Initial Value Problems in Domain Theory

A. Edalat
Department of Computing, Imperial College, UK

D. Pattinson
Institut fiir Informatik, LMU Miinchen, Germany

Abstract

We present a domain-theoretic version of the Picard operator and
of Picard’s theorem for solving classical initial value problems. Our
formulation of the Picard operator allows us to compute solutions as
least fixed points on the space of Scott continuous interval-valued maps
of a real variable. In this setup, which considerably simplifies earlier
approaches, we obtain fast convergence to the solution, given that the
vector field is Lipschitz and can be approximated by step functions.
Since the naive algorithm induced by the theorem suffers from a com-
plexity explosion, the method is further refined, and we show that we
can avoid the complexity explosion, while retaining the same speed of
convergence. Finally, we report the performance of a simple implemen-
tation of our framework, tested on a few examples.

1 Introduction

We consider the initial value problem (IVP) of the form
f'(@) =v(x, f(z), f(0)=0, (1)

where v : O — R? is continuous in a neighbourhood O C R? of the ori-
gin (0,0) € O. By a theorem of Osgood there are always a lower and
and an upper solutions [9]. Uniqueness of the solution is guaranteed, by
Picard’s theorem, if v satisfies a Lipschitz condition in its second argu-
ment. The question of computability and theoretical complexity of the initial
value problem has been studied in different contexts in computable analy-
sis [13, 3, 8, 15, 20, 17, 6].

On the algorithmic and more practical side, standard numerical packages
for solving IVP try to compute an approximation to a solution with a spec-
ified degree of accuracy. Although these packages are usually robust, their

methods are not guaranteed to be correct and it is easily to find examples
where they output inaccurate results [14|. Interval analysis [18] provides
a method to give upper and lower bounds for the unique solution in the
Lipschitz case with a prescribed tolerance, and has been developed and im-
plemented for analytic vector fields [19, 1].

Domain theory presents an alternative technique, which is based on
proper data types, to produce a solution with a given degree of accuracy.
Using an order-theoretic framework for differential calculus [12], in particu-
lar a domain for C' functions and a domain-theoretic Picard like theorem,
a method for solving differential equations with a general initial condition
was introduced in [11]. By expressing the vector field as supremum of step
functions and successively updating the function and the derivative approx-
imations, represented by consistent pairs of step functions in the domain of
C' functions, approximations to solutions are found that are bounded below
and above by, respectively, a lower and an upper semi-continuous functions,
equivalently an interval-valued Scott continuous map. With a suitable selec-
tion of the initial Scott continuous map, it can also solve the classical IVP
above. A linear algorithm for function updating and a quadratic algorithm
for derivative updating of the consistent pairs of linear and simple step func-
tions were presented in [11]. However, the method results in an exponential
blow-up of the number of step functions used in the approximation.

In this paper, we derive a simplified domain-theoretic version of Picard’s
theorem for solving the classical IVP, which only uses the domain for C° func-
tions, namely the function space of Scott continuous interval-valued maps of
a real variable, with the pointwise partially ordering of maps. This new treat-
ment is much more similar to the classical theorem and brings domain theory
closer to the branch of analysis commonly called differential inclusions [5, 7],
as the Scott continuous maps are precisely the upper semi-continuous maps
in the well-established terminology of set-valued function theory. The major
consequence of the simplified framework is that it gives rise, in the Lipschitz
case, to fast convergence of the approximations to the solution, as is the case
in the classical theorem. Moreover, we show that by flattening the linear
step function into a simple step function, after each iterate of the Picard op-
erator, and by a suitable approximation of the vector field, one can overcome
the blow-up of the number of single-step functions. We illustrate with a few
examples of IVP based on a simple implementation of the technique. As
for future work, the framework will be extended to higher dimensions and a
more refined implementation will be compared in scope of application and
performance with existing interval analysis packages like AWA [1].

2 Preliminaries and Notation
For the remainder of the paper, we fix a continuous vector field
v:[—a,a] x [-K,K] - R

which is defined in a rectangle containing the origin and consider the IVP
given by 1. In order to guarantee that the expression v(z, f(x)) is well-
defined for z € [—a,a] and any solution f : [—a,a] — R, we assume that
[—aM,aM] C (—K, K). Geometrically, M will be a bound of the derivative
of a solution f. Since f also satisfies the initial condition f(0) = 0, we
have that |f(z)] < Mz for all x € [—a,a]. We can therefore guarantee
that the expression v(z, f(x)) is defined for all x € [—a,a] if aM < K. We
require the stronger condition [—aM,aM]| C (—K,K) since we also need
to accommodate approximations of the vector field v; this extra amount of
space is denoted by 6 = K — aM.

In the sequel, we are going to consider interval-valued functions. These
functions take values and some of their arguments in the interval domain

IR = {[a,b] | a,b € R,a < b} U{R}

where the order is given by reverse inclusion; the way-below relation < is
given by [a,b] < [c,d] iff [¢,d] C (a,b)°. For a compact interval [a,b], we
denote the sub-domain of intervals contained in [a, b] by I[a, b].

Every interval valued function f : X — IR is given by an upper and
a lower function; we write f = [fT, f7] if f(x) = [f~ (), fT(x)] for all
x € X for this representation. Interval valued functions can be obtained
by extending continuous functions f : [a,b] — R to the domain of intervals,
yielding X

f:Ia,b] - IR, A [inf f(x), sup f(z)],
TeA z€EA

where A denotes a compact interval A C [a, b]; we often call this the canonical
extension of f. It is easy to see that f is continuous wrt. the Scott topology
on I[a,b] and IR if f itself is continuous. In particular, we can extend v
canonically to an interval-valued function

v [_a7a] X I[_K7 K] -]Ra (.’L’,Y) = [lnf 'U(.’L',y), supv(x,y)].
yey yeYy

Note that [—a,a] x I[-K, K] — IR, the collection of Scott continuous maps
with the pointwise ordering, is a continuous Scott domain. We often identify

a function (resp. vector field) with its canonical extension if it is clear from
the context which we mean.

In the sequel, we will approximate both functions and vector fields by
means of step functions. In order to measure the speed of convergence, as
well as for technical convenience in the formulation of some of our results,
we introduce the following notation:

1. If f:[—a,a] — IR with f(x) # R, we define the width of f by w(f) =
sup{f*(z) = f~(2) | = € [~a,a]}.

2. For u: [—a,a] x I[-K, K] — IR with u C v, the width of u relative to
v is defined as wy(u) = supy ¢q_ g) w(u(-,Y)) —w(v(-,Y)).

Considering u as approximation to v, the relative width w,(u) can be un-
derstood as the quality of the approximation, or the distance between u and
.

3 The Picard Operator in Domain Theory

In the classical proof of Picard’s theorem on the existence and uniqueness of
the solution of the initial value problem (1) one defines an integral operator
on C%—a,a] by

f—)\t./o v(z, f(x))dx

which can be shown to be a contraction for sufficiently small a provided v
satisfies a Lipschitz condition in the second argument [16]. An application
of Banach’s fixed point theorem then yields a solution of the initial value
problem. We now define the domain-theoretic Picard operator for arbitrary
continuous functions u : [—a,a] X I[-K, K] — IR and focus on the special
case where u is the canonical extension of a classical function later.

Definition 3.1. Suppose u : [—a,a] X [[-K, K] — IR is continuous. We
define the Picard operator P, : ([—a,a] — IR) — ([—a,a] — IR) for f =
[f=.f*]: [~a,a] = R by

PUH(0) = | /0 u (o, f(x))da, /0 u* (o, f(2))da

in case both integrals are defined; otherwise P,(f)(t) = R.

Since u and f are Scott continuous, it follows that the functions \x.u™ (z, f(z))

and Az.u™(z, f(x)) are, respectively lower and upper semi-continuous func-
tions and thus measurable. Hence P, is well defined.

Lemma 3.2. If u: [—a,a] x I[-K, K| — IR is Scott continuous, then so is

Proof. Monotonicity of P, is straightforward. If (f;);en is a increasing se-

quence of functions f; : [—a,a] — IR, then by continuity of u we have:
Az, | ey fi(®) = |ieny Az-u(z, fi(z)) and the continuity of P, follows
from the monotone convergence theorem. O

In the classical proof of Picard’s theorem, one can choose an arbitrary

function as initial approximation of the solution. In domain theory, we begin
the approximation with the function that contains the least possible amount
of information: in our case this is the function \t.[— K, K]. This gives rise
to a sub-domain of [—a,a] — IR, in which the solutions are approximated:

Notation 3.3. In the following, fo : [—a,a] — IR denotes the function
defined by t — [— K, K]. The associated upper set | fo = {f : [-a,a] = IR |
fo E f} is denoted by D. Note that D is a sub-dcpo of [—a,a] — IR with
least element fy. Finally, V' denotes the set of Scott continuous functions
u:[—a,a] x [[-K, K] — IR with w,(u) < d/a.

The restriction on the relative width of © € V' is needed to show that the

Picard operator is well defined, which is the content of the following Lemma.

Lemma 3.4. Suppose u eV, f € D.

1. [u®(x,Y)| < K/a for all (x,Y) € [~a,a] x I[-K, K].
2. (Pu(f))* satisfies a Lipschitz condition with Lipschitz constant K/a.
8. |(Pu(f)E(x)| < K for all x € [~a,a].

Proof. Suppose x € [—a,a] and Y € I[-K,K]|. Since w,(u) < d/a, we
have ut(z,Y) —u=(2,Y) —vH(2,Y) — v (z,Y) < 6/a, hence |u*(z,Y) —
vE(z,Y)| < 6/a, which implies the claim, since [v*(z,Y)| < M by construc-
tion and K/a = M + §/a.

For the Lipschitz condition, we have

PL(F)E(t) —) < / ()
< (M +6/a)|t — | = K/alt —t'].

Finally, since P,(f)*(0) = 0, we obtain |P,(f)T(t)] = |Pu.(f)*(t) —
P.(f)*(0)| < K/a-t < K for all t € [~a,a). O

As a corollary, we obtain:

Corollary 3.5. Suppose uw € V. Then P, : D — D s well defined and
continuous.

Proof. That P, is well defined follows from |P,(f)*(z)] < K for all z €
[—a,a]. Continuity has been established in Lemma 3.2.
O

The last lemma puts us in the position to replace Banach’s theorem by
the Knaster-Tarski theorem in the process of constructing a solution of the
initial value problem (1); recall that fy is the least element of D.

Theorem 3.6. Suppose fr11 = Py(fn). Then f = ||, oy fn satisfies P,(f) =

I
Proof. Follows immediately from the Knaster Tarski Theorem, see e.g. [4,
Theorem 2.1.19]. O

The bridge between the solution of the domain theoretic fixpoint equation
and the classical initial value problem is established in the following lemma.

Lemma 3.7. Suppose f = [f~, fT]: [~a,a] — I[-K, K] satisfies P,(f) = f
and f~ = fT. Then f~ = f* solves (1).

Proof. Since f~ = f*, we can identify both functions with f. Since f is Scott
continuous, we have that f is both upper and lower semi continuous, hence
continuous. Furthermore, f = P,(f) implies that f(t) = fg v(z, f(x))dx,
hence f is continuously differentiable and the claim follows from the funda-
mental theorem of calculus. O

In order to obtain a solution of the classical problem, we therefore need
to find a fixpoint of P, with width 0. This is the content of the following
section, where we construct a zero width fixpoint by imposing a Lipschitz
condition on wv.

4 The Lipschitz Case

In order to obtain a solution to the classical problem, we impose the following
Lipschitz condition on the defining vector field v:

Assumption 4.1. Thereis L > 0 and 0 < ¢ < 1 such that aL < ¢ <1 and
[v(@,y) —v(x,)| < Lly —y/| for all (z,y) € [~a,a] x [-K, K].

The additional condition al. < 1 can always be ensured by restricting
the domain of definition of v; this is as in the classical proof. Assuming the
Lipschitz condition, we have the following estimate, which guarantees that
the least fixed point of P, is of width 0:

Lemma 4.2. Suppose fo T f. Then w(Py(f)) < aL-w(f).

Proof. Using the Lipschitz condition, we calculate

w(Py(f)) = sup / vi(z, f(2) — v (z, f(x))dz (Def’n of P,)
1Jo

te[—a,a

t
= sup / sup v (z,y) — inf v (z,y)dr (Def’n of canonical extension)
1Jo

te[—a,a yef(x) yef(x)
< t s[up }/Ot Liff(x) — [(2)|dz (Lipschitz condition on v)
€[-a,a
<alL-w(f),
which proves the claim. O

The above estimate allows us to show that — in the Lipschitz case — the
least fixed point of the domain theoretic Picard operator has width 0, i.e.
solves the initial value problem, as shown in Lemma 3.7.

Proposition 4.3. Let f,11 = P,(fn) forn € N. Then w(f,) < "w(fy). In
particular, f = | |,y fn satisfies P,(f) = f and w(f) = 0.

Proof. Follows immediately from alL < ¢ < 1 by induction. O

In order to actually be able to compute the integrals, we now add approx-
imations to v to the picture, the basic idea being that every continuous vec-
tor field can be approximated by a sequence of step functions (i.e. functions
taking only finitely many values), which allows us to compute the integrals
involved in calculating the approximations to the solution effectively. The
key property which enables us to use approximations also to the vector field
is the continuity of the mapping v +— P,,.

Lemma 4.4. P:V — V,u— P, is continuous.

Proof. Suppose u = | |, .y un and f € D. Then (Az.u, (z, f(2)))nen (resp.
(Az.uf (z, f(x)))nen is a decreasing (resp. increasing) sequence of functions
which converge to Az.u™ (z, f(x)) (resp. Az.u™t(z, f(x)) pointwise. The claim
now follows from the monotone convergence theorem. O

This continuity property allows us to compute solutions to the classical
initial value problem by means of a converging sequence of approximations
of v.

Theorem 4.5. Suppose v =| |,cyvn and fnp1 = Py, (fn) for n € N. Then
I = Unen fn satisfies f = Py(f) and w(f) = 0.

Proof. Follows from Theorem 3.6 and continuity of v +— P, by the interchange-
of-suprema law (see e.g. |4, Proposition 2.1.12]). O

We have seen that the Lipschitz condition on the vector field v ensures
that the approximations of the solution converge exponentially fast (Proposi-
tion 4.3). If we now approximate the vector field, the speed of convergence of
the approximations to the solution will depend on the speed of convergence
of the approximations of the vector field.

We use the following result to estimate the speed of convergence when
the vector field is approximated:

Lemma 4.6. Suppose u € V and f € D. Then w(P,(f)) <aL-w(f)+a-
wy(u).

Proof. This is just a matter of calculating

w(Py(f)) = sup / (. £(2)) — u (, £(x))dz
1Jo

te[—a,a

< sup / v (z, f(x)) — v (z, f(2)) + wy(u)dz (Defn of w,(u))
1Jo

te[—a,a
<aL-w(f)+ aw,(u) (Lemma 4.2)

0

As a corollary we deduce that the approximations converge exponentially
fast, if the approximations of the vector field do so, too.

Proposition 4.7. Suppose v = | |, .y vn and fri1 = Py, (fn). Thenw(fyp) <
- w(fo) provided wy(vy) < ™ -2M(c — al).

Proof. We proceed by induction on n, where there is nothing to show for
n = 0. Given the estimate for n > 0, we obtain

w(vnt1) = w(Py, (fn))
<aL-w(fp)+a-wy(vy,)

<c"-aL-w(fy)+c"-2M(c—al) (Ind’n Hypothesis)
=" 2aLK + " -2aM(c —al) (fo = M.[-K, K])

=" 2aLK + " 2aM — ¢ - 2a* LM

=" 2K — H2(K —aM) 4 ¢ - 20L(K — aM)
< oK - TR — aM) + T 2(K — aM)
<MLK = T ow(fy),

as required. O

Given a representation of v in terms of step functions, Theorem 4.5 gives
rise to an algorithm for computing the solution of the initial value prob-
lem. Our next goal is to give an estimate of the algebraic complexity of the
algorithm.

5 Algebraic Complexity

In order to give an estimate for the algebraic complexity of the algorithm
induced by Theorem 4.5, we need to consider the representations of the func-
tions involved in calculating the approximations. Here, we consider approx-
imations by piecewise constant and piecewise linear functions as in [12, 11].

Definition 5.1 (Step Functions). Suppose A C [—a,a], B € R, C €
I[[-K,K]and f~, f* : A — R are linear. We consider the following types of
step functions, where S° is the interior of a set S:

1. Linear single step functions of type [—a,a] — IR:

. {[f—<x>,f+<x>1 e A
IR

o/w

A\[f_7f+] : [—CL,CL] _)]]R7

2. Simple single step functions of type [—a,a] — IR:

B x ¢ A°

AN, B:[—a,a] — IR, xn—>{]R ofw

3. Simple single step functions of type [—a,a] x I[-K, K| — IR:

C € A°and Y < B
AXBN, C: [—a,ax1[-K, K] = R, (2,Y) veATand <
R o/w
4. A simple (resp. linear) step function is a finite join of simple (resp.
linear) single step functions. The number of linear (resp. simple) single
step functions in a linear (resp. simple) step function is denoted by

N().

Note that strictly speaking we should consider representations of step
functions when considering N (f). Since we never consider two or more
different representations of the same function, we do not make this distinction
for ease of presentation.

If the vector field w is a sup of simple step functions and f is a linear
step function, the function Az.u(x, f(x)) is simple, hence its integral will be
linear again, as in |11, Corollary 4.3].

Proposition 5.2. Suppose u is a simple step function and f is a linear
step function. Then P,(f) is a linear step function, and can be computed in

OWN(u) - N(f)) steps.

Proof. Clearly s = Azx.u(zx, f(z)) is a simple step function, if w is sim-
ple. Computing s we need to match every simple single step function in u
against every linear single step function in f, which can be done in O(N (u) -
N(f)) steps. Taking integrals, we obtain a linear step function P,(f) =
At. fg s(z)dz, which can be computed in O(N(s)) steps, hence the complex-
ity bound on P,(f). O

Note that the previous lemma shows that it suffices to consider data
types for linear and simple step functions in order to formulate the algorithm
of Theorem 4.5. However, the number of single step functions needed to
represent P, (f) is also quadratic in general:

Remark 5.3. If u is a linear step function and f is a simple step function,
then NV (P, (f)) € ON (u)-N(f)). In particular, if v = | |, cyyvn and frny1 =
P, (fn), then

N(fni1) € ON (vg) ... N(vy)),

provided each v, is a simple step function.

10

The blow-up of the number of single step functions needed to represent
fn is due to fact that the partition of [—a,a|, which is induced by P,(f) is
in general finer than the partition induced by wu.

The refinement of partitions happens when computing u(z, f(x)), since
the linearity of f cuts the partition induced by wu, as illustrated for w =
[—a,a] X [ag,a1] \, C and f = [—a,a] \, [f~, fT]; we obtain At.w(t, f(t)) =
[bo, b1] \, C where C € IR is some interval.

f+

al

0 b0 bl ‘ a

The blow up in the number of single step functions can be avoided if we
work with simple step functions only. The key idea is to transform the linear
step function P,(f) into a simple step function before computing the next
iterate: on every interval, replace the upper (linear) function by its maxi-
mum and the lower function by its minimum. We now develop the technical
apparatus which is needed to show that the approximations so obtained still
converge to the solution. This is achieved by making the partitions of the
interval [—a,a] induced by step functions approximating the solution and
those approximating the vector field explicit.

Definition 5.4 (Partitions). 1. A partition of [—a,a] is a finite sequence
(qos - - -, qn) of real numbers such that —a =gy < -+ < ¢, = a; the set
of partitions of [—a, a| is denoted by P.

2. The norm |Q)| of a partition @ = (qo, . . ., ¢n) is given by |Q| = maxi<j<y, ¢i—
qi—1-

3. A partition @ = (qo,...,qn) refines a partition R = (rg,...,rg) if
{ro,...,7} €{qo,--.,qn}; this is denoted by R < Q.

4. If f = I_lign[ai_7az—"—] N [fi_7fi—’—] (resp. u = Uign[az‘_7a;r] X [bi_7b2L] N\
[c7,c]) is a step function, the partition induced by f (resp. w) is the

107

11

unique partition (qo, - .., qx) with {qo,...,q} = {a; ,af | i < k}; this
partition is denoted by Q(f) (resp. Q(u)).

Note that the partition induced by a step function depends on the rep-
resentation of the step function; since we never consider different represen-
tations of the same function, we allow ourselves to blur this distinction.

To a partition of [—a, a] we now associate a functional, which transforms
continuous functions into simple step functions.

Definition 5.5. Suppose Q = (qo,...,qn) € P.

1. If g : [-a,a] — IR is continuous, the envelope [10] of g is defined by

env(g) = [liminf(g™),limsup(g™)]

2. The flattening functional Fg : ([—a,a] — IR) — ([—a, a] — IR) associ-
ated with @ is defined by

Fo(f) =env(|| [ai—1,a] \ [_inf f7(z), sup fT(2)])

1<i<n 2€[gi-1,4i] *€[gi—1,4i]
for f = [f~,/*]: [~a,a] — R.

Note that a simple step functions is in general undefined at the partition
points. Taking the envelope just ensures that the resulting function is defined
on the closure of the domain of definition of the step function, i.e. at all
partition points, without affecting continuity.

Lemma 5.6. F(f) is continuous, if f is continuous.
Proof. Immediate from the fact that step functions are continuous. 0

When constructing a solution of a given initial value problem, we want to
apply the flattening functional at every stage of the construction to transform
a linear step function (obtained by integration) into a simple step function.
We still need to show that with the flattening operation the sequence still
converges to the solution of the IVP; the following lemma helps us to establish
this fact.

Lemma 5.7. Suppose (Qn)nen 15 a sequence in P with lim, .~ |Qn| = 0.
Then | |, Fo, = id.

Proof. Let x € [—a,a]. We construct a sequence ([g;,, ¢,])nen of intervals
such that

12

1. z€lg,,qf] foralln € N
2. q,,,q} are consecutive partition points of Q.

We have ¢ —q, — 0 as n — oo since |@Q,| — 0 as n — oo. The claim
follows from lower (resp. upper) semi continuity of f~ (resp. f¥). O

The last lemma puts us in the position to show that the application of
the flattening functional at every stage of the construction does not affect
the convergence of the iterates to the solution.

Theorem 5.8. Suppose v = | |,y vn where the v,’s are simple step func-
tions with lim, .o [Q(vn)] = 0. If foy1 = FQu,)(Po,(fa)), then f =
e fn satisfies f = Py(f).

Proof. Follows from the interchange-of-suprema law (see e.g. [4, Proposition
2.1.12|), the previous lemma and Theorem 4.5. O

In the following, we investigate the speed of convergence of the f,’s con-
structed in the previous lemma and investigate the algebraic complexity of
computing iterates. It turns out that the speed of convergence is essen-
tially not changed by applying the flattening functional at every step of the
construction; this result hinges on the following estimate:

Lemma 5.9. Suppose u € V and Q € P, f € D. Then w(Fgo(P,(f))) <
aL - w(f) +a-wy(u) +25(Q|.

Proof. Inview of Lemma 4.6 and Lemma 3.4, it suffices to show that w(Fg(g)) <
w(g) —1—2% |Q| if g : [—a,a] — IR and both g™, g~ satisfy a Lipschitz condition
with Lipschitz constant K/a. Suppose z € [—a,a] and choose two consecu-
tive partition points ¢~, ¢ of @Q such that x € [¢~,¢™]. Since upper (resp.
lower) semi continuous functions attain their suprema (resp. infima) on com-
pact intervals, there are x—, 2% € [¢™, ¢ such that, for all x € [¢7,¢T], we

have (Fo(g))~ (x) = g~(+~) and (Fo(g))*() = g* (x*). Thus,
(Fol0))*(x) - (Falg))™(x)
=l)=o)
g @) —g" (@) + g (@) —g (x) +g(x) —g (a7
o +—x|+|g+<:c>—g—<x>|+§|x—x—|

K
<271Q1+ w(9).

X

<

@IN

as required. O

13

Using the last lemma, we can now estimate the speed of convergence as
follows:

Proposition 5.10. Suppose v = | |,y v with wy(v,) < - M(c—al) and

Q(vn)| < ¢ §(c—aL). Then w(fn) < c"w(fo) if frr1 = FQu,)(Po, (fn))
for all n > 0.

Proof. We use induction. The estimate is evident for n = 0; for the inductive
case one calculates

W) < aL-w(f) + a-w(en) + 25 - [Qen)
<" 2aLK + " -aM(c—alL)+c" - K(c—alL) (Ind’n Hypothesis)
=" 2aLK + "M oaM — ¢ dPLM + K — oK
="K — T (K —aM) + ¢ - alL(K — aM)
ALK — (K —aM) 4 THK — aM) (aL < ¢)

= LK = (),

IA

as required. O

The last lemma shows, that flattening does not affect the modulus of
convergence. We now return to question of algebraic complexity, and show,
that computing iterates is still quadratic, but the number of step functions
needed to represent the iterates only grows with the number of step functions
needed to represent the approximations of the vector field.

We begin with noting that iterates can still be computed by a quadratic
algorithm. Before stating the result, we need to extend the notation N(-)
to functions, which are envelopes of step functions.

Notation 5.11. If f = env(g) is the envelope of a simple step function g,
we put N (f) = N(g).

That is to say, the envelope of a join of n step functions is represented
by n step functions. We can now deduce:

Proposition 5.12. Suppose u is a simple step function and f is the envelope
of a step function. Then Fg(u)(P,(f)) is the envelope of a simple step
function, and can be computed in ON(f) - N(u)) steps.

Proof. Follows from Proposition 5.2, since flattening can be done in O(N (u))
steps. [l

14

In order to give an estimate on the number of step functions required to
represent the approximations, we need the following lemma:

Lemma 5.13. Suppose Q(f) < Q(u). Then Q(P,(f)) = Q(u).

Proof. Because the partition of Az.P,(x, f(x)) is the partition of u in case

Q(u) refines Q(f). O

We conclude with an estimate on the number of step functions needed
to represent the iterates.

Proposition 5.14. Suppose v = | |,cnyvn where Q(vn) < Q(vny1). Then
N(fn-i—l) = N(Un) f07" all n € N; if fn+1 = FQ(vn)(Pvn(fn)) for all n € N.

Proof. Follows immediately from the previous lemma using induction; note
that Q(vg) necessarily refines Q(fo) since Q(fo) = (—a,a). O

6 Experimental Results

This section briefly reports some experimental results obtained by imple-
menting the algorithm underlying Theorem 5.8. In the examples, we have
chosen a = 1/2; the n-th iterate of the vector field subdivides this interval
into 2" partitions of the same length. It is immediate that the approxima-
tions can be represented using intervals with rational endpoints, if this is
true of the vector field. The task of computing with rationals was delegated
to the GMP library [2]. Using our first prototype, we conducted experiments
with the equations f/'(z) = 2f(x) + 1, f'(z) = 2z and f'(z) = 4zy + 1, all
three equations with the initial condition f(0) = 0. It is routine to check
that Assumption 4.1 is satisfied in this setup. The experimental results are
summarised in the tables below; n denotes the number of iterates we have
computed.

f'(@) =4z f(x) +1,£(0) =0 f'(@) =2z, f(0) =0

‘ n ‘ Accuracy ‘ Time ‘ ‘ n ‘ Accuracy ‘ Time ‘
10 | 0.0134 0mo0.518 s 10 | 0.000976086 | 0m0.038s
15 | 0.00043 0m2.573s 15 | 3.05171e-05 | 0m0.990s
20 | 1.35756e-05 | 2m22.067s 20 | 9.53674e-07 | 1m54.007s

f(@) =2f(x) +1,f(0) =0
‘ n ‘ Accuracy ‘ Time ‘
10 | 0.00882 0m0.073s

15 | 0.000281 Om2.157s
20 | 8.79667e-06 | 2m28.899s

15

The algorithm was implemented in entirely unoptimised form and tested
on a 700 MHz Pentium 3 with 384 MB of RAM; the times are wall clock
times. The large increase in time when computing 20 iterates is partially
due to paging.

7 Acknowldegements

This work has been supported by EPSRC in the UK and the EU project
“APPSEM-II".

References

[1] AWA. A software package for validated solution of orinary differential
equations. www.lsi.upc.es/“robert/mirror/interval-comp/intsoft.html.

[2] The GNU multi precision library. www.swox.com/gmp/.

[3] O. Aberth. Computable analysis and differential equations. In Intu-
ittonism and Proof Theory, Studies in Logic and the Foundations of
Mathematics, pages 47-52. North-Holland, 1970. Proc. of the Summer
Conf. at Buffalo N.Y. 1968.

[4] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 3. Clarendon Press, 1994.

[5] J. P. Aubin and A. Cellina. Differential Inclusions. Spinger, 1984.

[6] V. Brattka. Computability of banach space principles. Informatik
Berichte 286, FernUniversitdt Hagen, Fachbereich Informatik, June
2001.

[7] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nons-
mooth Analysis and Control Theory. Springer, 1998.

[8] J. P. Cleave. The primitive recursive analysis of ordinary differential
equations and the complexity of their solutions. Journal of Computer
and Systems Sciences, 3:447-455, 1969.

[9] E. A. Coddington and N. Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, 1955.

16

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

A. Edalat. Interval derivative. Presented at MFPS XIX, 2003.
www.doc.ic.ac.uk/"ae/papers/MFPS2.ppt.

A. Edalat, M. Krznari¢, and A. Lieutier. Domain-theoretic solution
of differential equations (scalar fields). In Proceedings of MFPS XIX,
volume 83 of Electronuc Notes in Theoretical Computer Science, 2003.
Full paper in www.doc.ic.ac.uk/~ae/papers/scalar.ps.

A. Edalat and A. Lieutier. Domain theory and differential calculus
(Functions of one variable). In Seventh Annual IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 2002. Full
paper in www.doc.ic.ac.uk/~ae/papers/diffcal.ps.

A. Grzegorczyk. Computable functionals. Fund. Math., 42:168-202,
1955.

A. Iserles. Numerical Analysis of Differential Equations. Cambridge
Texts in Applied Mathematics. CUP, 1996.

Ker-I Ko. On the computational complexity of ordinary differential
equations. Inform. Contr., 58:157-194, 1983.

A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover,
1975.

N. Th. Miiller and B. Moiske. Solving initial value problems in poly-
nomial time. In In Proceedings of the 22th JAIIO - Panel’93, pages
283-293, Buenos Aires, 1993.

R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.

K. R. Jackson N. S. Nedialkov and G. F. Corliss. Validated solutions
of initial value problems for ordinary differential equations. Applied
Mathematics and Computation, 105:21-68, 1999.

M. B. Pour-El and J. I. Richards. Computability in Analysis and
Physics. Springer-Verlag, 1988.

17

