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Abstract

We consider categories of coalgebras as (co)-fibred over a base category of parame-
ters and analyse categorical constructions in the total category of deterministic and
non-deterministic coalgebras.

0 Introduction

Coalgebras are usually described by endofunctors Ω : C → C, where the func-
tor maps a “set” of states to a structured “output” describing possible ob-
servations and successor states. Defining the functor Ω one makes free use
of parameters as for example in ΩX = A × X (to describe infinite lists with
elements in A). In this paper, we analyse functors that have (some of the) pa-
rameters made explicit in the domain. For example, we may write the above
functor for infinite lists as Ω : L × C → C, (A,X) 7→ A × X. That is, we
consider functors Ω : L× C → C where L is a category of parameters.

Apart from being natural, the idea of fibering the category of coalgebras
over its parameters has some interesting consequences. Generally speaking,
we obtain categories of coalgebras with fixed parameters as fibres, but on top
of that the total category of the fibration which allows constructions that
were not possible before. This is due to the fact that morphisms in the total
category are not simply functional bisimulations but “bisimulations with re-
labelling”. For example, making the parameters explicit allows us to define
the notion of a deterministic coalgebra functor by using an adjunction. More-
over, the total category can be analysed fibrewise, using results and techniques
from fibred category theory (see [9,3]). This will allow us to give a categorical
characterisation of parallel composition in the sense of Milner [11].

The first section introduces the notion of parameterised signatures. We
show how the collection of coalgebras making use of different parameters can
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be viewed as cofibration, or, alternatively, as co-indexed category.

The subsequent section covers examples and discusses coalgebras “living
over” different parameters in detail.

The third section answers the question whether one also has cartesian
liftings in a cofibration of coalgebras. Moreover, we give a new construction
of limits in categories of coalgebras and show how this construction is related
to the existence of cartesian liftings.

The next section uses the cofibred approach to explain the special format
of common signatures used in (behavioural) (co)algebraic specification: They
arise from an adjunction an thus induce isomorphic categories of algebras and
coalgebras.

In the last section, we show that we can lift fibrewise defined monoidal
structures (modelling eg. parallel composition or non-deterministic choice) to
the total category of the induced cofibration and give a fibrational axiomati-
sation of parallel composition.

1 The General Framework

We give an overview of co-indexed categories and cofibrations of coalgebras.
These structures arise by making (some of) the parameters in the definition
of the signature functor explicit.

1.1 Parameterised Signatures

It is crucial for the applications that the signature is also functorial in the
parameter component. This is captured in

Definition 1.1 (Parameterised Signatures) Suppose L and C are cate-
gories. A parameterised signature is a functor Ω : L × C → C. We often call
L the parameter category and write ΩL for the functor X 7→ Ω(L,X) for a
(fixed) object L of the parameter category L.

We briefly give some examples of parameterised signatures, which will be
discussed at length in section 2.

Example 1.2 (Parameterised Signatures)

(i) Input/Output automata with a variable set of inputs and outputs are
modelled by the parameterised signature Ω(I, O,X) = (O×X)I , mapping
(Setop × Set) × Set → Set.

(ii) Labelled transition systems with a variable set of labels can be considered
as given by the parameterised signature

Ω : Set × Set → Set

(L,X) 7→ P(L×X)
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or, alternatively, by the signature

Ω̂ : Setop × Set → Set

(L,X) 7→ P(X)L.

Note that the functors ΩL and Ω̂L are naturally isomorphic for fixed
L. The differences between these two signatures will be discussed in
section 2.2.

(iii) Structures for propositional modal logic over a variable set of atomic
propositions can be captured by the parameterised signature Ω(P,W ) =
2P ×P(W ), mapping Setop ×Set → Set. In order to avoid ambiguities,
we write the covariant powerset functor as P(·) and its contravariant
counterpart as 2(·).

1.2 Co-Indexed Categories of Coalgebras

Given a parameterised signature Ω : L × C → C, it is natural to study the
relations between categories of coalgebras CΩL

induced by different objects of
the parameter category. The resulting structure is a co-indexed category (see
A.1).

Proposition 1.3 Suppose Ω : L×C → C is a parameterised signature. Then
λ̂ = Ω(λ, idC) defines a natural transformation λ̂ : ΩL → ΩM for every λ :
L→M ∈ L.

We omit the straightforward proof and conclude

Corollary 1.4 (Parameterised signatures define co-indexed categories)
Suppose Ω : L × C → C is a parameterised signature. Then the operation
I : L → CAT defined by

I : L 7→ CΩL

λ 7→ Φ(λ)

where Φ(λ) is the functor CΩL
→ CΩM

which maps a coalgebra (C, γ) ∈ CΩL
to

the coalgebra (C, λ̂C ◦ γ) ∈ CΩM
and a morphism f : (C, γ) → (D, δ) to the

(same) morphism f : (C, λ̂C ◦ γ) → (D, λ̂D ◦ δ), is a co-indexed category.

Proof. By naturality of λ̂ it is immediate that the diagram

C
λ //

γ

��

D

δ
��

ΩL(C)
ΩL(λ)

//

λ̂C

��

ΩL(D)

λ̂D

��

ΩM (C)
ΩM (λ)

//ΩM (D)
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commutes. 2

1.3 Cofibrations of Coalgebras

We can also take a fibrational approach and regard the co-indexed category
constructed above as cofibration via the Grothendieck construction (see A.5).
It turns out that we can characterise the resulting cofibration in elementary
terms.

Definition 1.5 Suppose Ω : L × C → C is a parameterised signature. The
cofibration induced by Ω is given by the following data:

(i) Objects of E are pairs (L, (C, γ)) with (C, γ) ∈ CΩL
, that is, γ : C →

Ω(L,C) is a coalgebra structure for C.

(ii) Morphisms from (L, (C, γ)) to (M, (D, δ)) in E are pairs of morphisms
(λ : L→M, f : C → D) ∈ L × C making the diagram

C

γ

��

f
//D

δ
��

Ω(L,C)
Ω(λ,f)

//Ω(M,D)

commute.

(iii) The functor p : E → L is first projection.

Proposition 1.6 The cofibration induced by a parameterised signature Ω :
L× C → C is indeed a cofibration.

Proof. Suppose λ : L → M ∈ L and (C, γ) ∈ EL. Then an easy diagram
chase shows that (λ, idC) : (L, (C, γ)) → (M, (C,Ω(λ, idC)◦γ)) is a cocartesian
lifting of λ with domain (L, (C, γ)). 2

By making the Grothendieck construction explicit, we can now prove

Proposition 1.7 Suppose Ω : L×C → C is a parameterised signature. Then
the cofibration obtained by applying the Grothendieck construction to the in-
duced co-indexed category is (cofibrationally) isomorphic to the cofibration in-
duced by Ω.

1.4 Coalgebras Cofibred over Signatures

So far we have considered the category L as a category of parameters. This
section aims at demonstrating that we can also view L as a category of sig-
natures.

Note that in the proof of 1.4 and 1.6 we only needed naturality conditions
in order to show that the structure defined was a co-indexed category / cofi-
bration, respectively. This allows us to consider a parameterised signature as
a (possibly non-full) subcategory of the functor category [C, C]. We restrict
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ourselves to the cofibrational case and show that we do not gain generality by
following this approach.

Definition 1.8 (Functorially Parameterised Signatures) Suppose S ⊆
[C, C] is a subcategory. We call S a functorially parameterised signature and
define the induced cofibration by

(i) Objects of E are pairs (F, (C, γ)) with F : C → C ∈ S and (C, γ) ∈ CF .

(ii) Morphisms from (F, (C, γ)) to (G, (D, δ)) in E are pairs (η, f) where η :
F → G and f : C → D make the diagram

C

γ

��

f
//D

δ
��

F (C)
ηD◦Ff

Gf◦ηC

//G(D)

commute. (Note that ηD ◦ Ff = Gf ◦ ηC by naturality of η.)

(iii) The functor p : E → L is first projection.

An easy calculation shows

Proposition 1.9 Suppose S ⊆ [C, C] is a functorially parameterised signa-
ture.

(i) The functor p defined above is a cofibration.

(ii) The cofibration p defined above is isomorphic (in the category CoFib) to
the cofibration induced by the parameterised signature

Ω : S × C → C, (F,C) 7→ F (C).

This allows us to relate coalgebras arising from structurally different sig-
natures, as shown by the next example.

Example 1.10 (Lists and Transition Systems) Suppose the functorially
parameterised signature is given by the (full) functor category S = [Set,Set].
We view the functors Ω1X = L×X and Ω2X = P(L×X) as parameters and
consider the induced cofibration. Since ηX = λ(l, x).{(l, x)} : Ω1X → Ω2X is
a natural transformation, we obtain a (cocartesian) morphism

(η, idC) : (C, γ) → (C, ηC ◦ γ)

which allows us to view an infinite List γ : C → L×C as a labelled transition
system ηC ◦ γ : C → P(L× C).

1.5 Characterisation of Cocartesian Morphisms

As we have seen in the proof of 1.6, the cocartesian lifting of a morphism can
be constructed as identity morphism on the carriers. It is a natural question
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to ask, whether the converse is also true. This is answered by the following
theorem.

Theorem 1.11 (Cocartesian Morphisms) Suppose Ω : L × C → C is a
parameterised signature and p : E → L the induced cofibration.

(i) If (λ, f) : (L,C) → (L′, C ′) ∈ E and f is an isomorphism, then (λ, f) is
decomposable, that is, (λ, f) = (λ, idC′) ◦ (idL, f).

(ii) A morphism (λ, f) is cocartesian iff f is an isomorphism in C.

Proof. The first assertion is immediate if we consider the diagram

C

γ

��

f //C ′

γ̂
��

id
C′

//C ′

γ′

��

Ω(L,C)
Ω(idL,f)

//Ω(L,C ′)
Ω(λ,id

C′ )
//Ω(L′, C ′)

where γ̂ = Ω(idL, f) ◦ γ ◦ f−1.

For the characterisation of cocartesian morphisms, consider the situation
in definition A.3: C

f //

g

))TTTTTTTTTTTTTTTTTTTT C ′

∃!h

  

p

��

C ′′

L
λ //

µ

))TTTTTTTTTTTTTTTTTTTT L′

∀ν

  B
BB

BB
BB

B

L′′

If we define h = g ◦ f−1, it is clear that h is the only arrow which makes
the upper triangle commute. It remains to show that (ν, h) ∈ E . Let γ̂ =
Ω(idL, f) ◦ γ ◦ f−1 as above and consider the commuting diagram

C ′

γ̂

��

f−1

//C

γ

��

g
//C ′′

γ′′

��

Ω(L,C ′)

Ω(λ,id
C′ )

��

Ω(µ,id
C′ )

%%J
JJJJJJJJJJJJJJJJJ

Ω(idL,f
−1)

//Ω(L,C)

Ω(g,idC)

��

Ω(µ,g)

%%J
JJJJJJJJJJJJJJJJJ

Ω(L′, C ′)
Ω(ν,id

C′ )
//Ω(L′′, C ′)

Ω(id
L′′ ,f−1)

//Ω(L′′, C)
Ω(id

L′′ ,g)
//Ω(L′′, C ′′)

Note that the outer left arrow Ω(λ, idC′) ◦ γ̂ = γ′ and the lower horizontal
arrow Ω(idL′′ , g) ◦ Ω(idL′′ , f−1) ◦ Ω(ν, idC′) = Ω(ν, h).
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In order to see that a cocartesian arrow is an isomorphism, we dualise the
well known result from the theory of fibrations: Cocartesian liftings are unique
up to isomorphism.

2

1.6 Cocartesian Morphisms preserve Bisimulations

Since we have characterised cocartesian morphisms as pairs (λ, f) where f is
an isomorphism in the category of carriers, it is easy to show, that cocartesian
morphisms are compatible with the notion of bisimulation in the fibres. In the
case of C = Set and Ω : Set → Set, a bisimulation between two coalgebras
(C, γ) and (D, δ) is a a relation B ⊂ C ×D on the carriers of the coalgebras,
which can be endowed with a transition structure β : B → ΩB, which turns
the projections πC : B → C and πD : B → D into coalgebra morphisms.

It is now easy to see that transporting a bisimulation between two coal-
gebras (C, γ) and (D, δ) in the fibre over L along a cocartesian lifting of a
morphism f : L → M in the parameter category yields a bisimulation. We
generalise this phenomenon to arbitrary categories.

If we view a relation between two objects C,D ∈ C as monic pair

B
πC

����
��
�� πD

��
//

//
//

−

C D,

then we call this relation a bisimulation, if there exists a coalgebra structure
β : B → ΩB, such that the legs πC and πD become coalgebra morphisms.

This allows us to formulate precisely, in which sense bisimulations are
preserved by cocartesian morphisms.

Proposition 1.12 Suppose (C, γ) and (D, δ) ∈ EL and λ : L→M ∈ L. If

B
πC

����
��
�� πD

��
..

..
..

−

C D,

is a bisimulation between (C, γ) and (D, δ) in EL, then

B

fC◦πC

		��
��
��

fD◦πD

��
..

..
..

−

Ĉ D̂,

is a bisimulation between Ĉ and D̂ in EM for any two cocartesian liftings
fC : (C, γ) → (Ĉ, γ̂) and fD : (D, δ) → (D̂, δ̂) of λ.
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Proof. It is clear that the span (fC ◦ πC , fD ◦ πD) is monic in the underlying
category C since fC and fD are cocartesian, and hence isomorphisms between
the carriers by 1.11. A transition structure β̂ : B → ΩM (B) can be obtained
by transporting a transition structure β : B → ΩL(B), which makes π1 and
π2 coalgebra-homomorphisms, along λ. 2

The above result can be seen as generalisation of the corresponding result
of [15], section 14.

1.7 Characterisation of the Total Category

The notion of morphism in the total category of a cofibration allows morphisms
between coalgebras of different signature functors. It is therefore surprising,
that we can characterise this category as a category of coalgebras of an end-
ofunctor, dispensing with the fibrational structure. The resulting description
is sometimes easier to work with, technically, and will be used in section 4.

Proposition 1.13 (Characterisation of the Total Category)
Suppose Ω : L × C → C is a parameterised signature and L has a terminal
object 1. If Ω̂ is defined by

Ω̂ : L × C → L× C, (L,C) 7→ (1,Ω(L,C))

then the category (L× C)Ω̂ of Ω̂-coalgebras is isomorphic to the total category
E of the cofibration induced by Ω.

2 Examples of Cofibred Structures

As we have seen in the previous sections, cofibred structures given by param-
eterised signatures induce a category, which relates coalgebras with different
signatures. This section discusses four examples and explains the meaning of
cocartesian morphisms.

2.1 Fibred Input / Output Automata

Deterministic input/output automata are generally modelled as coalgebras
for the signature functor ΩX = (O ×X)I , where I is a set of possible inputs
and O is a set of outputs. If we want to transform an automaton A with
input set I and output set O into an automaton A′ with inputs from I ′ and
outputs in O′, we would first translate the inputs for A′ to inputs for A by
means of a translation function i : I ′ → I, then feed the translated inputs into
the automaton A and translate the outputs of A by means of a translation
function o : O → O′.

This construction can be made explicit by considering inputs and outputs
of the automata as parameters of the signature. Note that in order to trans-
form an automaton with inputs I into an automaton with inputs I ′, we need
a function I ′ → I, which goes in the opposite direction.

8
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This gives rise to a parameterised signature for deterministic input/output
automata:

Aut : (Setop × Set) × Set → Set, (I, O,X) 7→ (O ×X)I

An object of the total category E of the induced cofibration is given by a
pair (I, O) of input/output sets and a coalgebra (C, γ), whose structure maps
C → (O × C)I . The projection functor p maps every object of E to the pair
of corresponding parameters.

In order to avoid cumbersome notation, we simply write (C, γ) ∈ E(I,O) for
the object ((I, O), (C, γ)) in the fibre over (I, O).

A morphism between two coalgebras (C, γ) ∈ E(I,O) and (C ′, γ′) ∈ E(I′,O′)

is given by a triple of maps (iop, o, f) ∈ Setop × Set × Set, where

• i : I ′ → I translates the inputs

• o : O → O′ translates the outputs and

• f : C → C ′ is a function on the carriers

such that the diagram

C

γ

��

f //C ′

γ′

��

(I × C)I
(o×f)i

// (O′ × C ′)I
′

commutes.

Suppose we have two translation functions i : I ′ → I and o : O → O′.
Then the pair (iop, o) is a morphism in the base category Setop × Set. Given
a coalgebra (C, γ) ∈ E(I,O), the codomain of a cocartesian lifting with do-
main (C, γ) is constructed by means of the natural transformation ηC =
Aut(iop , o, idC) : Aut(I, O) → Aut(I ′, O′) and models the translation proce-
dure described above: We get the coalgebra with carrier C ′ = C and structure
map γ′ = ηC ◦ γ, that is, γ′(c) is the function which maps an input x ∈ I ′ to
the output o(γ(c)(i(x)).

If we consider an automaton which has the capability of producing either
a bottle of beer or a bottle of water after having pressed the appropriate but-
ton, we can view the buttons [beer] and [water] as inputs and consider the
item produced (that is, beer and water) as outputs of the automaton. If
i : {[beer]} → {[beer], [water]} is the inclusion and o : {beer, water} →
{beer, water} is the identity function, then a cocartesian lifting of the mor-
phism (iop , o) maps an automaton γ : C → ({beer, water} × C){[beer],[water]}

to the corresponding automaton γ′ : C → ({beer, water} × C){[beer]}, which
behaves as γ, except for the fact, that the user cannot press the button [water]
any longer. That is, we have effectively removed the button [water] from the
automaton, but have retained the capability of producing water. The section
on cartesian liftings will show, how we can transform the resulting automaton
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into one which also the capability of producing a bottle of water removed.

2.2 Labelled Transition Systems

Labelled transition systems (with labels in a set L) can be seen as coalgebras
for the functor ΩLX = P(L×X). Note that this functor is naturally isomor-
phic (for fixed L) to the functor Ω̂LX = P(X)L, where the label set L now
appears in a contravariant position. We have thus two choices if we want to
make the parameter explicit, both yielding the categories SetΩL

as fibres of
the resulting cofibration p : E → Set. We can either define

Ω : Set × Set → Set, (L,X) 7→ P(L×X)

and treat the parameters covariantly, or else we can define

Ω̂ : Setop × Set → Set, (L,X) 7→ P(X)L

and view the parameters contravariantly. Note that this distinction does not
become visible until we consider the set L as parameter.

We shall investigate both cases by considering cocartesian liftings of a
function λ : L → L′ ∈ Set. Let us first treat the parameters covariantly and
consider the total category induced by Ω. Given a coalgebra (C, γ) ∈ EL and
the morphism λ : L→ L′ ∈ Set, the cocartesian lifting (λ, idC) of λ maps the
coalgebra (C, γ) to a coalgebra (C, γ′) in the fibre over L′ as in the diagram

C
idC //

γ

��

C

γ

��

P(L× C)

P(λ×idC)
��

P(L× C)
P(λ×idC)

//P(L′ × C)

That is, the codomain of the cocartesian lifting is a transition system with
the same states as (C, γ), where the transition structure is defined by first
computing the set T ⊆ L × C of γ-transitions and then applying λ to the
resulting labels. We can thus view the cocartesian lifting as relabelling and
the labels as outputs of the transition system, corresponding to the fact that
L appears in a covariant position.

We now treat the contravariant case and consider the total category Ê
induced by the signature functor Ω̂. The function λ : L → L′ now becomes
a morphism λop : L′ → L ∈ Setop . If we have a coalgebra (C ′, γ′) ∈ ÊL′ and
compute the cocartesian lifting of λop , we obtain a coalgebra (C ′, γ) ∈ ÊL,
which maps a state c ∈ C ′ to the function which, given l ∈ L, returns the set
C̃ = γ(λ(l)) ⊆ C ′ of successor states. That is, from a state c ∈ C ′, we can
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make a transition c
l
→ c′ by means of γ, if we can make a transition c

λ(l)
→ c′

by means of the (original) transition system (C ′, γ′).

If the function λ : L → L′ ∈ Set is an inclusion, this means we can make

a transition c
l
→ c′ from c ∈ C ′ with label l ∈ L by means of γ, if we can

make the same transition (with the label l′ = λ(l) ∈ L′) by means of γ′. So
cocartesian liftings of inclusion functions correspond to restriction, if we treat
the parameters contravariantly.

2.3 Fibred Models of Modal Logic

We consider propositional modal logic over a set P of propositional variables.

A structure of a modal language is given by a set W of possible worlds,
a transition relation →⊆ W ×W which describes the successors of a world
w ∈W and a valuation function V : W ×P → {true, false}, which assigns a
meaning to every propositional variable p ∈ P in every possible world w ∈ W .

This structure can be viewed as coalgebra γ : W → P(P ) × P(W ), which
assigns to every world w ∈W the set of possible successors of w and the set of
propositional variables, which are valid in world w, ie. we have p ∈ π1(γ(w))
iff V (w, p) = true.

It is now natural to view models of propositional modal logic as parametric
in the set P of propositional variables. As in the transition system example
above, we can consider the occurrence of P either covariantly (in which case
both powerset functors are covariant) or contravariantly (in which case the
first powerset functor is contravariant).

Note that every function λ : P → P ′ between two sets of propositional
variables induces a translation T : MLP → MLP ′ of the language MLP of
modal logic over the set P of propositional variables to the language MLP ′.
On the other hand, we would like to be able to transform structures for the
language MLP ′ into structures for MLP in such a way that the translation of
the structures is compatible with the translation of the formulas. This leads
us to define the parameterised signature for modal logic

ML : Setop × Set → Set, (P,W ) 7→ 2P × P(W ).

In order to be able to distinguish the covariant and contravariant powerset
functors notationally, we write the latter as 2(·). We now investigate co-
cartesian morphisms in the total category E of the induced cofibration. Let
λop : P → P ′ be a function and suppose that (W ′, γ′) ∈ EP ′. The construction
of a cocartesian morphism f over the morphism λ ∈ Setop yields a coalgebra
(W, γ), whose transition structure validates a propositional variable p ∈ P in
a world w ∈ W , iff λ(p) is valid in world w according to the structure γ′. 1

1 For an explicit description of the cocartesian lifting λ+(W ′, γ′) let λ− = λop
−1

: 2P
′

→ 2P .
Then λ+(W ′, γ′) = (W ′, 〈λ− ◦ π1 ◦ γ′, π2 ◦ γ′〉.
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If λ+ : EP ′ → EP is the functor induced by λ (see A.9), this results in the
relation

(W ′, γ′) |= T (φ) ⇐⇒ λ+(W ′, γ′) |= φ

for all formulas φ ∈ MLP , where the translation T : MLP → MLP ′ is
inductively defined by translating each propositional variable p ∈ P into the
variable λop(p) ∈ P ′.

3 Limits and Cartesian Liftings

This section first reviews factorisation structures which are then used to prove
the existence of limits in categories of coalgebras and the existence of carte-
sian liftings in cofibrations of coalgebras. Note that the existence of limits
is particularly interesting in case of the existence of cartesian liftings: the
reindexing functors induced by cartesian liftings preserve limits.

3.1 Factorisation Structures for Sinks

The proof of the existence of limits and cartesian liftings uses factorisation
structures for sinks, a concept dual to the factorisation structures for sources
used in Adámek, Herrlich and Strecker [1] to analyse algebraic categories.

We first explain briefly the use of factorisation structures for sinks in cat-
egories of coalgebras. See also the appendix and, for full information, dualise
[1], chapter 15.

Definition 3.1 (sinks) A sink (B, (si)i∈I) consists of an object B and a class
of morphisms si : Ai → B.

We often write (si) for sinks. 2 Most notions concerning morphisms trans-
fer to sinks in an obvious way, e.g. composition f ◦ (si) = (f ◦ si). Also, (si)
is called an epi-sink iff for all f, g : B → C it holds that f ◦ (si) = g ◦ (si) ⇒
f = g.

The interest in sinks comes from the following common situation. Given
a coalgebra B and morphisms si : Ai → B, we want to form the union of the
images of the si and we want this union to be a (uniquely defined) coalgebra.
That this can be done for coalgebras over sets follows from Rutten [16], the-
orem 6.4. Here, we use factorisation structures for sinks to give an abstract
description of this construction. The advantages of the use of factorisation
structures are that proofs get simpler and results more general.

The idea of factorisation structures for sinks is simply to require that the
category of coalgebras under consideration is equipped with a collection E of
sinks and a class M of morphisms such that every sink (si) factors uniquely
as (si) = m◦ (ei) for some (ei) ∈ E and m ∈M . We then consider the domain

2 This notation is convenient but somewhat dangerous in the case of empty sinks (B, {})
because then the object B is not implicit anymore in the collection (si).

12
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of m as the union of the images of the si, and m as the natural embedding.
The formal definition is recalled in the appendix.

We still need another definition:

Definition 3.2 (final sinks) Let (B, (si)i∈I) ∈ C be a sink and U : A → C a
faithful (i.e. forgetful) functor. Then (si) is called final iff for all f : UB → UC

it holds that if there is a sink (ti) ∈ A such that f ◦ (Usi) = Uti then there is
a morphism g : B → C ∈ A such that Ug = f .

We can summarise the use of factorisation structures for coalgebras in the
following theorem (for the definition of a factorisation structure for morphisms
see the appendix):

Theorem 3.3 Let C be a wellpowered category that has equalisers and coprod-
ucts. Let (EC,MC) be a factorisation structure for morphisms such that MC

contains the equalisers (regular monos) of C. Let Ω be a functor on C such
that Ω(MC) ⊂ MC.

3 Let U : CΩ → C be the corresponding forgetful functor.
Then:

• (EC,MC) can be extended uniquely to a factorisation structure for sinks
(EC,MC). Moreover, sinks in EC are epi.

• (E,M) = (U−1EC , U
−1MC) and (E,M) = (U−1EC, U

−1MC) are factorisa-
tion structures for CΩ. In particular, factorisations in CΩ are calculated as
in the base category C. Moreover, sinks in E are final.

Proof. The unique extension follows from [1], 15.19, 15.20. The main point
is the following. Since C has coproducts, is wellpowered, and has (EC ,MC)-

factorisations we can write every sink (si : Ai → B)i∈I as Ai
gi

→ Σj∈JAj
f
→ B

for an appropriate J ⊂ I and a unique f . Now factoring f = m ◦ e, m ∈ MC,
e ∈ EC, gives (si) = m ◦ (e ◦ (gi)) as an (EC,M)-factorisation of (si). Sinks in
EC are epi because C has equalisers and they are in MC , see [1], 15.7.

(E,M) is a factorisation structure because of Ω(MC) ⊂ MC . (E,M) is
the unique extension of (E,M) to sinks: This extension exists because CΩ

inherits coproducts and wellpoweredness from C. This extension is indeed
(E,M) because U preserves coproducts and (E,M)-factorisations. Sinks in E
are final because they are epi as sinks in EC (compare Rutten [16], 2.4). 2

3.2 Factorisation Structures in Cofibrations of Coalgebras

We show how a factorisation structure for morphisms in the base category can
be lifted to the total category. In this paper, the material of this section is
only needed for section 3.4.1.

Let Ω : L×C → C, (EC,MC), (EL,ML) be factorisation structures for C, L,
respectively. We can then factor every morphism (λ, f) : (C, γ) → (D, δ) ∈ E
over λ : L→ L′ using the factorisations λ = µ◦η and f = m◦ e with µ ∈ML,

3 The condition Ω(MC) ⊂ MC is not needed in case of C = Set.

13
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η ∈ EL, m ∈MC, e ∈ EC:

C - C - C̄ - C̄ - D

(η, idC) (idL̄, e) (µ, idC̄) (idM , m)

Ω(L,C)

γ
?

- Ω(L̄, C)

γ1
?

- Ω(L̄, C̄)

γ2
?

- Ω(L′, C̄)

γ3
?

- Ω(L′, D)

δ
?

The first and the third square are cocartesian liftings. The composition
(η, e) of the first two squares is an epi in E , the composition (µ,m) of the last
two squares is a mono in E . We have to show that there is γ2 making the
diagram commute. γ1 is defined via the cocartesian lifting of η. Now, e being
in EC , γ2 can be obtained as a diagonal fill-in provided that Ω(µ,m) ∈MC.

4

Definition 3.4 Assuming the notation of this subsection, we define E to be
the class of arrows (η, e) ∈ E such that η ∈ EL, e ∈ EC, and M to be the class
of arrows (µ,m) ∈ E such that µ ∈ ML, m ∈MC.

Theorem 3.5 Let Ω : L × C → C be a functor, p : E → L the corresponding
cofibration of coalgebras. Let (EC,MC), (EL,ML) be factorisation structures
for C, L, respectively. Assume, moreover, that Ω(µ,m) ∈MC for all µ ∈ML,
m ∈ MC (or, for C = Set, that Ω(µ, idC) ∈ MC for all µ : L → L′ ∈ ML,
L = {}, {} 6= C ∈ C). Then (E,M) is a factorisation structure for morphisms
in E .

Proof. E,M are closed under isos because (EC,MC), (EL,ML) are closed
under isos and because an arrow in E is iso only if each component is iso.
Existence of a factorisation follows from the diagram above. The unique diag-
onalisation property follows from (EC,MC), (EL,ML) having this property. 2

Note that this factorisation structure can in general not be extended to a
factorisation structure for sinks because E is generally not wellpowered.

3.3 Construction of Limits

In categories of coalgebras colimits usually exist and are constructed as in the
base category. Conditions under which categories of coalgebras are complete
have been given by Power and Watanabe [13] and Worrell [19]. The differences
to our approach are discussed at the end of this subsection.

An important point about the theorem below is that it really helps to
calculate limits. Consider Rutten’s example [15] of the following coalgebra A

4 In case of C = Set the diagonal fill-in always exists if C̄ is empty. Using that monos in
Set with non-empty domain are split, it is enough to require that Ω(µ, idC) ∈ MC for all
µ : L → L′ ∈ ML, L = {}, and C 6= {}.

14
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for the (finite) powerset functor:

s0

s1
�

s2

-

(The carrier of A is {s0, s1, s2} and the transition relation is as depicted in
the diagram.) As Rutten remarks, the product A × A is not the largest
bisimulation because the product has too many states (the largest bisimulation
has 5). The reason for this is that the largest bisimulation has different possible
transition relations which all have to be embeddable in the product. But
still, the product is finite. This changes when we allow in the coalgebra A

transitions from s1 and s2 to s0. The reader might wish to prove these remarks
using the construction in the proof of the theorem below.

Theorem 3.6 Let A be an (E,M)-category and U : A → C a faithful functor
with right adjoint F . Suppose that sinks in E are final. Then A has every
type of limit that C has. In particular, A is complete if C is.

Proof. Let D : I → A be a diagram in A. Let ci : L → UDi be the limit of
UD in C. Consider the cofree coalgebra FL over L and let ǫ : UFL → L be
the arrow given by the counit of the adjunction.

C UFL

A
g#

sj
-

e j
-

FL

m
?

UA
g

-

Ug
# -

L

ǫ
?

Di

f
i -

UDi

ci
?

Uf
i -

Let A be a coalgebra and fi : A → Di a cone for the diagram D. Since
L is a limit of UD, there is a unique g : UA → L ∈ C such that Ufi = ci ◦ g.
Since FL is cofree g lifts to a unique g# : A→ FL such that ǫ ◦ Ug# = g.

We have seen that every cone fi : A → Di gives rise to a g# : A → FL.
Consider the sink (sj) consisting of all these g#. We can now define the limit
C of D: Let (sj) = m ◦ (ej) be a factorisation and C the domain of m.

To find the limiting cone consider li = ci ◦ ǫ ◦ Um. By definition of (sj),
for all i ∈ I we have that there is a sink (fij) ∈ A, such that li ◦ (Uej) =
ci ◦ ǫ ◦ (Usj) = U(fij). Since (ej) is final there are l′i : C → Di such that
Ul′i = li. Since U is faithful and li is a cone for UD, the l′i are a cone for D
(and the unique one with Ul′i = li).

It remains to show that l′i is a limiting cone for D. That every cone in
A over D factors through l′i : C → Di follows from the definition of (sj),
uniqueness from m being mono. 2
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Corollary 3.7 Let Ω be an endofunctor on C and suppose that U : CΩ → C
has a right adjoint. Under the assumptions of theorem 3.3 it holds that CΩ has
every type of limit that C has and the limit is constructed as in the proof of
the theorem.

Corollary 3.8 Let Ω be a functor on Set such that U : SetΩ → Set has a
right adjoint. Then SetΩ is complete.

Finally, let us compare our result with the ones in Power and Watanabe [13]
and Worrell [19]. The result of Power and Watanabe states that if the base
category C is locally presentable and Ω is accessible then CΩ is complete.
(They also show that under these assumptions U has a right adjoint.) The
result of Worrell (obtained by dualising a corresponding result on algebras for
a monad) states that a category of coalgebras for a comonad is complete if it
has equalisers and the base category is complete. (Here, the right adjoint of
U is built into the notion of a comonad.)

We have seen that all three results involve in some form the existence of a
right adjoint of the underlying functor U . A difference lies in the relationship
of the limits in C and the limits in CΩ. [13,19] use completeness of the base
category C to show completeness of CΩ. (And [19] moreover needs that CΩ has
equalisers.) We have a sharper result: for every type of limit in C we show
how the corresponding limit in CΩ is obtained. This is essentially dual to the
fact that ‘algebraic’ functors detect colimits, see [1], 23.11.

During the writing of this paper, a construction similar to theorem 3.6 has
independently been given by Gumm and Schröder [7]. In fact, their proof is
essentially the same as ours specialised to C = Set, A = SetΩ and the limit
under consideration being the product.

3.4 Cartesian Liftings

We first show how cartesian liftings of monomorphisms in the label category
can be obtained. We then give a more abstract construction parallelling the
construction of limits in section 3.3.

First, a useful lemma. We recall that, given a functor p : E → L, an
arrow f ∈ E is called weakly cartesian iff for all g over pf there is g′ such that
g = f ◦ g′ and pg′ = id.

Lemma 3.9 In a cofibration, every weakly cartesian morphism is cartesian.

3.4.1 Cartesian Liftings of Monos

Let p : E → L be a cofibration, λ : L→ L′ ∈ L a mono, (D, δ) a coalgebra over
L′. We want to describe the cartesian lifting ∗(λ, (D, δ)) : λ∗(D, δ) → (D, δ).
In the case that we can form unions of coalgebras we can define (C, γ′) as
the union of all (D′, δ′) →֒ (D, δ) such that δ′ factors through Ω(λ, idD′) :
Ω(L,D′) → Ω(L′, D′). Assuming that λ mono implies Ω(λ, idD′) mono, γ′

factors as γ′ = Ω(λ, idD′) ◦ γ for some γ. Now define λ∗(D, δ) to be (C, γ) and
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the cartesian lifting to be the corresponding embedding.

Let us take as an example Ω(L,X) = P(L × X), λ : L →֒ L′ ∈ L and a
coalgebra (D, δ) a over L′. Then (C, γ) = λ∗(D, δ) is the largest subcoalgebra
of (D, δ) such that no label in L′−L is produced. In contrast to the restriction
corresponding to cartesian liftings of monos in Winskel and Nielsen [18] our
restriction throws away all states of D that can possibly produce some l ∈ L′−
L in some future. The restriction of Winskel and Nielsen [18] only eliminates
transitions that produce labels from L′−L. We have seen that we can describe
this kind of restriction via a cocartesian lifting of the functor (PX)L.

The functor (PX)L shows a different behaviour. A mono λ : L → L′ in
Setop is now an epi λop : L′ → L. Given (D, δ) over L′, λ∗(D, δ) is calculated as
follows. First do a relabelling with λop , yielding (D′, δ′) over L. Next, take the
largest subcoalgebra (C, γ) of (D′, δ′) such that for all c1 ∈ C, (l′, c2) ∈ δ(c1)
only if (l′′, c2) ∈ δ(c1) for all l′′ ∈ L′ such that λop(l′) = λop(l′′).

For a third example reconsider the beer and water automaton (C, γ) from
section 2.1. Suppose, we want to remove the capability of producing water
by using a cartesian lifting of o : {beer} →֒ {beer, water} (and the identity
on the inputs). We have to be bit careful. As in the previous example of
P(L × −), the cartesian lifting (id, o)∗ removes all states from (C, γ) that
can possibly produce a water in some future, i.e., (id, o)∗(C, γ) can neither
produce any beer. The correct way to proceed is to first apply the cocartesian
lifting of (iop , id{beer,water}) (see section 2.1) to (C, γ) and then (id{[beer]}, o)

∗

to the result.

In the following we give a more abstract construction using factorisation
structures.

Proposition 3.10 Suppose that the assumptions of theorem 3.5 hold and that
C is wellpowered and has coproducts. Then the cartesian liftings of λ : L→ L′

in ML are obtained as follows. Let D be a coalgebra over L′. Consider the
factorisation (si) = m ◦ (ei) of the sink si : Ci → D of all morphisms over λ
with codomain D. Then m is the cartesian lifting.

Proof. m is over λ: Because C has coproducts, the fibre over L has. Because C
is wellpowered, there is—up to isomorphisms—only a small set of morphisms
si : Ci → D. The factorisation (si) = m ◦ (ei) can now be obtained via
the (E,M)-factorisation of the induced morphism ΣCi → D. Recalling the
definition of (E,M)-factorisations before the proof of theorem 3.5 it follows
that m is over λ.

m is weakly cartesian: Existence of the factorisation is obvious from the
definition of the sink (si). Uniqueness follows from m being mono. 5 It follows
that m is cartesian by lemma 3.9. 2

In the above proposition, one can equivalently define the sink si : Ci → D

to consist of all monos over λ. This explains why the construction at the

5 Here we need that MC, ML only contain monos, see definition B.1
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beginning of this subsection is a special case of the more general one of the
proposition.

3.4.2 The General Case

The construction above only works for monos λ ∈ L. Trying to apply the
construction to epis, we could still form the sink (si) as in proposition 3.10,
but the mono m resulting from the factorisation would not be over λ anymore.

Moreover, it can be shown that cartesian liftings of epis do not exist in gen-
eral for coalgebras of type P(L×X) or (PX)L. We show this for (PX)L. Let
p : E → L be the corresponding cofibration. E has a terminal object, namely
1 → (P1){}. From the existence of cartesian liftings and {} being terminal
in Setop , it would now follow that every fibre has a terminal coalgebra. But
it is well-known that this is not the case (recall that Set(PX)L and SetP(L×X)

are isomorphic for fixed L). A similar (but more complicated) argument also
applies to the functor P(L×X).

On the other hand, it can be seen that some cartesian liftings do exist even
for epis λ : L → L′. For an example take coalgebras of type P(L × X) and
L = {l1, l2}, L

′ = {l1} and λ the corresponding unique map. Consider the
following diagram

• • • •

+ + −→

•
�

l 1

•

l2

-

•

l1
?

•

l2
?

•

l1
?

where the right hand side indicates a coalgebra over L′ and the left hand side
is the domain of the respective cartesian lifting.

One answer to the question of the existence of cartesian liftings is the
following. If we can avoid the size problems that were responsible for the
counterexample above, then cartesian liftings do exist. The proof uses the
same idea as the construction of limits in section 3.3.

Theorem 3.11 Let C be a category and Ω : L × C → C a functor satisfying
(fibrewise) the assumptions of theorem 3.3. Suppose, moreover, that the for-
getful functor UL : CΩL

→ C has a right adjoint FL for each L ∈ L. Then
cartesian liftings exist and are constructed as shown in the proof.

Proof. Let λ : L → L′ ∈ L, (D, δ) a coalgebra over L′, (FLD, φ) the cofree
coalgebra over D in the fibre over L, and ǫ : ULFLD → D the counit in
D of the adjunction UL ⊣ FL. Consider an arbitrary morphism (λ, si) =
(Ai, αi) → (D, δ) over λ with codomain (D, δ). By cofreeness, there is a unique
(idL, s

#
i ) : (Ai, αi) → (FLD, φ) such that si = ǫ◦s#

i . By the assumptions of the
theorem we can factor (s#

i ) = m◦ (ei) in the fibre over L. Now define λ∗(D, δ)
to be (C, γ) and the cartesian lifting of λ to be (λ, ǫ ◦m). Because of (λ, si) =
(idL, ei) ◦ (λ,m ◦ e) and (Uei) being epi in C, (λ, ǫ ◦m) is indeed a morphism.
It is weakly cartesian by construction and cartesian by lemma 3.9. 2
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4 Coalgebras for Deterministic Functors

This section uses the cofibred approach to show that common signatures used
in (behavioural) (co)algebraic specification as e.g. in [6,8] are part of an ad-
junction and thus give rise to isomorphic categories of algebras and coalgebras.

Given a functor Ω : L × C → C recall the characterisation of the total
category and the definition of Ω̂ : L × C → L× C in section 1.7.

Definition 4.1 (deterministic functor) We call a category A a category
of coalgebras for a deterministic functor iff there is Ω : L × C → C such that
Ω̂ has a left adjoint and A is isomorphic to a fibre of the cofibration induced
by Ω.

Example 4.2 In all examples Ξ : Set → Set, A = SetΞ, C = Set, A,B ∈
Set.

(i) Let ΞX = XA. Then SetΞ is a category of coalgebras for a deterministic
functor as witnessed by L = 1, Ω̂ = Ω = Ξ.

(ii) Let ΞX = B. Then SetΞ is a category of coalgebras for a deterministic
functor as witnessed by L = Set and Ω(B,X) = B. The left adjoint of
Ω̂ is Σ(B,X) = (X, 0).

(iii) Let ΞX = B×X. Then SetΞ is a category of coalgebras for a determin-
istic functor as witnessed by L = Set and Ω(B,X) = B × X. The left
adjoint of Ω̂ is Σ(B,X) = (X,X).

(iv) Let ΞX = X +X. Then SetΞ is a category of coalgebras for a determin-
istic functor because ΞX ≃ 2 ×X.

(v) The functor ΞX = X +X2 (and the functors X 7→ 1+X and X 7→ PX)
do not give rise to coalgebras for a deterministic functor. 6

The interest in the notion of a deterministic functor comes from the

Proposition 4.3 Let Ω : D → D be a functor and Σ a left adjoint of Ω.
Then the category DΩ of Ω-coalgebras is isomorphic to the category DΣ of
Σ-algebras.

Remark. This proposition justifies the term ‘deterministic functor’, at least
in the case C = Set: Since coalgebras for these functors are (isomorphic to)
algebras, there is in every state a uniquely determined transition. However,
deterministic functor is a more restricted notion than deterministic coalgebra:
We would certainly qualify a coalgebra for ΞX = X+X2 as deterministic but
not, as example 4.2(4) shows, the functor Ξ. Hence, the requirement that Ω̂
has a left adjoint does not only enforce determinism on the coalgebra but also
imposes some further constraint on the signature. In the case where C and
L have to be (products of) Set we can characterise deterministic functors as
multiplicative functors, see theorem 4.7 and its corollaries.

6 This should be rather obvious but we have no actual proof of it.
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We generalise the examples above to multiplicative functors.

Definition 4.4 (multiplicative functor) We call a functor on a cartesian
closed category multiplicative iff it is built from identity, constants, products
and exponentiation with constants.

Proposition 4.5 Let C be a bicartesian closed category and Ξ a multiplicative
functor on C. Then CΞ is a category of coalgebras for a deterministic functor.

Proof. Every multiplicative functor can be written as ΞX =
∏m

i=1X
Ai ×

∏n

j=1Bj . Making the parameters Bj explicit this can be written as a functor
Ω : C × Cn → C × Cn with

Ω

















X

B1

...

Bn

















=

















∏m

i=1X
Ai ×

∏n

j=1Bj

1
...

1

















This functor has a left adjoint Σ:

Σ

















X

B1

...

Bn

















=

















∑m
i=1Ai ×X

X
...

X

















2

Coalgebras of multiplicative type have been investigated, for example, in
[5,14,8]. The proposition above shows clearly why all of these papers use
equational logic as a logic for coalgebras: coalgebras of multiplicative type are
algebras.

Similarly, now making explicit the input parameters, we can describe cer-
tain algebras as coalgebras. For example, consider the algebras for the functor
Σ : C → C, ΣX = C + A ×X. Σ can be viewed as a functor Σ : C × C → C,
(X,C) 7→ C + A × X and also as a functor Σ : C × C → C × C, (X,C) 7→
(C + A×X, 0) where 0 denotes the initial object of C.

Proposition 4.6 Let C be a bicartesian closed category. Then for every al-
gebraic signature Σ with function symbols of arity at most one there is n ∈ N

and a functor Σ′ : C × Cn → C × Cn with (C × Cn)Σ′

≃ CΣ such that Σ and
Σ′-algebras are fibrewise isomorphic and such that Σ′ has a right adjoint.

Proof. Every one-sorted algebraic signature with function symbols of arity
at most one can be written as ΣX =

∑n
j=1Cj +

∑m
i=1Ai × X. Making the

parameters Cj explicit this can be written as a functor Σ′ : C × Cn → C × Cn
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with (0 denoting the initial element of C)

Σ′

















X

C1

...

Cn

















=

















∑n
j=1Cj +

∑m
i=1Ai ×X

0
...

0

















This functor has a right adjoint Ω:

Ω

















X

C1

...

Cn

















=

















∏m
i=1X

Ai

X
...

X

















2

Note that this proposition includes also the case of many-sorted signatures
because C itself may be a product of categories (e.g. Setn).

Algebraic signatures of this type are essentially the hidden signatures in the
sense of hidden algebra [6]. The proposition above gives a new explanation of
the special format of hidden signatures: the corresponding signature functors
have a right adjoint. In case of algebras over Set also the converse holds:
every functor that has a right adjoint is a signature for hidden algebras. The
proof generalises a proof of Arbib and Manes [2] 7 from Set to Setn.

Theorem 4.7 Let Σ,Ω be functors on Setn, X ∈ Setn. Then Σ ⊣ Ω iff there
is a (n× n)-matrix M over Set such that ΣX = MX. 8

Proof. Let 1 ≤ i ≤ n. Write Xi for the i-th component of X and Ei for the
vector in Setn that has 0 everywhere but 1 in the i-th compononent. Then
ΣX = Σ(

∑

1≤i≤nXi × Ei) =
∑

1≤i≤n Σ(Xi × Ei) =
∑

1≤i≤n Σ(
∑

|Xi|
Ei) =

∑

1≤i≤n

∑

|Xi|
ΣEi =

∑

1≤i≤nXi×ΣEi, using that Σ as a left adjoint preserves
coproducts. Now define the components of M by letting Mij be the j-th
component of ΣEi. 2

As corollaries we obtain converses to the propositions above.

Corollary 4.8 Let Ω be a functor on Setn that has a left adjoint. Then Ω is
a (many-sorted) multiplicative functor.

Corollary 4.9 Let Σ be a functor on Setn that has a right adjoint. Then Σ
is a hidden signature.

7 This proof was brought to our attention by Bart Jacobs.
8 MX is matrix multiplication, thinking of X as a vector and using the operations +,×
on sets as addition and multiplication.
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The results of this section shed a new light on hidden algebra and on
the question of whether modal or equational logics are appropriate to specify
coalgebras. Concerning hidden algebra, we can say now that hidden signatures
are precisely those signatures which give rise to an adjunction as described in
proposition 4.3. Concerning the logics, it seems now to be the case that the
equational approach is appropriate for determinstic functors and modal logic
for non-deterministic coalgebras.

(Co)-Algebras for a (Co)-Monad

We also remark that the analogue to proposition 4.3 also holds for (co)-
algebras for a (co)-monad. This follows from Borceux [3], vol.2, prop. 4.4.6.
A consequence of this is that for a comonad S = (S, ǫ, δ) and a functor T ⊣ S
there is a monad T = (T, η, µ) such that the category of S-coalgebras is iso-
morphic to the category of T-algebras, the isomorphism being given by the
natural isomorphism of the adjunction T ⊣ S.

Constructions in the Total Category

The interesting point about the total category of determinisitic coalgebras is
that all limits exist and are calculated as in the underlying category L × C.
(This follows from proposition 4.3 showing that the total category is isomor-
phic to a category of algebras.)

For a simple example consider the functor for infinite lists Ω : L × C →
C, (B,X) 7→ (B×X). The product of two given coalgebras (γ : X → A×X, δ :
Y → A×Y ) inside the fibre over A is given by the largest bisimulation. On the
other hand, the product in the total category seems to be a more interesting
construction. 9 It is given by the synchronisation β over A×A of γ and δ, β :
X×Y → (A×A)×(X×Y ), (x, y) 7→ ((π1◦γ(x), π1◦δ(y)), (π2◦γ(x), π2◦δ(y))).

5 Monoidal Structures and Parallel Composition

In the previous sections we have demonstrated that one obtains a structurally
rich framework by making parameters in the definitions of signature func-
tors explicit. This section shows, that one can transport monoidal structures,
which are present in the fibres of the cofibration considered to the total cate-
gory of the cofibration.

Monoidal structures are of interest when one wants to model operations
from process calculi like non-deterministic choice or parallel composition coal-
gebraically. The first part of this section shows that we can lift monoidal
structures, which are defined fibrewise to the total category of the cofibration
stemming from a parameterised signature. The construction given there is not

9 The largest bisimulation between γ and δ is either empty or is (considered as a list) equal
to γ and δ.
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specific to cofibrations of coalgebras. The second section gives an axiomati-
sation of parallel composition as a monoidal structure on the total category,
which relies essentially on the fibrational structure.

5.1 Lifting of monoidal structures

The material presented in this section is not specific to cofibrations of coalge-
bras. The only relation to cofibrations of coalgebras is established by means
of examples: Non-deterministic choice and parallel composition as monoidal
structures on categories of coalgebras.

Just as ordinary monoidal structures can be seen as living in the ambi-
ent category CAT, we treat monoidal structures on cofibered categories as
functors in the categories CoFib and CoFib(L), respectively. 10

We begin with

Definition 5.1 Suppose p : E → L is a cofibration.

(i) A fibrewise monoidal structure on p is a given by a pair of functors
(⊕, 1) where ⊕ : p × p → p ∈ CoFib(L) and 1 : 1 → p ∈ CoFib(L) are
functors cofibered over L satisfying A ⊕ (B ⊕ C) ∼= (A ⊕ B) ⊕ C and
A⊕ 1 ∼= A ∼= 1 ⊕ A for all L ∈ L and A,B,C ∈ EL.

Note that the product p× p is computed in the category CoFib(L).

(ii) Suppose M = (⊗L, 1L) is a monoidal structure on L. A monoidal struc-
ture (⊗E , 1E) on E is called cofibered over M , if both (⊗L,⊗E) and
(1L, 1E) are cofibered functors and p preserves the monoidal structure.

Note that the product of two cofibrations over L in the category CoFib(L)
is computed as a pullback in CAT and thus the functor ⊕ can only be applied
to objects living in the same fibres. This justifies the term fibrewise.

In the context of the ambient 2-category CoFib, the second part of the
definition is equivalent to stating that a monoidal structure N on E is cofibered
over the monoidal structure M on L, if the pair (M,N) is a monoidal structure
on p in CoFib.

Example 5.2 (Parallel Composition and non-Deterministic Choice)
We consider labelled transition systems given by the functor ΩL(X) = P(L×
X). Suppose (C, γ) and (D, δ) ∈ SetΩL

(i) If we define the coalgebra (C, γ) ‖ (D, δ) to have the cartesian product
C×D as carrier and the transition function γ ‖ δ(c, d) = {(l, (ĉ, d)) | (l, ĉ) ∈
γ(c)} ∪ {(l, (c, d̂)) | (l, d̂) ∈ δ(d)}, then ‖: SetΩL

× SetΩL
is a symmetric

monoidal structure. Note that this structure models parallel composition
as non-deterministic interleaving in the sense of Milner [11].

(ii) The coalgebra (C, γ) ⊕ (D, δ), which models non-deterministic choice,
has the coproduct C × D + C + D as carrier. Its transition function is

10 We would like to thank one of the anonymous referees for pointing this out.
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given by γ ⊕ δ(c) = γ(c), γ ⊕ δ(d) = δ(d) and γ ⊕ δ(c, d) = γ(c) ∪ δ(d),
where we have left the inclusions into the appropriate coproduct implicit.
Non-deterministic choice, viewed as functor SetΩL

×SetΩL
→ SetΩL

also
carries a (symmetric) monoidal structure.

Both monoidal structures are compatible with the cocartesian structure in-
duced by the parameterised signature Ω : L × C → L, (L,X) 7→ P(L×X).

The next proposition below states the precise relationship between fibre-
wise monoidal structures and monoidal structures on the total category of a
cofibration.

Proposition 5.3 Suppose p : E → L is a cofibration and L has binary coprod-
ucts and an initial object given by +, 0, respectively. Then there is a one-to-
one correspondence between fibrewise monoidal structures on p and monoidal
structures cofibered over (+, 0).

Proof.

(i) Suppose (⊗, 1⊗) is a fibrewise monoidal structure on p. We denote the
restriction of ⊗ and 1⊗ to the fibre EL by ⊗L and 1L, respectively, and
define

C ⊕D = in+
pCC ⊗pC+pD in+

pDD

for all C,D ∈ E and the neutral object 1⊕ of ⊕ to be the neutral object
10 of the monoidal structure ⊗0 on the fibre E0.

1⊕ = 10,

then we have to show that (⊕, 1⊕) is a monoidal structure, which is
cofibred over (+, 0). This follows directly from the fact that the ⊗ is a
fibrewise monoidal structure and that for a pair of composable morphisms
f, g ∈ L we have that (f ◦ g)+ ∼= f+ ◦ g+.

(ii) Suppose (⊕, 1⊕) is a monoidal structure which is cofibred over (+, 0). We
reverse the construction given above and define the fibrewise monoidal
structure ⊗L by

C ⊗L D = [idpC, idpD]+(C ⊕D)

for all C,D ∈ EL and
1L = ?+1⊕

where ? : 0 → L is the unique morphism from the initial object 0 ∈ L.

2

We apply the proposition to the examples above:

Example 5.4 The lifting of the parallel composition operator, as given above,
takes two coalgebras (C, γ) ∈ EL and (D, δ) ∈ EM and produces a coalgebra
(C, γ) ‖ (D, δ) in the fibre over L + M . That is, parallel composition, when
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viewed as a fibred structure, produces a transition system which produces
labels from the coproduct L + M of the originating label sets. Spelling this
out in detail, we obtain that γ ‖ δ(c, d) = {(inL(l), ĉ, d) | (l, ĉ) ∈ γ(c)} ∪
{(inM(m), c, d̂) | (l, d̂) ∈ δ(d)}.

5.2 Fibrational Characterisation of Parallel Composition

We have seen, that monoidal structures on the total category of a cofibration,
such as parallel composition, can be obtained by lifting a fibrewise defined
structure. Based on the observation, that cocartesian liftings of morphisms
model restriction when viewing parameter sets of labelled transition systems
contravariantly (as seen in section 2.2), we obtain a complementary approach
to parallel composition.

Suppose (C, γ) and (D, δ) ∈ E . Clearly, we want the parallel composition
of (C, γ) and (D, δ) to have the carrier C×D. When restricting (C, γ) ‖ (D, δ)
to labels in L = pC, we want the resulting transition system to behave like
the transition system C × D → P((L + M) × C × D), which only makes
γ-transition and leaves the second parameter untouched.

This behaviour can be be enforced if the signature functor Ω is fibrewise
strong. We just state the definition of strong functors, for more references see
[12], [4] and [9].

Definition 5.5 (Strong Functors) Suppose C has binary products. A func-
tor Ω : C → C is strong, if it is equipped with a natural transformation
st(A,B) : Ω(A) ×B → Ω(A× B) making the following diagrams commute:

ΩA× B
st //

π
''OOOOOOOOOOOO Ω(A× B)

Ωπ

��

ΩA.

(ΩA× B) × C

∼=
��

st×id //Ω(A×B) × C st //Ω((A× B) × C))

∼=
��

ΩA× (B × C) st //Ω(A× (B × C))

An easy calculation shows, that all functors Set → Set are strong and
that, moreover, the strength is uniquely determined:

Proposition 5.6 (Strong Functors on Set) Suppose Ω : Set → Set is an
endofunctor. Then there exists a uniquely determined strength st which makes
Ω a strong functor.

Proof. Suppose A and B are sets. Define st(A,B) : ΩA×B → Ω(A×B) by

st(A,B)(a, b) = Ω(λx.(x, b))(a).

An easy calculation shows that st is a (uniquely determined) strength for Ω.2
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Proposition 5.7 (Strength is Functorial) Suppose Ω : C → C is a strong
endofunctor with strength st.

(i) Then the canonical projection π : C × D → C is a coalgebra morphism
from (C ×D, st(C,D) ◦ (γ × idD))

π
→ (C, γ).

(ii) The pair (Ω, st) induces a functor

St : CΩ × C → CΩ, ((C, γ), D) 7→ (C ×D, st(C,D) ◦ (γ × idD)).

Proof. Immediate by the definition of strength. 2

Understanding coalgebra morphisms as functional bisimulations, this means
that any state in St((C, γ), D) is bisimilar to a state in (C, γ) and vice versa.
The example of labelled transition systems with labels viewed contravariantly,
where cocartesian morphisms correspond to restriction, motivates the next
definition.

Definition 5.8 (Parallel Composition) Suppose Ω : L × C → C is a pa-
rameterised signature such that every functor Ω(L, ·) is strong with strength
stL. Then Ω has parallel composition, if there exists a coalgebra structure

γ ‖ δ : C ×D → Ω(L×M,C ×D),

such that the morphisms

(L,C ×D) (L×M,C ×D)
(π1,idC×D)

oo
(π2,idC×D)

// (M,C ×D)

in L × C become morphisms

StL((C, γ), D) (C ×D, γ ‖ δ)
(π1,idC×D)
oo

(π2,idC×D)
// StM((D, δ), C)

in the total category E . Spelling this out, we require that the diagram

C ×D

γ×idD

��

C ×D
idC×Doo

idC×D //

∃γ‖δ

��

C ×D

idC×δ
��

Ω(L,C) ×D

st
��

Ω(M,D) × C

st
��

Ω(L,C ×D) Ω(L×M,C ×D)
Ω(π1,idC×D)

oo
Ω(π2,idC×D)

//Ω(M,C ×D)

commutes for all (C, γ) ∈ EL and all (D, δ) ∈ EM .

Note that the composition of the outer left and the outer right arrows,
viewed as coalgebra structures for C × D, give rise to coalgebras which are
bisimilar to C and D, respectively by proposition 5.7. The left hand and right
hand squares constitute cocartesian morphisms, since the morphisms between
the carriers are identities (1.11). We can thus view the coalgebras at the left
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and right hand side as restrictions of γ ‖ δ as in section 2.2. The next example
shows, that our definition of parallel composition matches that of Milner in
the case of labelled transition systems.

Example 5.9 (Labelled Transition Systems) Consider the parameterised
signature Ω : Setop × Set → Set, (L,X) 7→ P(X)L from section 2.2 and
suppose p : E → Setop is the induced cofibration. The strength of the functor
Ω(L, ·) is given as in the proof of proposition 5.6. If (C, γ) ∈ EL and (D, δ) ∈
EM , define γ ‖ δ(c, d) = {(l, ĉ, d) | (l, ĉ) ∈ γ(c)} ∪ {(l, c, d̂) | (l, d̂) ∈ γ(d)} as in
example 5.2. An easy calculation (keeping in mind that the products in the
label category Setop are coproducts in Set) shows that this definition fulfils
the commutativity requirement in definition 5.8.

Note that the resulting coalgebra (C, γ) ‖ (D, δ) has the same transition
structure as the one obtained by lifting a fibrewise defined monoidal structure,
but lives in a different (cofibred) category. We conclude by stating a sufficient
condition under which parallel composition of two coalgebras in a cofibrational
setting exists (and is uniquely defined):

Proposition 5.10 (Existence/Uniqueness of Parallel Composition)
Suppose Ω : L × C → C is a fibrewise strong parameterised signature and
η(L,M,C) : Ω(L,C) × Ω(M,C) → Ω(L ×M,C) is a natural transformation
such that 〈Ω(π1, idC),Ω(π2, idC)〉 ◦ η(L,M,C) = idΩ(L,C)×Ω(M,C). Then Ω has
parallel composition and for any two coalgebras (C, γ) ∈ EL and (D, δ) ∈

EM , the morphism C × D
γ‖δ
→ Ω(L ×M,C × D) which makes the diagram in

definition 5.8 commute, is uniquely determined.

Proof. Suppose (C, γ) ∈ EL and (D, δ) ∈ EM . Define γ ‖ δ by the composition

C ×D
〈γ×idC ,idD×δ〉

−→ (Ω(L,C) ×D) × (C × Ω(M,D))
st×st
−→ Ω(L,C ×D) × Ω(M,C ×D)

η(L,M,C×D)
−→ Ω(L×M,C ×D)

An easy diagram chase shows, that γ ‖ δ satisfies the commutativity require-
ment of definition 5.8.

Now suppose there exists γ‖̂δ : C × D → Ω(L ×M,C × D) also making

the diagram commute. We conclude that Φ ◦ (γ ‖ δ) = Φ ◦ (γ‖̂δ) for Φ =
〈Ω(π1, idC×D),Ω(π2, idC×D)〉 : Ω(L×M,C×D) → Ω(L,C×D)×Ω(M,C×D).

Since Φ is mono (with left inverse η(L,M,C×D)), we get that γ ‖ δ = γ‖̂δ.2

We apply the last proposition to the setting of labelled transition systems
and conclude, that in this setting, parallel composition is uniquely defined.

Corollary 5.11 Consider the parameterised signature Ω : Setop×Set → Set
of labelled transition system from example 5.9. Then Ω has parallel composi-
tion, which is uniquely defined.

Proof. We write the products in Setop as coproducts in Set and define the
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natural transformation η by

η(L,M,X) : P(X)L × P(X)M → P(X)L+M

(f , g) 7→ [f, g].

If Φ(L,M,X) = 〈Ω(inop

L , idX),Ω(inop

M , idX〉 : Ω((L + M)op , X) → Ω(L,X) ×
Ω(M,X), then the requirement Φ(L,M,X) × η(L,M,X) = id follows imme-
diately from the characterisation of products in Setop . 2

6 Open Questions and Future Research

Concerning examples, it would be interesting to investigate parameter cate-
gories that have their own structure (i.e., are not Setn).

We have seen that a functor being deterministic is a stronger requirement
than the coalgebras of the functor being deterministic. What is the precise
relationship of these notions?

Another concept that deserves a better understanding is that of the dis-
tinction between input parameters (treated contravariantly) and output pa-
rameters (treated covariantly). Although such a distinction does not exist,
e.g., in process algebra or in [18], it is fundamental to our approach: As we
have seen, (co)cartesian liftings behave quite differently on transformations of
input and output parameters.

Related to this question is the investigation of further forms of paral-
lel composition. Suppose we want to compose coalgebras for a functor Ω :
Iop ×O×C → C. The idea is to consider a composition of cofibrations: First
fibred over Iop (for fixed output parameters in O) and these cofibrations fi-
bred over O. One could then define parallel composition by first composing
w.r.t. the contravariant inputs as in definition 5.8. This would give us fibre-
wise parallel composition w.r.t. the fibering over the outputs. This fibrewise
parallel composition could then be extended to the total category by using
proposition 5.3. Another question is how to compose the inputs of one system
with the outputs of another.

We have seen in section 5 how to deal with parallel composition and choice
on the level of coalgebras. It would be interesting to investigate for coalgebras
other operations known from process algebra.

Finally let us note that the concept dual to a cofibration of coalgebras
is that of fibration of algebras. Fibrations of algebras are closely related to
the notion of an institution (see, e.g., [17]) which is widely used in algebraic
specifications. The relations are worth to be explored. (For example, we have
met a ‘co-institution’ at the end of section 2.3).
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A Co-Indexed Categories and Cofibrations

This section contains some basic definitions regarding co-indexed categories
and cofibration obtained by dualising standard material presented in [3] and
[9].

A.1 Basic Definitions

Definition A.1 (Co-Indexed Categories) Suppose L is a category. A (strict)
co-indexed category is a functor I : L → CAT.

Note that for every morphism λ : L1 → L2 ∈ L, we obtain a functor
I(λ) : I(L1) → I(L2).

Example A.2 Viewing the covariant powerset functor P as functor P :
Set → CAT by regarding the powerset P(X) of a set X as a category, we
obtain a co-indexed category.

Definition A.3 (Cofibrations) Suppose p : E → L is a functor.

(i) The fibre EL = p−1(L) of p over an object L ∈ L is the subcategory
of E consisting of those of objects E ∈ E mapped to L by p and those
morphisms mapped to the identity idL.

(ii) A morphism φ ∈ E is over a morphism f ∈ L, if pφ = f .

(iii) A morphism φ : E1 → E2 ∈ E is cocartesian, if for all ψ : E1 → E3 ∈ E
and all morphisms h : pE1 → pE3 ∈ L with h ◦ pφ = pψ, there exits a
unique morphism ρ : E2 → E3 ∈ E such that pρ = h and ρ ◦ φ = ψ, as
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illustrated by the following diagram:

E1
φ

//

∀ψ

**UUUUUUUUUUUUUUUUUUUUUUU E2

∃!ρ

""

p

��

E3

pE1
pφ //

pψ

**UUUUUUUUUUUUUUUUUUUUU pE2

∀h

""E
EE

EE
EE

E

pE3

(iv) The functor p is a cofibration, if, for all morphisms f : L → M and all
objects D ∈ EL there exists an object E ∈ EM and a cocartesian morphism
φ : D → E ∈ E over f .

Example A.4 Let E be the category whose objects are pairs (X,S) with
X a set and S ⊆ X. A morphism in E from (X,S) to (Y, T ) is a function
(morphism in Set) f : X → Y such that f(S) ⊆ T . The projection functor
p : E → Set sends an object (X,S) to X and a morphism f : (X,S) → (Y, T )
to the function f : X → Y . Then the functor p : E → Set is a cofibration.

A.2 From Co-Indexed Categories to Cofibrations

The dualised Grothendieck construction provides a method to convert a co-
indexed category to a cofibration.

Definition A.5 Let I : L → CAT be a co-indexed category. The co-fibration
induced by I is the functor p : E → L given as follows:

(i) Objects of E are pairs (L,C) with L ∈ L and C ∈ I(L).

(ii) A morphism (L1, C1) → (L2, C2) is a pair (λ, φ) with λ : L1 → L2 ∈ L
and f : I(λ)(C1) → C2 ∈ I(L2).

(iii) The composition of two morphism (λ1, φ1) and (λ2, φ2) is given by (λ1, φ1)◦
(λ2, φ2) = (λ1 ◦ λ2, f1 ◦ I(λ1)(f2)).

(iv) The functor p : E → L maps a pair of objects (resp. morphisms) to its
first component (That is, p is first projection).

Proposition A.6 Suppose I : L → CAT is a co-indexed category. Then the
cofibration induced by I is indeed a cofibration.

Proof. Straightforward by dualising the corresponding result for fibred cate-
gories. 2

Example A.7 Applying the Grothendieck construction to the co-indexed
category from example A.2 yields the cofibration from example A.4.
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A.3 From Cofibrations to Co-Indexed Categories

In order to go from cofibrations to co-indexed categories, we need a (given)
choice of cocartesian lifting for every morphism in the base category.

Definition A.8 (Cleavage) Suppose p : E → L is a cofibration. An oper-
ation † such that †(f, C) ∈ E is a cocartesian lifting of f for every f : L →
M ∈ L and every C ∈ EL is called cleavage.

A co-fibration equipped with a cleavage is also called cloven.

Proposition A.9 Suppose p : L → C is a cofibration with cleavage † and
f : L→M ∈ L. The operation f+ : EL → EM defined by

f+(C) = cod(†(f, C))

f+(C
φ
→ D) = the unique ψ over idM such that ψ ◦ †(f, C) = †(f,D) ◦ φ

as in the diagram

C
†(f,C)

//

φ

��

f+(C)

ψ

��

D †(f,D)
// f+(D)

is a functor.

Functors of this kind are often called relabelling functors (though they also
may define a kind of restriction, see section 2.2).

Corollary A.10 Suppose p : L → C is a cofibration. Then the operation
I : L → CAT defined by

I(L) = EL

I(f) = f+

is a co-indexed category.

Example A.11 Applying the above construction to the cofibration from A.4
yields the co-indexed category from example A.2.

B Factorisation Structures

This material is mainly from Adámek, Herrlich, Strecker [1].

Definition B.1 (factorisation structure for morphisms)
Let M,E be classes of morphisms in C. (M,E) is called a factorisation struc-
ture for morphisms in C iff

(i) M,E are closed under isomorphism.

(ii) C has (M,E)-factorisation of morphisms, i.e. every morphism f in C has
a factorisation f = m ◦ e for some m ∈ M and e ∈ E. We call m the
image of f and e the kernel of f .
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(iii) C has the unique (M,E)-diagonalisation property, i.e. whenever the square

A
e

- B

C
?

m
-

�...
....
....
....
...

d

D
?

commutes for m ∈ M , e ∈ E, then there is a unique diagonal d making
the triangles commute.

Moreover, we require M to consist only of monos.

The requirement that morphisms in M are monos is imposed here because we
usually want to extend the factorisation structure (E,M) to a factorisation
structure (E,M) for sinks. This can only be done when all m ∈ M are mono
(see [1], 15.20).

It follows from the definition that (E,M)-factorisations are unique up to
isomorphism and that E,M are closed under composition. Also it may be
interesting to note that (Epi ,M) is a factorisation structure for morphisms iff
M = ExtremalMono = StrongMono (see [1], 14C(f)).

Example B.2

(i) (Epi ,Mono) is a factorisation structure for morphisms in Set.

(ii) (Epi , StrongMono) is a factorisation structure for morphisms in SetΩ.
(See [10], A.3(2).)

Definition B.3 (factorisation structure for sinks) Let E be a collection 11

of sinks and M a class of morphisms in C. (E,M) is called a factorisation
structure on C and C is called an (E,M)-category iff

(i) E,M are closed under isomorphism.

(ii) C has (E,M)-factorisation of sinks, i.e. every sink s in C has a factori-
sation s = m ◦ e for some m ∈M and e ∈ E.

(iii) C has the unique (E,M)-diagonalisation property, i.e. whenever for m ∈
M , (ei) ∈ E, f ∈ C, and a sink (si) in C, the square

Ai
ei

- B

C

si
?

m
-

�...
....
....
....
...

d

D

f
?

commutes for all i ∈ I then there is a unique diagonal d making the tri-
angles commute.

11 Since every sink may be indexed by a class there may be more than class-many sinks in
E.
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It follows from this definition that the factorisations are essentially unique
and that all morphisms in M are mono.
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