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hen, GermanyAbstra
tWe present a domain-theoreti
 version of the Pi
ard operator andof Pi
ard's theorem for solving 
lassi
al initial value problems. Ourformulation of the Pi
ard operator allows us to 
ompute solutions asleast �xed points on the spa
e of S
ott 
ontinuous interval-valued mapsof a real variable. In this setup, whi
h 
onsiderably simpli�es earlierapproa
hes, we obtain fast 
onvergen
e to the solution, given that theve
tor �eld is Lips
hitz and 
an be approximated by step fun
tions.Sin
e the naive algorithm indu
ed by the theorem su�ers from a 
om-plexity explosion, the method is further re�ned, and we show that we
an avoid the 
omplexity explosion, while retaining the same speed of
onvergen
e. Finally, we report the performan
e of a simple implemen-tation of our framework, tested on a few examples.1 Introdu
tionWe 
onsider the initial value problem (IVP) of the form
f ′(x) = v(x, f(x)), f(0) = 0, (1)where v : O → R

2 is 
ontinuous in a neighbourhood O ⊆ R
2 of the ori-gin (0, 0) ∈ O. By a theorem of Osgood there are always a lower andand an upper solutions [9℄. Uniqueness of the solution is guaranteed, byPi
ard's theorem, if v satis�es a Lips
hitz 
ondition in its se
ond argu-ment. The question of 
omputability and theoreti
al 
omplexity of the initialvalue problem has been studied in di�erent 
ontexts in 
omputable analy-sis [13, 3, 8, 15, 20, 17, 6℄.On the algorithmi
 and more pra
ti
al side, standard numeri
al pa
kagesfor solving IVP try to 
ompute an approximation to a solution with a spe
-i�ed degree of a

ura
y. Although these pa
kages are usually robust, their1



methods are not guaranteed to be 
orre
t and it is easily to �nd exampleswhere they output ina

urate results [14℄. Interval analysis [18℄ providesa method to give upper and lower bounds for the unique solution in theLips
hitz 
ase with a pres
ribed toleran
e, and has been developed and im-plemented for analyti
 ve
tor �elds [19, 1℄.Domain theory presents an alternative te
hnique, whi
h is based onproper data types, to produ
e a solution with a given degree of a

ura
y.Using an order-theoreti
 framework for di�erential 
al
ulus [12℄, in parti
u-lar a domain for C1 fun
tions and a domain-theoreti
 Pi
ard like theorem,a method for solving di�erential equations with a general initial 
onditionwas introdu
ed in [11℄. By expressing the ve
tor �eld as supremum of stepfun
tions and su

essively updating the fun
tion and the derivative approx-imations, represented by 
onsistent pairs of step fun
tions in the domain of
C1 fun
tions, approximations to solutions are found that are bounded belowand above by, respe
tively, a lower and an upper semi-
ontinuous fun
tions,equivalently an interval-valued S
ott 
ontinuous map. With a suitable sele
-tion of the initial S
ott 
ontinuous map, it 
an also solve the 
lassi
al IVPabove. A linear algorithm for fun
tion updating and a quadrati
 algorithmfor derivative updating of the 
onsistent pairs of linear and simple step fun
-tions were presented in [11℄. However, the method results in an exponentialblow-up of the number of step fun
tions used in the approximation.In this paper, we derive a simpli�ed domain-theoreti
 version of Pi
ard'stheorem for solving the 
lassi
al IVP, whi
h only uses the domain for C0 fun
-tions, namely the fun
tion spa
e of S
ott 
ontinuous interval-valued maps ofa real variable, with the pointwise partially ordering of maps. This new treat-ment is mu
h more similar to the 
lassi
al theorem and brings domain theory
loser to the bran
h of analysis 
ommonly 
alled di�erential in
lusions [5, 7℄,as the S
ott 
ontinuous maps are pre
isely the upper semi-
ontinuous mapsin the well-established terminology of set-valued fun
tion theory. The major
onsequen
e of the simpli�ed framework is that it gives rise, in the Lips
hitz
ase, to fast 
onvergen
e of the approximations to the solution, as is the 
asein the 
lassi
al theorem. Moreover, we show that by �attening the linearstep fun
tion into a simple step fun
tion, after ea
h iterate of the Pi
ard op-erator, and by a suitable approximation of the ve
tor �eld, one 
an over
omethe blow-up of the number of single-step fun
tions. We illustrate with a fewexamples of IVP based on a simple implementation of the te
hnique. Asfor future work, the framework will be extended to higher dimensions and amore re�ned implementation will be 
ompared in s
ope of appli
ation andperforman
e with existing interval analysis pa
kages like AWA [1℄.2



2 Preliminaries and NotationFor the remainder of the paper, we �x a 
ontinuous ve
tor �eld
v : [−a, a] × [−K,K] → Rwhi
h is de�ned in a re
tangle 
ontaining the origin and 
onsider the IVPgiven by 1. In order to guarantee that the expression v(x, f(x)) is well-de�ned for x ∈ [−a, a] and any solution f : [−a, a] → R, we assume that

[−aM, aM ] ⊆ (−K,K). Geometri
ally, M will be a bound of the derivativeof a solution f . Sin
e f also satis�es the initial 
ondition f(0) = 0, wehave that |f(x)| ≤ Mx for all x ∈ [−a, a]. We 
an therefore guaranteethat the expression v(x, f(x)) is de�ned for all x ∈ [−a, a] if aM ≤ K. Werequire the stronger 
ondition [−aM, aM ] ⊆ (−K,K) sin
e we also needto a

ommodate approximations of the ve
tor �eld v; this extra amount ofspa
e is denoted by δ = K − aM .In the sequel, we are going to 
onsider interval-valued fun
tions. Thesefun
tions take values and some of their arguments in the interval domain
IR = {[a, b] | a, b ∈ R, a ≤ b} ∪ {R}where the order is given by reverse in
lusion; the way-below relation ≪ isgiven by [a, b] ≪ [c, d] i� [c, d] ⊆ (a, b)o. For a 
ompa
t interval [a, b], wedenote the sub-domain of intervals 
ontained in [a, b] by I[a, b].Every interval valued fun
tion f : X → IR is given by an upper anda lower fun
tion; we write f = [f+, f−] if f(x) = [f−(x), f+(x)] for all

x ∈ X for this representation. Interval valued fun
tions 
an be obtainedby extending 
ontinuous fun
tions f : [a, b] → R to the domain of intervals,yielding
f̂ : I[a, b] → IR, A 7→ [ inf

x∈A
f(x), sup

x∈A

f(x)],where A denotes a 
ompa
t interval A ⊆ [a, b]; we often 
all this the 
anoni
alextension of f . It is easy to see that f̂ is 
ontinuous wrt. the S
ott topologyon I[a, b] and IR if f itself is 
ontinuous. In parti
ular, we 
an extend v
anoni
ally to an interval-valued fun
tion
v̂ : [−a, a] × I[−K,K] → IR, (x, Y ) 7→ [ inf

y∈Y
v(x, y), sup

y∈Y

v(x, y)].Note that [−a, a] × I[−K,K] → IR, the 
olle
tion of S
ott 
ontinuous mapswith the pointwise ordering, is a 
ontinuous S
ott domain. We often identify3



a fun
tion (resp. ve
tor �eld) with its 
anoni
al extension if it is 
lear fromthe 
ontext whi
h we mean.In the sequel, we will approximate both fun
tions and ve
tor �elds bymeans of step fun
tions. In order to measure the speed of 
onvergen
e, aswell as for te
hni
al 
onvenien
e in the formulation of some of our results,we introdu
e the following notation:1. If f : [−a, a] → IR with f(x) 6= R, we de�ne the width of f by w(f) =
sup{f+(x) − f−(x) | x ∈ [−a, a]}.2. For u : [−a, a] × I[−K,K] → IR with u ⊑ v, the width of u relative to
v is de�ned as wv(u) = supY ∈I[−K,K] w(u(·, Y )) − w(v(·, Y )).Considering u as approximation to v, the relative width wv(u) 
an be un-derstood as the quality of the approximation, or the distan
e between u and

v.3 The Pi
ard Operator in Domain TheoryIn the 
lassi
al proof of Pi
ard's theorem on the existen
e and uniqueness ofthe solution of the initial value problem (1) one de�nes an integral operatoron C0[−a, a] by
f 7→ λt.

∫ t

0
v(x, f(x))dxwhi
h 
an be shown to be a 
ontra
tion for su�
iently small a provided vsatis�es a Lips
hitz 
ondition in the se
ond argument [16℄. An appli
ationof Bana
h's �xed point theorem then yields a solution of the initial valueproblem. We now de�ne the domain-theoreti
 Pi
ard operator for arbitrary
ontinuous fun
tions u : [−a, a] × I[−K,K] → IR and fo
us on the spe
ial
ase where u is the 
anoni
al extension of a 
lassi
al fun
tion later.De�nition 3.1. Suppose u : [−a, a] × I[−K,K] → IR is 
ontinuous. Wede�ne the Pi
ard operator Pu : ([−a, a] → IR) → ([−a, a] → IR) for f =

[f−, f+] : [−a, a] → IR by
Pu(f)(t) = [

∫ t

0
u−(x, f(x))dx,

∫ t

0
u+(x, f(x))dx]in 
ase both integrals are de�ned; otherwise Pu(f)(t) = R.4



Sin
e u and f are S
ott 
ontinuous, it follows that the fun
tions λx.u−(x, f(x))and λx.u+(x, f(x)) are, respe
tively lower and upper semi-
ontinuous fun
-tions and thus measurable. Hen
e Pu is well de�ned.Lemma 3.2. If u : [−a, a] × I[−K,K] → IR is S
ott 
ontinuous, then so is
Pu.Proof. Monotoni
ity of Pu is straightforward. If (fi)i∈N is a in
reasing se-quen
e of fun
tions fi : [−a, a] → IR, then by 
ontinuity of u we have:
λx.u(x,

⊔

i∈N
fi(x)) =

⊔

i∈N
λx.u(x, fi(x)) and the 
ontinuity of Pu followsfrom the monotone 
onvergen
e theorem.In the 
lassi
al proof of Pi
ard's theorem, one 
an 
hoose an arbitraryfun
tion as initial approximation of the solution. In domain theory, we beginthe approximation with the fun
tion that 
ontains the least possible amountof information: in our 
ase this is the fun
tion λt.[−K,K]. This gives riseto a sub-domain of [−a, a] → IR, in whi
h the solutions are approximated:Notation 3.3. In the following, f0 : [−a, a] → IR denotes the fun
tionde�ned by t 7→ [−K,K]. The asso
iated upper set ↑ f0 = {f : [−a, a] → IR |

f0 ⊑ f} is denoted by D. Note that D is a sub-d
po of [−a, a] → IR withleast element f0. Finally, V denotes the set of S
ott 
ontinuous fun
tions
u : [−a, a] × I[−K,K] → IR with wv(u) ≤ δ/a.The restri
tion on the relative width of u ∈ V is needed to show that thePi
ard operator is well de�ned, whi
h is the 
ontent of the following Lemma.Lemma 3.4. Suppose u ∈ V , f ∈ D.1. |u±(x, Y )| ≤ K/a for all (x, Y ) ∈ [−a, a] × I[−K,K].2. (Pu(f))± satis�es a Lips
hitz 
ondition with Lips
hitz 
onstant K/a.3. |(Pu(f))±(x)| ≤ K for all x ∈ [−a, a].Proof. Suppose x ∈ [−a, a] and Y ∈ I[−K,K]. Sin
e wv(u) ≤ δ/a, wehave u+(x, Y ) − u−(x, Y ) − v+(x, Y ) − v−(x, Y ) ≤ δ/a, hen
e |u±(x, Y ) −
v±(x, Y )| ≤ δ/a, whi
h implies the 
laim, sin
e |v±(x, Y )| ≤ M by 
onstru
-tion and K/a = M + δ/a.For the Lips
hitz 
ondition, we have

|Pu(f)±(t) − Pu(f)±(t′)| ≤

∫ t

t′
|u±(x)|dx

≤ (M + δ/a)|t − t′| = K/a|t − t′|.5



Finally, sin
e Pu(f)±(0) = 0, we obtain |Pu(f)±(t)| = |Pu(f)±(t) −
Pu(f)±(0)| ≤ K/a · t ≤ K for all t ∈ [−a, a].As a 
orollary, we obtain:Corollary 3.5. Suppose u ∈ V . Then Pu : D → D is well de�ned and
ontinuous.Proof. That Pu is well de�ned follows from |Pu(f)±(x)| ≤ K for all x ∈
[−a, a]. Continuity has been established in Lemma 3.2.The last lemma puts us in the position to repla
e Bana
h's theorem bythe Knaster-Tarski theorem in the pro
ess of 
onstru
ting a solution of theinitial value problem (1); re
all that f0 is the least element of D.Theorem 3.6. Suppose fn+1 = Pv(fn). Then f =

⊔

n∈N
fn satis�es Pv(f) =

f .Proof. Follows immediately from the Knaster Tarski Theorem, see e.g. [4,Theorem 2.1.19℄.The bridge between the solution of the domain theoreti
 �xpoint equationand the 
lassi
al initial value problem is established in the following lemma.Lemma 3.7. Suppose f = [f−, f+] : [−a, a] → I[−K,K] satis�es Pv(f) = fand f− = f+. Then f− = f+ solves (1).Proof. Sin
e f− = f+, we 
an identify both fun
tions with f . Sin
e f is S
ott
ontinuous, we have that f is both upper and lower semi 
ontinuous, hen
e
ontinuous. Furthermore, f = Pv(f) implies that f(t) =
∫ t

0 v(x, f(x))dx,hen
e f is 
ontinuously di�erentiable and the 
laim follows from the funda-mental theorem of 
al
ulus.In order to obtain a solution of the 
lassi
al problem, we therefore needto �nd a �xpoint of Pv with width 0. This is the 
ontent of the followingse
tion, where we 
onstru
t a zero width �xpoint by imposing a Lips
hitz
ondition on v.
6



4 The Lips
hitz CaseIn order to obtain a solution to the 
lassi
al problem, we impose the followingLips
hitz 
ondition on the de�ning ve
tor �eld v:Assumption 4.1. There is L > 0 and 0 < c < 1 su
h that aL < c < 1 and
|v(x, y) − v(x, y′)| ≤ L|y − y′| for all (x, y) ∈ [−a, a] × [−K,K].The additional 
ondition aL < 1 
an always be ensured by restri
tingthe domain of de�nition of v; this is as in the 
lassi
al proof. Assuming theLips
hitz 
ondition, we have the following estimate, whi
h guarantees thatthe least �xed point of Pv is of width 0:Lemma 4.2. Suppose f0 ⊑ f . Then w(Pv(f)) ≤ aL · w(f).Proof. Using the Lips
hitz 
ondition, we 
al
ulate
w(Pv(f)) = sup

t∈[−a,a]

∫ t

0
v+(x, f(x)) − v−(x, f(x))dx (Def'n of Pv)

= sup
t∈[−a,a]

∫ t

0
sup

y∈f(x)
v+(x, y) − inf

y∈f(x)
v−(x, y)dx (Def'n of 
anoni
al extension)

≤ sup
t∈[−a,a]

∫ t

0
L|f+(x) − f−(x)|dx (Lips
hitz 
ondition on v)

≤ aL · w(f),whi
h proves the 
laim.The above estimate allows us to show that � in the Lips
hitz 
ase � theleast �xed point of the domain theoreti
 Pi
ard operator has width 0, i.e.solves the initial value problem, as shown in Lemma 3.7.Proposition 4.3. Let fn+1 = Pv(fn) for n ∈ N. Then w(fn) ≤ cnw(f0). Inparti
ular, f =
⊔

n∈N
fn satis�es Pv(f) = f and w(f) = 0.Proof. Follows immediately from aL < c < 1 by indu
tion.In order to a
tually be able to 
ompute the integrals, we now add approx-imations to v to the pi
ture, the basi
 idea being that every 
ontinuous ve
-tor �eld 
an be approximated by a sequen
e of step fun
tions (i.e. fun
tionstaking only �nitely many values), whi
h allows us to 
ompute the integralsinvolved in 
al
ulating the approximations to the solution e�e
tively. Thekey property whi
h enables us to use approximations also to the ve
tor �eldis the 
ontinuity of the mapping v 7→ Pv.7



Lemma 4.4. P : V → V, u 7→ Pu is 
ontinuous.Proof. Suppose u =
⊔

n∈N
un and f ∈ D. Then (λx.u−

n (x, f(x)))n∈N (resp.
(λx.u+

n (x, f(x)))n∈N is a de
reasing (resp. in
reasing) sequen
e of fun
tionswhi
h 
onverge to λx.u−(x, f(x)) (resp. λx.u+(x, f(x)) pointwise. The 
laimnow follows from the monotone 
onvergen
e theorem.This 
ontinuity property allows us to 
ompute solutions to the 
lassi
alinitial value problem by means of a 
onverging sequen
e of approximationsof v.Theorem 4.5. Suppose v =
⊔

n∈N
vn and fn+1 = Pvn

(fn) for n ∈ N. Then
f =

⊔

n∈N
fn satis�es f = Pv(f) and w(f) = 0.Proof. Follows from Theorem 3.6 and 
ontinuity of u 7→ Pu by the inter
hange-of-suprema law (see e.g. [4, Proposition 2.1.12℄).We have seen that the Lips
hitz 
ondition on the ve
tor �eld v ensuresthat the approximations of the solution 
onverge exponentially fast (Proposi-tion 4.3). If we now approximate the ve
tor �eld, the speed of 
onvergen
e ofthe approximations to the solution will depend on the speed of 
onvergen
eof the approximations of the ve
tor �eld.We use the following result to estimate the speed of 
onvergen
e whenthe ve
tor �eld is approximated:Lemma 4.6. Suppose u ∈ V and f ∈ D. Then w(Pu(f)) ≤ aL · w(f) + a ·

wv(u).Proof. This is just a matter of 
al
ulating
w(Pu(f)) = sup

t∈[−a,a]

∫ t

0
u+(x, f(x)) − u−(x, f(x))dx

≤ sup
t∈[−a,a]

∫ t

0
v+(x, f(x)) − v−(x, f(x)) + wv(u)dx (Def'n of wv(u))

≤ aL · w(f) + awv(u) (Lemma 4.2)As a 
orollary we dedu
e that the approximations 
onverge exponentiallyfast, if the approximations of the ve
tor �eld do so, too.Proposition 4.7. Suppose v =
⊔

n∈N
vn and fn+1 = Pvn

(fn). Then w(fn) ≤
cn · w(f0) provided wv(vn) ≤ cn · 2M(c − aL).8



Proof. We pro
eed by indu
tion on n, where there is nothing to show for
n = 0. Given the estimate for n ≥ 0, we obtain
w(vn+1) = w(Pvn

(fn))

≤ aL · w(fn) + a · wv(vn)

≤ cn · aL · w(f0) + cn · 2M(c − aL) (Ind'n Hypothesis)
= cn · 2aLK + cn · 2aM(c − aL) (f0 = λt.[−K,K])
= cn · 2aLK + cn+1 · 2aM − cn · 2a2LM

= cn+1 · 2K − cn+1 · 2(K − aM) + cn · 2aL(K − aM)

≤ cn+1 · 2K − cn+1 · 2(K − aM) + cn+1 · 2(K − aM)

≤ cn+1 · 2K = cn+1 · w(f0),as required.Given a representation of v in terms of step fun
tions, Theorem 4.5 givesrise to an algorithm for 
omputing the solution of the initial value prob-lem. Our next goal is to give an estimate of the algebrai
 
omplexity of thealgorithm.5 Algebrai
 ComplexityIn order to give an estimate for the algebrai
 
omplexity of the algorithmindu
ed by Theorem 4.5, we need to 
onsider the representations of the fun
-tions involved in 
al
ulating the approximations. Here, we 
onsider approx-imations by pie
ewise 
onstant and pie
ewise linear fun
tions as in [12, 11℄.De�nition 5.1 (Step Fun
tions). Suppose A ⊆ [−a, a], B ∈ IR, C ∈
I[−K,K] and f−, f+ : A → R are linear. We 
onsider the following types ofstep fun
tions, where So is the interior of a set S:1. Linear single step fun
tions of type [−a, a] → IR:

A ց [f−, f+] : [−a, a] → IR, x 7→

{

[f−(x), f+(x)] x ∈ Ao

IR o/w2. Simple single step fun
tions of type [−a, a] → IR:
A ց B : [−a, a] → IR, x 7→

{

B x ∈ Ao

IR o/w9



3. Simple single step fun
tions of type [−a, a] × I[−K,K] → IR:
A×B ց C : [−a, a]×I[−K,K] → IR, (x, Y ) 7→

{

C x ∈ Ao and Y ≪ B

IR o/w4. A simple (resp. linear) step fun
tion is a �nite join of simple (resp.linear) single step fun
tions. The number of linear (resp. simple) singlestep fun
tions in a linear (resp. simple) step fun
tion is denoted by
N ( · ).Note that stri
tly speaking we should 
onsider representations of stepfun
tions when 
onsidering N (f). Sin
e we never 
onsider two or moredi�erent representations of the same fun
tion, we do not make this distin
tionfor ease of presentation.If the ve
tor �eld u is a sup of simple step fun
tions and f is a linearstep fun
tion, the fun
tion λx.u(x, f(x)) is simple, hen
e its integral will belinear again, as in [11, Corollary 4.3℄.Proposition 5.2. Suppose u is a simple step fun
tion and f is a linearstep fun
tion. Then Pu(f) is a linear step fun
tion, and 
an be 
omputed in

O(N (u) · N (f)) steps.Proof. Clearly s = λx.u(x, f(x)) is a simple step fun
tion, if u is sim-ple. Computing s we need to mat
h every simple single step fun
tion in uagainst every linear single step fun
tion in f , whi
h 
an be done in O(N (u) ·
N (f)) steps. Taking integrals, we obtain a linear step fun
tion Pu(f) =
λt.

∫ t

0 s(x)dx, whi
h 
an be 
omputed in O(N (s)) steps, hen
e the 
omplex-ity bound on Pu(f).Note that the previous lemma shows that it su�
es to 
onsider datatypes for linear and simple step fun
tions in order to formulate the algorithmof Theorem 4.5. However, the number of single step fun
tions needed torepresent Pu(f) is also quadrati
 in general:Remark 5.3. If u is a linear step fun
tion and f is a simple step fun
tion,then N (Pu(f)) ∈ O(N (u) ·N (f)). In parti
ular, if v =
⊔

n∈N
vn and fn+1 =

Pvn
(fn), then

N (fn+1) ∈ O(N (v0) . . .N (vn)),provided ea
h vn is a simple step fun
tion.10



The blow-up of the number of single step fun
tions needed to represent
fn is due to fa
t that the partition of [−a, a], whi
h is indu
ed by Pu(f) isin general �ner than the partition indu
ed by u.The re�nement of partitions happens when 
omputing u(x, f(x)), sin
ethe linearity of f 
uts the partition indu
ed by u, as illustrated for w =
[−a, a] × [a0, a1] ց C and f = [−a, a] ց [f−, f+]; we obtain λt.w(t, f(t)) =
[b0, b1] ց C where C ∈ IR is some interval.

f+

f−

a0

a1

b0 b10 aThe blow up in the number of single step fun
tions 
an be avoided if wework with simple step fun
tions only. The key idea is to transform the linearstep fun
tion Pu(f) into a simple step fun
tion before 
omputing the nextiterate: on every interval, repla
e the upper (linear) fun
tion by its maxi-mum and the lower fun
tion by its minimum. We now develop the te
hni
alapparatus whi
h is needed to show that the approximations so obtained still
onverge to the solution. This is a
hieved by making the partitions of theinterval [−a, a] indu
ed by step fun
tions approximating the solution andthose approximating the ve
tor �eld expli
it.De�nition 5.4 (Partitions). 1. A partition of [−a, a] is a �nite sequen
e
(q0, . . . , qn) of real numbers su
h that −a = q0 < · · · < qn = a; the setof partitions of [−a, a] is denoted by P.2. The norm |Q| of a partition Q = (q0, . . . , qn) is given by |Q| = max1≤i≤n qi−
qi−1.3. A partition Q = (q0, . . . , qn) re�nes a partition R = (r0, . . . , rk) if
{r0, . . . , rk} ⊆ {q0, . . . , qn}; this is denoted by R ≤ Q.4. If f =

⊔

i≤n[a−i , a+
i ] ց [f−

i , f+
i ] (resp. u =

⊔

i≤n[a−i , a+
i ] × [b−i , b+

i ] ց

[c−i , c+
i ]) is a step fun
tion, the partition indu
ed by f (resp. w) is the11



unique partition (q0, . . . , qk) with {q0, . . . , qk} = {a−i , a+
i | i ≤ k}; thispartition is denoted by Q(f) (resp. Q(u)).Note that the partition indu
ed by a step fun
tion depends on the rep-resentation of the step fun
tion; sin
e we never 
onsider di�erent represen-tations of the same fun
tion, we allow ourselves to blur this distin
tion.To a partition of [−a, a] we now asso
iate a fun
tional, whi
h transforms
ontinuous fun
tions into simple step fun
tions.De�nition 5.5. Suppose Q = (q0, . . . , qn) ∈ P.1. If g : [−a, a] → IR is 
ontinuous, the envelope [10℄ of g is de�ned by

env(g) = [lim inf(g−), lim sup(g+)]2. The �attening fun
tional FQ : ([−a, a] → IR) → ([−a, a] → IR) asso
i-ated with Q is de�ned by
FQ(f) = env(

⊔

1≤i≤n

[qi−1, qi] ց [ inf
x∈[qi−1,qi]

f−(x), sup
x∈[qi−1,qi]

f+(x)])for f = [f−, f+] : [−a, a] → IR.Note that a simple step fun
tions is in general unde�ned at the partitionpoints. Taking the envelope just ensures that the resulting fun
tion is de�nedon the 
losure of the domain of de�nition of the step fun
tion, i.e. at allpartition points, without a�e
ting 
ontinuity.Lemma 5.6. FQ(f) is 
ontinuous, if f is 
ontinuous.Proof. Immediate from the fa
t that step fun
tions are 
ontinuous.When 
onstru
ting a solution of a given initial value problem, we want toapply the �attening fun
tional at every stage of the 
onstru
tion to transforma linear step fun
tion (obtained by integration) into a simple step fun
tion.We still need to show that with the �attening operation the sequen
e still
onverges to the solution of the IVP; the following lemma helps us to establishthis fa
t.Lemma 5.7. Suppose (Qn)n∈N is a sequen
e in P with limn→∞ |Qn| = 0.Then ⊔

n∈N
FQn

= id.Proof. Let x ∈ [−a, a]. We 
onstru
t a sequen
e ([q−n , q+
n ])n∈N of intervalssu
h that 12



1. x ∈ [q−n , q+
n ] for all n ∈ N2. q−n , q+

n are 
onse
utive partition points of Qn.We have q+
n − q−n → 0 as n → ∞ sin
e |Qn| → 0 as n → ∞. The 
laimfollows from lower (resp. upper) semi 
ontinuity of f− (resp. f+).The last lemma puts us in the position to show that the appli
ation ofthe �attening fun
tional at every stage of the 
onstru
tion does not a�e
tthe 
onvergen
e of the iterates to the solution.Theorem 5.8. Suppose v =

⊔

n∈N
vn where the vn's are simple step fun
-tions with limn→∞ |Q(vn)| = 0. If fn+1 = FQ(vn)(Pvn

(fn)), then f =
⊔

n∈N
fn satis�es f = Pv(f).Proof. Follows from the inter
hange-of-suprema law (see e.g. [4, Proposition2.1.12℄), the previous lemma and Theorem 4.5.In the following, we investigate the speed of 
onvergen
e of the fn's 
on-stru
ted in the previous lemma and investigate the algebrai
 
omplexity of
omputing iterates. It turns out that the speed of 
onvergen
e is essen-tially not 
hanged by applying the �attening fun
tional at every step of the
onstru
tion; this result hinges on the following estimate:Lemma 5.9. Suppose u ∈ V and Q ∈ P, f ∈ D. Then w(FQ(Pu(f))) ≤

aL · w(f) + a · wv(u) + 2K
a
|Q|.Proof. In view of Lemma 4.6 and Lemma 3.4, it su�
es to show that w(FQ(g)) ≤

w(g)+2K
a
|Q| if g : [−a, a] → IR and both g+, g− satisfy a Lips
hitz 
onditionwith Lips
hitz 
onstant K/a. Suppose x ∈ [−a, a] and 
hoose two 
onse
u-tive partition points q−, q+ of Q su
h that x ∈ [q−, q+]. Sin
e upper (resp.lower) semi 
ontinuous fun
tions attain their suprema (resp. in�ma) on 
om-pa
t intervals, there are x−, x+ ∈ [q−, q+ su
h that, for all x ∈ [q−, q+], wehave (FQ(g))−(x) = g−(x−) and (FQ(g))+(x) = g+(x+). Thus,
(FQ(g))+(x) − (FQ(g))−(x)

= |g+(x+) − g−(x−)|

= |g+(x+) − g+(x) + g+(x) − g−(x) + g−(x) − g−(x−)|

≤
K

a
|x+ − x| + |g+(x) − g−(x)| +

K

a
|x − x−|

≤ 2
K

a
|Q| + w(g),as required. 13



Using the last lemma, we 
an now estimate the speed of 
onvergen
e asfollows:Proposition 5.10. Suppose v =
⊔

n∈N
vn with wv(vn) ≤ cn ·M(c− aL) and

|Q(vn)| ≤ cn · a
2 (c − aL). Then w(fn) ≤ cnw(f0) if fn+1 = FQ(vn)(Pvn

(fn))for all n ≥ 0.Proof. We use indu
tion. The estimate is evident for n = 0; for the indu
tive
ase one 
al
ulates
w(fn+1) ≤ aL · w(fn) + a · wv(vn) + 2

K

a
· |Q(vn)|

≤ cn · 2aLK + cn · aM(c − aL) + cn · K(c − aL) (Ind'n Hypothesis)
= cn · 2aLK + cn+1 · aM − cn · a2LM + cn+1 · K − cn · aLK

= cn+1 · 2K − cn+1 · (K − aM) + cn · aL(K − aM)

≤ cn+1 · 2K − cn+1 · (K − aM) + cn+1(K − aM) (aL < c)
= cn+1 · 2K = cn+1 · w(f0),as required.The last lemma shows, that �attening does not a�e
t the modulus of
onvergen
e. We now return to question of algebrai
 
omplexity, and show,that 
omputing iterates is still quadrati
, but the number of step fun
tionsneeded to represent the iterates only grows with the number of step fun
tionsneeded to represent the approximations of the ve
tor �eld.We begin with noting that iterates 
an still be 
omputed by a quadrati
algorithm. Before stating the result, we need to extend the notation N ( · )to fun
tions, whi
h are envelopes of step fun
tions.Notation 5.11. If f = env(g) is the envelope of a simple step fun
tion g,we put N (f) = N (g).That is to say, the envelope of a join of n step fun
tions is representedby n step fun
tions. We 
an now dedu
e:Proposition 5.12. Suppose u is a simple step fun
tion and f is the envelopeof a step fun
tion. Then FQ(u)(Pu(f)) is the envelope of a simple stepfun
tion, and 
an be 
omputed in O(N (f) · N (u)) steps.Proof. Follows from Proposition 5.2, sin
e �attening 
an be done in O(N (u))steps. 14



In order to give an estimate on the number of step fun
tions required torepresent the approximations, we need the following lemma:Lemma 5.13. Suppose Q(f) ≤ Q(u). Then Q(Pu(f)) = Q(u).Proof. Be
ause the partition of λx.Pu(x, f(x)) is the partition of u in 
ase
Q(u) re�nes Q(f).We 
on
lude with an estimate on the number of step fun
tions neededto represent the iterates.Proposition 5.14. Suppose v =

⊔

n∈N
vn where Q(vn) ≤ Q(vn+1). Then

N (fn+1) = N (vn) for all n ∈ N, if fn+1 = FQ(vn)(Pvn
(fn)) for all n ∈ N.Proof. Follows immediately from the previous lemma using indu
tion; notethat Q(v0) ne
essarily re�nes Q(f0) sin
e Q(f0) = (−a, a).6 Experimental ResultsThis se
tion brie�y reports some experimental results obtained by imple-menting the algorithm underlying Theorem 5.8. In the examples, we have
hosen a = 1/2; the n-th iterate of the ve
tor �eld subdivides this intervalinto 2n partitions of the same length. It is immediate that the approxima-tions 
an be represented using intervals with rational endpoints, if this istrue of the ve
tor �eld. The task of 
omputing with rationals was delegatedto the GMP library [2℄. Using our �rst prototype, we 
ondu
ted experimentswith the equations f ′(x) = 2f(x) + 1, f ′(x) = 2x and f ′(x) = 4xy + 1, allthree equations with the initial 
ondition f(0) = 0. It is routine to 
he
kthat Assumption 4.1 is satis�ed in this setup. The experimental results aresummarised in the tables below; n denotes the number of iterates we have
omputed.

f ′(x) = 4xf(x) + 1, f(0) = 0

n A

ura
y Time10 0.0134 0m0.518 s15 0.00043 0m2.573s20 1.35756e-05 2m22.067s
f ′(x) = 2f(x) + 1, f(0) = 0

n A

ura
y Time10 0.00882 0m0.073s15 0.000281 0m2.157s20 8.79667e-06 2m28.899s

f ′(x) = 2x, f(0) = 0

n A

ura
y Time10 0.000976086 0m0.038s15 3.05171e-05 0m0.990s20 9.53674e-07 1m54.007s
15



The algorithm was implemented in entirely unoptimised form and testedon a 700 MHz Pentium 3 with 384 MB of RAM; the times are wall 
lo
ktimes. The large in
rease in time when 
omputing 20 iterates is partiallydue to paging.7 A
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