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Abstract. We introduce a domain-theoretic computational model fortimu
variable differential calculus, which for the first time givrise to data types for
differentiable functions. The model, a continuous Scothdm for differentiable
functions ofn variables, is built as a sub-domain of the product.of 1 copies
of the function space on the domain of intervals by tuplingetber consistent
information about locally Lipschitz (piecewise differétile) functions and their
differential properties (partial derivatives). The mag@sult of the paper is to show,
in two stages, that consistency is decidable on basis elksmehich implies that
the domain can be given an effective structure. First, a doitheeoretic notion
of line integral is used to extend Green’s theorem to infevedued vector fields
and show that integrability of the derivative informatiadecidable. Then, we
use techniques from the theory of minimal surfaces to cansthe least and the
greatest piecewise linear functions that can be obtainaa fx tuple ofn + 1
rational step functions, assuming the integrability of theuple of the derivative
part. This provides an algorithm to check consistency onrdiienal basis ele-
ments of the domain, giving an effective framework for mutiriable differential
calculus.

1 Introduction

We introduce a domain-theoretic computational model fottinvariable differential
calculus, which for the first time gives rise to data typesdiferentiable functions.
The model is a continuous Scott domain for differentiablections ofn variables. It
allows us to deal with differentiable functions in a recarsiheoretic setting, and is thus
fundamental for applications in computational geometepmgetric modelling, ordinary
and partial differential equations and other fields of cotafianal mathematics. The
overall aim of the framework is to synthesize differentilloulus and computer science,
which are two major pillars of modern science and technalogy

The basic idea of the model is to collect together the lod&dintial properties of
multi-variable functions by developing a generalizatidrtt®e concept of a Lipschitz
constant to an interval vector Lipschitz constant. Theewibn of these local differ-
entiable properties are then used to define the domainétiealerivative of a multi-
variable function and the primitives of an interval-valuegttor field, which leads to
a fundamental theorem of calculus for interval-valued fiowts, a theorem that has no
counterpart in classical analysis. This fundamental theois then used to construct
the domain of differentiable functions as a sub-domain efgloduct ofn + 1 copies



of the function space on the domain of intervals by tuplingetther consistent informa-
tion about locally Lipschitz (piecewise differentiablejnctions and their differential
properties (partial derivatives). The base of this domaia finitary data type, given

by consistent tuples of + 1 step functions, where consistency means that there exists
a piecewise differentiable function, equivalently a pigese linear function, which is
approximated, together with its partial derivatives where defined, by thet 1 step
functions.

The geometric meaning of the finitary data type and consigtienas follows. Each
step function is represented by a finite setef1 dimensional rational hyper-rectangles
in, say,[0,1]™ x R such that any two hyper-rectangles have non-empty intéosec
whenever the interior of their base il 1]™ have non-empty intersection. Such a set of
hyper-rectangle gives a finitary approximation to a redited function on the unit cube
[0, 1]™ if in the interior of the base of each hyper-rectangle thegraf the function is
contained in that hyper-rectangle. A collectionoft 1 such sets of hyper-rectangles
could thus provide a finitary approximation to a function atsch partial derivatives.
Consistency of this collection means that there exists egpiese differentiable func-
tion which is approximated together with its partial detivas, where defined, by the
collection. For a consistent tuple, there are a least anceatest piecewise differen-
tiable function which satisfy the function and the partiatigdative constraints. Figure 1
shows two examples of consistent tuplesios 2 and in each case the least and great-
est functions consistent with the derivative constraimésdrawn. In the first case, on
the left, there is a single hyper-rectangle for functionragpmation and the derivative
approximations in the: andy directions over the whole domain of the function are
given respectively by the constant intervais N| and[m, M| with n,m > 0. In the
second case, on the right, there are two intersecting hygmtangles for the function
approximation and the derivative approximations are thestant intervalg0, 0] and
[m, M] with m > 0.

slope Mj

/ foo"
slope m — | slope m

Fig. 1. Two examples of consistent function and derivative appnations

The main question now is whether consistency ofithe 1 step functions is actu-
ally decidable. This problem is, as we have seen, very sitgpiate but it turns out
to be very hard to solve, as it requires developing some nethen@atics. The main
result of the paper is to show, in two stages, that consigtendecidable on basis el-
ements. As in classical differential multi-variable cdles) an interval-valued function
may fail to be integrable. Thus, in the first stage, we inticela domain-theoretic no-



tion of line integral, which we use to establish a necessadysafficient condition for
an interval-valued Scott continuous vector function toritegrable: zero must be con-
tained in the line integral of the interval-valued vectotdiwith respect to any closed
path. This extends the classical Green’s Theorem for a véietd to be a gradient [9,
pages 286-291] to interval-valued vector fields. We thusiokd main result of this pa-
per: an algorithm to check integrability for rational stemétions, i.e., givem rational
step functions, to check if there exists a piecewise difféable function whose partial
derivatives, where defined, are approximated by these ategtibns.

Finally, we use techniques from the theory of minimal suefaio construct the least
and the greatest piecewise linear functions obtained fromple of» + 1 rational step
functions, in which the:-tuple of the derivative part is assumed to be integrables&h
surfaces are obtained by, respectively, maximalizing amdmalizing the lower and
the upper line integrals of the derivative information opégcewise linear paths. The
maximalization and minimization are achieved for a piesadinear path which can all
be effectively constructed. The decidability of consisteis then reduced to checking
whether the minimal surface is below the maximal surfacegsk that can be done
in finite time. This leads to an algorithm to check consisyeoicann + 1 tuple and
to show that consistency is decidable on the rational bdsieants of the domain for
locally Lipschitz functions, giving an effective framevkdor multi-variable differential
calculus.

In the last section, we mention two applications of our fraumik, each worked out
in detail in a follow-up paper. In the first, the domain forfdiential functions allows
us to develop a domain-theoretic version of the inverse amglicit function theorem,
which provides a robust technique for construction of caraed surfaces in geometric
modelling and CAD. Our second application is a domain-teBoadaption of Euler's
method for solving ordinary differential equations, whare use the differential prop-
erties of the vector field defining the equation to improveghality of approximations
to the solution.

Due to the large number of new concepts in the paper and lasgaife, nearly all
proofs had to be omitted.

1.1 Related work

This work represents an extension of the domain-theoregiméwork for differential
calculus of a function of one variable introduced in [6] atlépplications in solving
initial value problems [5, 8]. The extension to higher dirsiem is however far more
involved than the extension of classical differential cés to higher dimensions.

The domain-theoretic derivative is closely related to thecalled generalized (or
Clarke’s) gradient, which is a key tool in nonsmooth analysontrol theory and opti-
mization theory [3, 4]. For any locally Lipschitz functiotihe domain-theoretic deriva-
tive at a point gives the smallest hyper-rectangle, witkesidarallel to the coordinate
planes, which contains the Clarke’s gradient.

In computable analysis, Pour-El and Richards [11] relate dbmputability of a
function with the computability of its derivative. Weihrelus scheme [13] leads to par-
tially defined representations, but there is no generallresudecidability. Interval



analysis [10] also provides a framework for verified numa&r@mmputation. There, dif-
ferentiation is performed by symbolic techniques [12] imtast to our sequence of
approximations of the functions.

1.2 Notations and terminology

We use the standard notions of domain theory as in [1].24D, 1]* = [0,1]" — IR

be the domain of all Scott continuous functions of typel]” — IR; we often write
D for D°[0, 1]™. A function f € DV is given by a pair of respectively lower and upper
semi-continuous functiong™, f* : [0,1]" — Rwith f(z) = [f~ (z), f*(z)]. Given a
domainA, we denote byd” the smash product, i.er,c€ A? if a = (a1,---,a,) € A"
witha; # Lforalli =1,---,n0ra = L. Let (IR)™>*™ denote the set of ath x n
matrices with entries idR, where for such a matrix either all components are non-
bottom or the matrix itself is bottom. We use standard op@natof interval arithmetic
on interval matrices. By, = [a,a] € (IR)™*", wherea,a € R™*"™, we denote an
interval matrix with (i, j) entry given by the intervala,;,@;;]. We identify the real
numberr € R with the singleton{r} € IR. And similarly for interval vectors and
functions. We will use thaign function given by the multiplicative group homomor-
phismo : R — {—,0,+}. We write ||z|| = />, «7 for the standard Euclidean
normofz = (x1,---,2,) € R". The classical derivative of a map: [0,1]" — R at

y € ]0,1], when it exists, is denoted h#/(y). We will reserve the notatiorj’; exclu-
sively in this paper for the domain-theoretic derivativeiethwill be introduced later.
The interior of a setd C R™ is denoted byA° and its closure by ¢W).

2 Ties of functions of several variables

The local differential property of a function is formalizéa our framework by the
notion of an interval Lipschitz constant.

Definition 1. The continuous functiofi : [0,1]" — IR hasan interval Lipschitz con-
stanth € (IR)1*" ina € (1[0, 1])"ifforall z,y € a° we haveb(z—y) C f(z)— f(y).
Thesingle-step tiej(a,b) C D°[0,1] of a with b is the collection of all functions in
DY[0, 1] which have an interval derivativigin a.

For example, ifx = 2, the information relation above reducedtdz; — y1) + ba(z2 —
y2) E f(z) — f(y). For a single-step tié(a,b), one can think ob as a Lipschitz
interval vector constant for the family of functions &fa,b). A classical Lipschitz
would requirek = |b;| = |b;| > 0 foralli = 1---n. By generalizing the concept
of a Lipschitz constant in this way, we are able to obtain mszkinformation about
the differential properties of the function, which incledehat the classical Lipschitz
constants provide:

Proposition 1. If f € d(a,b) for a® # § andb # L, thenf(x) is maximal for each
r € a° and the induced functiofi : a° — R is Lipschitz: for allu,v € a° we have
|f(u) = f(v)] < Ellu— vl|, wherek = max; <i<n(|b;], [bi])-

The following proposition justifies our definition of inteaMderivative.



Proposition 2. For f € C*[0, 1], the following three conditions are equivalent:
() f €d(a,b), (i) Vz € a®. f/(z) eband (ii)ya \,bLC f.

When the components afandb are rational interval(a, b) is a family of functions
in DY with a finitary differential property. For the rest of thisctien, we assume we are
in dimensiom > 2.

Definition 2. A step tieof D is any finite intersectiofi), . ,,, 6(as, b;) C D°. Atie of
DY is any intersectiom = (,.; §(a;, b;) C D°. Thedomainof a non-empty tieA is
defined as dofm\) = (J,{a5 | bi # L}.

A non-empty step tie with rational intervals gives us a fanoil functions with &finite
set of consistent differential properties, and a non-engtyeral tie gives a family of
functions with a consistent set of differential properti€se following result sums up
the main relation between step ties and step functions.

Proposition 3. For any indexing sef, the family of step functior(g; \, b;);cs is con-
sistent if(), . ; 0(as, b;) # 0.

Let (T*[0,1],2) be the dcpo of ties oD° ordered by reverse inclusion. We are
finally in a position to define the primitives of a Scott contirus function; in fact now
we can do more and define:

Definition 3. The primitive map [ : ([0,1]" — (IR)!*™) — T is defined by
J(User @i \bi) = ;s 6(as, bi). We usually writef (f) as [ f and call it theprimi-
tivesof f.

Proposition 4. The primitive map is well-defined and continuous.

Forn > 2, as we are assuming here, the primitive map will have the gtigpin
its range, a situation which does not occurfoe 1. Therefore, we have the following
important notion in dimensions > 2.

Definition 4. Amapg € [0,1]" — (IR):*™ is said to bentegrableif [ g # 0.

Examplel.Let ¢ € [0,1]> — (IR)!*?) be given byg = (g1,92) =
(A1 Aws.1, Awy Azo.a1). ThengL = 0 # 1 = $2, and it will follow that [ g = 0.

3 Domain-theoretic derivative

Given a Scott continuous functigh: [0, 1] — IR, the relationf € §(a,b), for some
intervalsa andb, provides, as we have seen, finitary information about thalldiffer-
ential properties of . By collecting all such local information, we obtain the qulete
differential properties off, namely its derivative.

Definition 5. Thederivativeof a continuous functioif : [0, 1] — IR is the map

d—‘i: | ] a\b:[0,1]" — AR)*™,

fed(a,b)



Theorem 1. (i) % is well-defined and Scott continuous.

(i) If f€C'o,1]" thend = .
(i) f € d(a,b)iffa\,bC L.

We obtain the generalization of Theorem 1(iii) to ties, whjgrovides a duality
between the domain-theoretic derivative and integral amcbe considered as a variant
of the fundamental theorem of calculus.

Corollary 1. f € [giffgC 4.

The following proposition relates the domain theoreticivigive to its classical
counterpart.

Proposition 5. (i) Letf : [0,1]" — IR be Scott continuous. Suppose for some
[0,1]", f(z) is not maximal, ther (z) = L.

(i) If %(y) = ¢ € (IR)}*" is maximal, thenf sends elements to maximal elements
in a neighborhood’ of y and the derivative of the induced restrictign U — R
exists aty and f/(y) = c.

In the full version of the paper, we formulate the relationvieen the domain-
theoretic derivative with two other notions of derivativeamely Dini's derivative and
Clarke’s gradient. We express the domain-theoretic devivan terms of lower and
upper limits of the Dini’'s derivatives and we show that, fapéchitz functions, the
domain-theoretic derivative gives the smallest hypetamegle containing the Clarke’s
gradient.

4 Domain for Lipschitz functions

We will construct a domain for locally Lipschitz functionsa@forC1[0, 1]. The ideais
to useD" to represent the function and, 1] — (IR).*" to represent the differential
properties (partial derivatives) of the function. Notetttree domair0, 1]* — (IR)1*"
is isomorphic to the smash produdd®)”; we can writeg € [0,1]" — (IR)!*" as
g= (91, -+, 9n) € (D°)" with dom(g) = dom(g;) forall i = 1, --,n. Consider the
consistencyelation

Cons ¢ D x (D)7,
defined by(f, g) € Consif 1f N [ g # (. For a consistentf, g), we think of f as the

function partor thefunction approximatioandg as thederivative partor thederivative
approximation We will show that the consistency relation is Scott closed.

Proposition 6. Let g € (D°)? and (f;);cr be a non-empty family of functionfs :
dom(g) — Rwith f; € [gforalli € I.If hy = inf,c; f; is real-valued therk; € [ g.
Similarly, if ho = sup;¢; f; is real-valued, therh, € fg.

Let R0, 1] be the set of partial maps @, 1] into the extended real line. Consider
the two dcpo’ R[0, 1], <) and(R|0, 1], >). Define the maps : D°x (D) — (R, <)
andt : D° x (D°)" — (R, >) by

Si(f,g)Hinf{h:don‘(g)—>R|he/g&hzf*}



t:(f,g)»—>sup{h:d0n‘(g)—>R|h€/g&h§f+}.

We use the convention that the infimum and the supremum of riipgyeset areco
and—oo, respectively. Note that given a connected comporeat dom(g) with A N
dom(f) = 0, thens(f, g)(x) = —oo andi(s, f)(z) = oo for z € A. In words,s(f, g)
is the least primitive map af that is greater than the lower part pfwhereas(f, g) is
greatest primitive map qf less that the upper part g¢f

Proposition 7. The following are equivalent:

(i) (f,g) € Cons.
(i) s(f.g) <t(f.9).

(iii) There exists a continuous functién: dom(g) — R with g C % andf C hon

dom(g).

Moreover,s andt are well-behaved:
Proposition 8. The maps andt are Scott continuous.
This enables us to deduce:
Corollary 2. The relationCons is Scott closed.

We can now sum up the situation for a consistent pair of femcéind derivative infor-
mation.

Corollary 3. Let(f,g) € Cons. Then in each connected componénof the domain
of definition ofg which intersects the domain of definition ffthere exist two locally
Lipschitz functions : O — R andt : O — R such thats,t € 1f N [ ¢ and for each
uw € 1f N [ g, we have withs(z) < u(z) < t(z) forall z € O.

We now can define a central notion of this paper:

Definition 6. Define
D' ={(f,9) € D" x (D°)} : (f,9) € Cons}.
From Corollary 2, we obtain our first major result:

Corollary 4. The posetD' is a continuous Scott domain, i.e. a bounded complete
countably based continuous dcpo.

The collection of step functions of the fortf, g) € D° x (D°)7, wheref € D° and
g € (D% are step functions, forms a basis bf. Therational basis of D! is the
collection of all rational step functions, g), i.e., those whose domains and values are
defined over rational numbers.We will show in Section 6 tbatétional step functions
f € D’ andg € (D)7, the maps andt will be piecewise linear, and can be effectively
constructed to test the consistency 6fg).

Let C°[0, 1]* andC*[0,1]™ be, respectively, the collection of real-valuétl and
C* functions. Letl" : C°[0,1]" — D'[0,1]" be defined by '(f) = (f, &) and letI™
be the restriction of "to C'*[0, 1]™.



Theorem 2. The mapsI” and I'* are respectively embeddings 6f°[0,1]" and
C1[0,1]™ into the set of maximal elementsiot.

Furthermore,I” restricts to give an embedding for locally Lipschitz fumcts
(Where% # 1 for all z) and it restricts to give an embedding for piecewdisefunc-

tions (where% is maximal except for a finite set of points).

5 Integrability of derivative information

In this section, we will derive a necessary and sufficiendition for integrability and
show that on rational basis elements integrability is deioiel.

Letg = (g1,...,9,) € (D°)" be a step function. Recall thatcaescentis the
intersection of an open set and a closed set. The domaifyafy is partitioned into a
finite set of disjoint crescen{g’; : j € I}, in each of which the value @f is constant,
where we assume that the indexing sktare pairwise disjoint foi = 1,...,n. The
collection

{ m Cki:kieli,lgign}

1<i<n

of crescents partition dofn) into regions in which the value gfis a constant interval
vector; they are called thessociated crescents g, which play a main part in deciding
integrability as we will see later in this section. Each ass@d crescent has boundaries
parallel to the coordinate planes and these boundariess@tteat points, which are
called thecornersof the crescent. A point of the boundary of an associatecerdss

a coaxial pointof a point in some associated crescent if the two points hes€igely

n — 1 coordinates in common. Clearly, each point has a finite numbepaxial points.

In Figure 2, an example of a step functignis given with its associated crescents,
the interval in each crescent gives the valugyafi that crescent. A solid line on the
boundary of a crescent indicates that the boundary is inréscent, whereas a broken
line indicates that it is not. The coaxial points of the cosreae illustrated on the picture
on the right.

:[[—2.2] !
. e 1

Fig. 2. Crescents of a step function (left); the corners and theixizb points (right)




A path in a connected regioR C R" is a continuous map : [0,1] — R with
endpointsp(0) andp(1). If p is piecewiseC?, respectively piecewise linear, then the
path is called a piecewisg!, respectively piecewise linear. The spaegR) of piece-
wise C'! paths inR is equipped with th&! norm. A pathp is non-self-intersectingf
p(r) = p(r') for r < r' impliesr = 0 andr’ = 1. We will be mainly concerned with
piecewise linear paths in this paper. For these paths, #iwdsts a strictly increasing
sequence of point8; )<< for somek € Nwith0 =ro <7 < ---rp_1 <71 =1
suchthapislinearin[r;,r;+1] for0 < ¢ < k—1. The pointo(r;) fori = 0,-- - k, are
said to be th@odeof p; the nodes(r;) fori = 1,- - -, k—1 are called thénnernodes.
The line segmenfp(r) : ; < r < r;41} is denoted by([r;, 7i+1]). If p(0) = p(1),
the path is said to belosed

A simplepath in a regionR C R” is a non-self-intersecting piecewise linear map.
We now consider simple paths in the closur@X of a connected componett C
dom(g).

Recall that given a vector fielf : R — R™ in a regionR C R™ and a piecewise
C'! pathp : [0,1] — R, the line integral ofF" with respect tg from 0 to w € [0, 1]
is defined asfo1 F(p(r)) - p'(r) dr, when the integral exists. Here, v = Y | w;v;
denotes the usual scalar product of two vectgrs € R™.

We define a generalization of the notion of scalar productvémtors of typeu €
(IR)" andv € R™. Fora = [a,a] € (IR)?, leta™ = a,a™ =@ anda® = 1. We define
thedirection dependent scalar produas the strict map

—0—:(IR)? xR" - R

withu©v =1, u;’(”i)vi for u # 1. The extension of the usual dot product to the
interval dot producti.ew - v = {w-v | w € u} then satisfies(u - v)~ = —u © (—v)
and(u - v)* = u® v. We can now define a notion of line integral of the intervalizeal
vector functiorny = [g—, g*] € (D°)? with respect to any piecewigg' path fromy to

x in cl(0), whereO is a connected component of dog. For each = 1, - - - n, theith
component of; is given byg; = [g;, g;7].

Definition 7. Given a step functiop € (D°)” and a piecewis€'! pathp in the closure
of connected componeéX of the domain of;, theupper line integrabf g overp from
0tow € [0, 1] is defined as:

U / L andr= /0 o(p(r) © p/(r) dr.

Thelower line integrabf g overp from0 to w € [0, 1] is similarly defined as

g0 == 000

Thus, if thejth component of the path, for somievith 1 < j < n, is increasing locally
at somer € [0,1], i.e.p’ > 0 in a neighborhood of, theng;“(”j(r)) = g; will
contribute locally to thgith component of the sum in the lower integral, whilg/f< 0

a(p;(r))

in a neighborhood of, theng, = g;“ will contribute. In case the path is locally



perpendicular to thgth axis atr, i.e. p’(r) = 0 in a local neighborhood of, then
there will be zero contribution for thigh component in the sum. For the upper integral
the contributions of;” andgl are reversed. Note that for all € [0, 1] we have from
the definitionsL. [, g(r)dr EU [ 5 0 9(r)dr.

The geometrlc mterpretatlon of the Iower and upper linegnals is as follows. We
regardg € (D°)" as an interval-valued vector field @, 1]". For any continuous vector
field F : dom(g) — R™ with F(x) € g(z) for all z € dom(g) and any piecewis€’!
pathp € P(O) in a connected componet of dom(g), the classical line integral is
always bounded below and above by the lower and upper liegiials respectively.

We now introduce the domain-theoretic generalization afe®rs celebrated condi-
tion for the integrability of a vector field.

Definition 8. Given a step function € (D°)" and a closed simple pathin the closure
of a connected component of dgr we say thay satisfies theero-containment loop

condition forp if
0¢e / g(r)dr.
p[0,1]

We say thay € (D°)7 satisfies theero-containment loop conditidhit satisfies the
zero-containment loop condition for any closed simple paih the closure of any
connected component of dgg.

For simplicity, we have only defined the zero-loop conditionstep functions as re-
quired in this paper. By using piecewise differentiableseld paths instead of closed
simple paths, the definition can be easily extended to anyt $oatinuous interval-
valued vector field. Iy only takes point (maximal) values, then the zero-contaimme
loop condition is simply the standard condition fpto be a gradient i.e., that the line
integral ofg vanishes on any closed path. Figure 3 gives an example opédiste-
tion g = (g1, g2), with dom(g) = ((0,3) x (0,3)) \ ([1,2] x [1,2]) which does not
satisfy the zero-containment loop condition. The valueg;ofieft) and g, (right) are
given for each of the four single-step functions. Denotedhshed path by; it has
nodes ap(0) = p(1) = (1/2,1/2), p(1/4) = (5/2,0), p(1/2) = (5/2,5/2) and
p(3/4) = (1/2,5/2). The lower line integral of; overp gives a strictly positive value:

L, gr)dr = ? of% (b(r)) © (= (r))dr
=— fo —8,0)dr — f g(p(r)) ® (0, —-8)dr

_1/4(8 1+8 1+8 1+8 1)_8>O

Recall thaty € (D°)" is called integrable iff g # (). The following is an extension of
Green'’s Theorem also called the Gradient Theorem in clalsdifferential calculus [9].

Theorem 3. Supposgy € (D°)" is an integrable step function. Thensatisfies the
zero-containment loop condition.

We will now show that if a step functiom € (D°)” satisfies the zero-containment
loop condition, then it is integrable. Lét be a connected component of dgm Note
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Fig. 3. Failure of zero-containmeng; (left) andg- (right)

that any step functiop can be extended to the boundary of dginby the lower and
upper semi continuity of~ andg™ respectively. We adopt the following convention.
If two crescents have a common boundary, we consider themeon boundary as
infinitesimally separated so that they have distinct bodedaThis means that a line
segment of a simple path on a common boundary of two differescents is always
regarded as the limit of a sequence of parallel segmentsic@t on one side of this
boundary.

We are now ready to introduce a key concept of this paperzFgre cl(O)), we
put

Vy(z,y) = sup{L/ g(r)dr : p a piecewise linear path in ¢l) fromy toz},
p[0,1]

Wy(z,y) = inf{U/ g(r)dr : p a piecewise linear path in €i) fromy to z}.
p[0,1]

Proposition 9. Supposg; satisfies the zero-containment loop condition ang <
cl(0), then there are simple pathsandq fromy to = such that:

Vy(x,y) = L/ g(r)dr Wy(z,y) = U/ g(r)dr.
p[0,1] q[0,1]

Moreover, for eachy € cl(O), the two maps given by, (-, y), W,(-,y) : cl(O) — R
are continuous, piecewise linear and sati8fy(y, y) = W, (y,y) = 0,

dVy(- dW,(-
g; g(ay) and gE g(,y).
dx dx
Thus, we obtain the following main result:

Theorem 4. A functiong € (D°)" is integrable iff it satisfies the zero-containment
loop condition.



Proposition 10. For a rational step functiog € (D°)" defined over rational numbers,
the zero-containment loop condition is decidable.

Proof. There are a finite number of connected components of(donin each con-
nected componeri® of dom(g), the values Of_fp[O,l]g(T) dr andep[OJ]g(r) dr, for

a closed simple path in@) depend piecewise linearly on the coordinates of any given
node of the path. It follows that the maximum value of the Ipiméegral and the mini-
mum value of the upper integral are reached for a patfith nodes at the corners of the
crescents of) and their coaxial points. Since the number of such closeglsipaths is
finite and since for each such palb?p[o_l]g(r) dr is a rational number, we can decide
in finite time if the zero-containment loop condition holds §. O

For an associated crescendf a step functiory we writev(a) for the value ofy on
a, i.e.v(a) = g(z) wherez € a° is some point in the interior af. To check whether a
rational step functiom is integrable, the proof of Proposition 10 shows that it sefi
to check thay satisfies the zero-containment loop condition on all patitis modes in
the finite set of corners of the associated crescents anddbaxial points. This gives
rise to the following algorithm:

input: a rational step function g:[0,1]" — IR"
output: true, if g is integrable and false otherwise

D := connected components of dom(g)
for each C € D do
A := associated crescents of C

R := corners and coaxial points of A
/* P represents the closed paths */
P := all lists (po o, % pr) where a; € A, p; € R, pi,pit1 € c1(a;)
and p; =pj;=1t=0 and j =k
for each p= (po —% ... ™= pp) € P do
/* compute upper and lower line integral */
k—1
L:= Zik:()lv(ai) © (Pit1 — pi)
U:=3"" v(a:) © (pi — pit1)
if L >0 or U <0 then output false; end
enddo
enddo; output true

6 Consistency of function and derivative information

We will now show that for a pair of rational step functiofg g) € D!, with g in-
tegrable, the consistency relatidyi, g) € Cons is decidable. For this, we explicitly
constructs(f, g) andt(f, ¢g), which will be piecewise linear functions that enable us
to decide ifs(f,g) < t(f,g). Letz andy be in the same connected compon@ntf

dom(g) with O Nndom(f) # 0.
Theorem 5. The maps/, (-, y), W,(-,y) : cl(O) — R are respectively the least and

the greatest continuous mapisG : O — R with L(y) = 0 andG(y) = 0 such that
g € g andg C 2.



Let Sy gy (z,y) = Vy(a,y) + Limf~ (y).

Corollary 5. LetO be a connected component of dg/mnwith non-empty intersection
with don{f). For x € O, we have:

s(fig)(@x) = sup  Siso(,y). 1)
yeondom(f)

Proposition 11. There exist a finite number of poings, 1, .. .,y; € cl(O N dom(f)
with

S(f? g)((E) = max{s(f.,g)(xa y]) : j = Oa 17 ceey Z}
forz € O.

Proof. For fixed (f, g) andz, the value ofS(; ;) (z,y) depends piecewise linearly on
the coordinates of;, and thus its maximum value is reached for a simple path with
modes at the corners of the crescent®aindx and their coaxial points. O

Results dual to those above are obtainedt{gt g) as follows. We putl s o (x,y) =
Wy (z,y) + limf* (y). Then, we have

t(f,g)(z) = yeOmiggm(f)T(f,g) (z,9),

and there existo, y1, . - ., ¥; € cl(O N dom(f)) with

t(f,9)(x) = min{T(; g (2, y;) : 5 = 0,1,... i},
forz € O.

Corollary 6. The predicate Cons is decidable on basis eleméfits) consisting of
rational step functions.

The algorithm for deciding consistency of a rational stepchion f : [0,1]" — IR
and a rational step functian: [0, 1] — (IR)? works as follows: Recall that andg
are consistent ifé(f, g) < t(f, g). By the proof of Proposition 11, both functions can
be constructed by evaluating line integrals over simplégatith inner nodes in the set
of corners of the crescents gfthe endpoint of the line integrals and the coaxial points
of these. This is achieved by the following algorithm:

i Nnput : a rational step functions f:[0,1]” — IR
an integrable rational step function g¢:[0,1]" — (IR)?
output: true, if f is consistent with g, false otherwise.

D := connected components of dom(g)

for each C € D do
A := associated crescents of C; K := corners of C
/* = (x1,...,2,) represents the varying endpoint */

R(z) := KU{ coaxial points of K U {z}}
/* P(z) represents the paths to z */

P:= all lists (pp —% ... =} pi) where p; € R(z) are pairwise



distinct, py =z and p;,pi+1 € cl(a;) for all ¢=1,...,k—1.
for each p=(po —% ... " pr), = (00 2> ... %2 ¢) € P(z) do
/* compute upper and lower line integral */
. _ k—1
s(z) := limf~ (po) + Z:lizlo v(ai) © (pi+1 — pi)
t(x) == limf*(qo) + 3 2i—g v(a:) © (¢ — git1)
if s(x) > t(x) for some z €@ then output false; end
enddo
enddo; output true

Note thats(z) andt(x) are piecewise linear functions inwith rational coefficients,
hence we can decidgx) < ¢(x) on cl(a) by first computing the rectangles on which
boths andt are linear and then checking fer< ¢ on the corners of those.

Theorem 6. The domainD! can be given an effective structure using a standard enu-
meration of its rational basis.

7 Applications

The construction of an effective domain for differentiahlactions paves the road for
applications of domain theory in a number of areas of nuraésanalysis and computa-
tional mathematics. Here, we make a start on this by memtgptwio fields of applica-
tions which have been worked out in detail in two follow-upppes.

7.1 Robust construction of curves and surfaces

In geometric modelling, as in CAD, the standard method tostroiet curves and sur-
faces is to use the implicit function theorem to define thesengetric objects implic-
itly [2]. For example aC! surfaceg : [0,1]> — R can be specified as the zero set
{g(z,y) : f(z,y,9(x,y)) = 0} wheref : [0,1]> — Ris aC" function with 3£ # 0.
The domain for differential functions allows us to develogamain-theoretic version
of the implicit function theorem, in which the implicit fution together with its deriva-
tive are approximated by step functions. This means that fra increasing sequence
of step functions converging thand its derivative in the domain of differentiable func-
tions we can effectively obtain an increasing sequenceegf itnctions converging in
this domain to the desired surfageand its derivative. Combined with the domain-
theoretic model for computational geometry developed in ffris provides a robust
technique for geometric modelling and CAD.

7.2 A Second Order Method for Solving Differential Equations

We consider the initial value problem given by the systemitfédential equations



wherev € C'([-K, K|",[-M, M]") is a differentiable function defined on a rectan-
gle containing the origin. A first-order method for solvigs equation usually postu-
lates that the vector field is Lipschitz, and uses the Lipschitz constant to conserva-
tively approximate a solution. Assuming thats differentiable, we can locally replace
the Lipschitz constant by the derivative, giving rise tchtigy approximations. Extend-
ing the present framework to functions of interval variahlee can approximate vector
fields along with their derivatives by a pair of functiofis v') wherev : IR® — IR"
approximates the vector field anl: IR" — IR(™*™) approximates the matrix of par-
tial derivatives. Compared to the approach of interval gsial[10], we are in particular
able to give guarantees on this improved speed of conveegémgs providing a sound
and complete framework for solving the initial value prahle
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