=1 u
σ(vi)
i vi for u 6= ⊥. The extension of the usual dot product to the

interval dot product i.e.u · v = {w · v | w ∈ u} then satisfies:(u · v)− = −u ⊙ (−v)
and(u · v)+ = u⊙ v. We can now define a notion of line integral of the interval-valued
vector functiong = [g−, g+] ∈ (D0)n

s with respect to any piecewiseC1 path fromy to
x in cl(O), whereO is a connected component of dom(g). For eachi = 1, · · ·n, theith
component ofg is given bygi = [g−i , g+

i ].

Definition 7. Given a step functiong ∈ (D0)n
s and a piecewiseC1 pathp in the closure

of connected componentO of the domain ofg, theupper line integralof g overp from
0 to w ∈ [0, 1] is defined as:

U

∫

p[0,w]

g(r) dr =

∫ w

0

g(p(r)) ⊙ p′(r) dr.

Thelower line integralof g overp from0 to w ∈ [0, 1] is similarly defined as

L

∫

p[0,w]

g(r) dr = −

∫ w

0

g(p(r)) ⊙ (−p′(r)) dr.

Thus, if thejth component of the path, for somej with 1 ≤ j ≤ n, is increasing locally
at somer ∈ [0, 1], i.e. p′j > 0 in a neighborhood ofr, theng

−σ(pj(r))
j = g−j will

contribute locally to thejth component of the sum in the lower integral, while ifp′j < 0

in a neighborhood ofr, theng
−σ(pj(r))
j = g+

j will contribute. In case the path is locally



perpendicular to thejth axis atr, i.e. p′j(r) = 0 in a local neighborhood ofr, then
there will be zero contribution for thejth component in the sum. For the upper integral
the contributions ofg−i andg+

i are reversed. Note that for allw ∈ [0, 1] we have from
the definitions:L

∫

p[0,w]
g(r) dr ⊑ U

∫

p[0,w]
g(r) dr.

The geometric interpretation of the lower and upper line integrals is as follows. We
regardg ∈ (D0)n

s as an interval-valued vector field in[0, 1]n. For any continuous vector
field F : dom(g) → R

n with F (x) ∈ g(x) for all x ∈ dom(g) and any piecewiseC1

pathp ∈ P (O) in a connected componentO of dom(g), the classical line integral is
always bounded below and above by the lower and upper line integrals respectively.

We now introduce the domain-theoretic generalization of Green’s celebrated condi-
tion for the integrability of a vector field.

Definition 8. Given a step functiong ∈ (D0)n
s and a closed simple pathp in the closure

of a connected component of dom(g), we say thatg satisfies thezero-containment loop
condition forp if

0 ∈

∫

p[0,1]

g(r) dr.

We say thatg ∈ (D0)n
s satisfies thezero-containment loop conditionif it satisfies the

zero-containment loop condition for any closed simple pathp in the closure of any
connected component of dom(g).

For simplicity, we have only defined the zero-loop conditionfor step functions as re-
quired in this paper. By using piecewise differentiable closed paths instead of closed
simple paths, the definition can be easily extended to any Scott continuous interval-
valued vector field. Ifg only takes point (maximal) values, then the zero-containment
loop condition is simply the standard condition forg to be a gradient i.e., that the line
integral ofg vanishes on any closed path. Figure 3 gives an example of a step func-
tion g = (g1, g2), with dom(g) = ((0, 3) × (0, 3)) \ ([1, 2] × [1, 2]) which does not
satisfy the zero-containment loop condition. The values ofg1 (left) andg2 (right) are
given for each of the four single-step functions. Denote thedashed path byp; it has
nodes atp(0) = p(1) = (1/2, 1/2), p(1/4) = (5/2, 0), p(1/2) = (5/2, 5/2) and
p(3/4) = (1/2, 5/2). The lower line integral ofg overp gives a strictly positive value:

L
∫

p
g(r)dr =

∑3
i=0

∫
i+1

4
i
4

−g(p(r)) ⊙ (−p′(r))dr

= −
∫ 1

4

0 g(p(r)) ⊙ (−8, 0)dr −
∫

1
2
1
4

g(p(r)) ⊙ (0,−8)dr

−
∫

3
4
1
2

g(p(r)) ⊙ (8, 0)dr −
∫ 1

3
4

g(p(r)) ⊙ (0, 8)dr

= 1/4(8 · 1 + 8 · 1 + 8 · 1 + 8 · 1) = 8 > 0.

Recall thatg ∈ (D0)n
s is called integrable if

∫

g 6= ∅. The following is an extension of
Green’s Theorem also called the Gradient Theorem in classical differential calculus [9].

Theorem 3. Supposeg ∈ (D0)n
s is an integrable step function. Theng satisfies the

zero-containment loop condition.

We will now show that if a step functiong ∈ (D0)n
s satisfies the zero-containment

loop condition, then it is integrable. LetO be a connected component of dom(g). Note
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[1, 2]

[−2, −1] [1, 2]
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Fig. 3.Failure of zero-containment:g1 (left) andg2 (right)

that any step functiong can be extended to the boundary of dom(g) by the lower and
upper semi continuity ofg− andg+ respectively. We adopt the following convention.
If two crescents have a common boundary, we consider their common boundary as
infinitesimally separated so that they have distinct boundaries. This means that a line
segment of a simple path on a common boundary of two differentcrescents is always
regarded as the limit of a sequence of parallel segments contained on one side of this
boundary.

We are now ready to introduce a key concept of this paper. Forx, y ∈ cl(O)), we
put

Vg(x, y) = sup{L

∫

p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x},

Wg(x, y) = inf{U

∫

p[0,1]

g(r) dr : p a piecewise linear path in cl(O) from y to x}.

Proposition 9. Supposeg satisfies the zero-containment loop condition andx, y ∈
cl(O), then there are simple pathsp andq fromy to x such that:

Vg(x, y) = L

∫

p[0,1]

g(r) dr Wg(x, y) = U

∫

q[0,1]

g(r) dr.

Moreover, for eachy ∈ cl(O), the two maps given byVg(·, y), Wg(·, y) : cl(O) → R

are continuous, piecewise linear and satisfyVg(y, y) = Wg(y, y) = 0,

g ⊑
dVg(·, y)

dx
and g ⊑

dWg(·, y)

dx
.

Thus, we obtain the following main result:

Theorem 4. A functiong ∈ (D0)n
s is integrable iff it satisfies the zero-containment

loop condition.



Proposition 10. For a rational step functiong ∈ (D0)n
s defined over rational numbers,

the zero-containment loop condition is decidable.

Proof. There are a finite number of connected components of dom(g). In each con-
nected componentO of dom(g), the values ofL

∫

p[0,1]g(r) dr andU
∫

p[0,1]g(r) dr, for
a closed simple path in cl(O) depend piecewise linearly on the coordinates of any given
node of the path. It follows that the maximum value of the lower integral and the mini-
mum value of the upper integral are reached for a pathp with nodes at the corners of the
crescents ofO and their coaxial points. Since the number of such closed simple paths is
finite and since for each such pathL

∫

p[0,1]g(r) dr is a rational number, we can decide
in finite time if the zero-containment loop condition holds for g. �

For an associated crescenta of a step functiong we writev(a) for the value ofg on
a, i.e.v(a) = g(x) wherex ∈ ao is some point in the interior ofa. To check whether a
rational step functiong is integrable, the proof of Proposition 10 shows that it suffices
to check thatg satisfies the zero-containment loop condition on all paths with nodes in
the finite set of corners of the associated crescents and their coaxial points. This gives
rise to the following algorithm:

input: a rational step function g : [0, 1]n → IR
n

output: true, if g is integrable and false otherwise

D := connected components of dom(g)
for each C ∈ D do

A := associated crescents of C
R := corners and coaxial points of A
/* P represents the closed paths */

P := all lists (p0
a0−→ . . .

ak−1

−→ pk) where ai ∈ A, pi ∈ R, pi, pi+1 ∈ cl(ai)
and pi = pj =⇒ i = 0 and j = k

for each p = (p0
a0−→ . . .

ak−1

−→ pk) ∈ P do

/* compute upper and lower line integral */

L :=
∑k−1

i=0 v(ai) ⊙ (pi+1 − pi)

U :=
∑k−1

i=0 v(ai) ⊙ (pi − pi+1)
if L > 0 or U < 0 then output false; end

enddo

enddo; output true

6 Consistency of function and derivative information

We will now show that for a pair of rational step functions(f, g) ∈ D1, with g in-
tegrable, the consistency relation(f, g) ∈ Cons is decidable. For this, we explicitly
constructs(f, g) and t(f, g), which will be piecewise linear functions that enable us
to decide ifs(f, g) ≤ t(f, g). Let x andy be in the same connected componentO of
dom(g) with O ∩ dom(f) 6= ∅.

Theorem 5. The mapsVg(·, y), Wg(·, y) : cl(O) → R are respectively the least and
the greatest continuous mapsL, G : O → R with L(y) = 0 andG(y) = 0 such that
g ⊑ dL

dx
andg ⊑ dG

dx
.



Let S(f,g)(x, y) = Vg(x, y) + limf−(y).

Corollary 5. LetO be a connected component of dom(g) with non-empty intersection
with dom(f). For x ∈ O, we have:

s(f, g)(x) = sup
y∈O∩dom(f)

S(f,g)(x, y). (1)

Proposition 11. There exist a finite number of pointsy0, y1, . . . , yi ∈ cl(O ∩ dom(f))
with

s(f, g)(x) = max{S(f,g)(x, yj) : j = 0, 1, . . . , i}

for x ∈ O.

Proof. For fixed(f, g) andx, the value ofS(f,g)(x, y) depends piecewise linearly on
the coordinates ofy, and thus its maximum value is reached for a simple path with
modes at the corners of the crescents ofO andx and their coaxial points. �

Results dual to those above are obtained fort(f, g) as follows. We putT(f,g)(x, y) =

Wg(x, y) + limf+(y). Then, we have

t(f, g)(x) = inf
y∈O∩dom(f)

T(f,g)(x, y),

and there existy0, y1, . . . , yi ∈ cl(O ∩ dom(f)) with

t(f, g)(x) = min{T(f,g)(x, yj) : j = 0, 1, . . . , i},

for x ∈ O.

Corollary 6. The predicate Cons is decidable on basis elements(f, g) consisting of
rational step functions.

The algorithm for deciding consistency of a rational step functionf : [0, 1]n → IR

and a rational step functiong : [0, 1]n → (IR)n
s works as follows: Recall thatf andg

are consistent iffs(f, g) ≤ t(f, g). By the proof of Proposition 11, both functions can
be constructed by evaluating line integrals over simple paths with inner nodes in the set
of corners of the crescents ofg, the endpoint of the line integrals and the coaxial points
of these. This is achieved by the following algorithm:

input: a rational step functions f : [0, 1]n → IR

an integrable rational step function g : [0, 1]n → (IR)n
s

output: true, if f is consistent with g, false otherwise.

D := connected components of dom(g)
for each C ∈ D do

A := associated crescents of C; K := corners of C
/* x = (x1, . . . , xn) represents the varying endpoint */

R(x) := K ∪ { coaxial points of K ∪ {x}}
/* P (x) represents the paths to x */

P := all lists (p0
a0−→ . . .

ak−1

−→ pk) where pi ∈ R(x) are pairwise



distinct, pk = x and pi, pi+1 ∈ cl(ai) for all i = 1, . . . , k − 1.

for each p = (p0
a0−→ . . .

ak−1

−→ pk), q = (q0
a0−→ . . .

al−1

−→ ql) ∈ P (x) do

/* compute upper and lower line integral */

s(x) := limf−(p0) +
∑k−1

i=0 v(ai) ⊙ (pi+1 − pi)

t(x) := limf+(q0) +
∑l−1

i=0 v(ai) ⊙ (qi − qi+1)
if s(x) > t(x) for some x ∈ a then output false; end

enddo

enddo; output true

Note thats(x) andt(x) are piecewise linear functions inx with rational coefficients,
hence we can decides(x) ≤ t(x) on cl(a) by first computing the rectangles on which
boths andt are linear and then checking fors ≤ t on the corners of those.

Theorem 6. The domainD1 can be given an effective structure using a standard enu-
meration of its rational basis.

7 Applications

The construction of an effective domain for differentiablefunctions paves the road for
applications of domain theory in a number of areas of numerical analysis and computa-
tional mathematics. Here, we make a start on this by mentioning two fields of applica-
tions which have been worked out in detail in two follow-up papers.

7.1 Robust construction of curves and surfaces

In geometric modelling, as in CAD, the standard method to construct curves and sur-
faces is to use the implicit function theorem to define these geometric objects implic-
itly [2]. For example aC1 surfaceg : [0, 1]2 → R can be specified as the zero set
{g(x, y) : f(x, y, g(x, y)) = 0} wheref : [0, 1]3 → R is aC1 function with ∂f

∂z
6= 0.

The domain for differential functions allows us to develop adomain-theoretic version
of the implicit function theorem, in which the implicit function together with its deriva-
tive are approximated by step functions. This means that from an increasing sequence
of step functions converging tof and its derivative in the domain of differentiable func-
tions we can effectively obtain an increasing sequence of step functions converging in
this domain to the desired surfaceg and its derivative. Combined with the domain-
theoretic model for computational geometry developed in [7], this provides a robust
technique for geometric modelling and CAD.

7.2 A Second Order Method for Solving Differential Equations

We consider the initial value problem given by the system of differential equations

y′ = v(y), y(0) = (0, . . . , 0)



wherev ∈ C1([−K, K]n, [−M, M ]n) is a differentiable function defined on a rectan-
gle containing the origin. A first-order method for solving this equation usually postu-
lates that the vector fieldv is Lipschitz, and uses the Lipschitz constant to conserva-
tively approximate a solution. Assuming thatv is differentiable, we can locally replace
the Lipschitz constant by the derivative, giving rise to tighter approximations. Extend-
ing the present framework to functions of interval variables, we can approximate vector
fields along with their derivatives by a pair of functions(v, v′) wherev : IR

n → IR
n

approximates the vector field andv′ : IRn → IR
(n×n) approximates the matrix of par-

tial derivatives. Compared to the approach of interval analysis [10], we are in particular
able to give guarantees on this improved speed of convergence, thus providing a sound
and complete framework for solving the initial value problem.
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