
Initial Value Problems in Domain TheoryA. EdalatDepartment of Computing, Imperial College, UKD. PattinsonInstitut für Informatik, LMU Münhen, GermanyAbstratWe present a domain-theoreti version of the Piard operator andof Piard's theorem for solving lassial initial value problems. Ourformulation of the Piard operator allows us to ompute solutions asleast �xed points on the spae of Sott ontinuous interval-valued mapsof a real variable. In this setup, whih onsiderably simpli�es earlierapproahes, we obtain fast onvergene to the solution, given that thevetor �eld is Lipshitz and an be approximated by step funtions.Sine the naive algorithm indued by the theorem su�ers from a om-plexity explosion, the method is further re�ned, and we show that wean avoid the omplexity explosion, while retaining the same speed ofonvergene. Finally, we report the performane of a simple implemen-tation of our framework, tested on a few examples.1 IntrodutionWe onsider the initial value problem (IVP) of the form
f ′(x) = v(x, f(x)), f(0) = 0, (1)where v : O → R

2 is ontinuous in a neighbourhood O ⊆ R
2 of the ori-gin (0, 0) ∈ O. By a theorem of Osgood there are always a lower andand an upper solutions [9℄. Uniqueness of the solution is guaranteed, byPiard's theorem, if v satis�es a Lipshitz ondition in its seond argu-ment. The question of omputability and theoretial omplexity of the initialvalue problem has been studied in di�erent ontexts in omputable analy-sis [13, 3, 8, 15, 20, 17, 6℄.On the algorithmi and more pratial side, standard numerial pakagesfor solving IVP try to ompute an approximation to a solution with a spe-i�ed degree of auray. Although these pakages are usually robust, their1



methods are not guaranteed to be orret and it is easily to �nd exampleswhere they output inaurate results [14℄. Interval analysis [18℄ providesa method to give upper and lower bounds for the unique solution in theLipshitz ase with a presribed tolerane, and has been developed and im-plemented for analyti vetor �elds [19, 1℄.Domain theory presents an alternative tehnique, whih is based onproper data types, to produe a solution with a given degree of auray.Using an order-theoreti framework for di�erential alulus [12℄, in partiu-lar a domain for C1 funtions and a domain-theoreti Piard like theorem,a method for solving di�erential equations with a general initial onditionwas introdued in [11℄. By expressing the vetor �eld as supremum of stepfuntions and suessively updating the funtion and the derivative approx-imations, represented by onsistent pairs of step funtions in the domain of
C1 funtions, approximations to solutions are found that are bounded belowand above by, respetively, a lower and an upper semi-ontinuous funtions,equivalently an interval-valued Sott ontinuous map. With a suitable sele-tion of the initial Sott ontinuous map, it an also solve the lassial IVPabove. A linear algorithm for funtion updating and a quadrati algorithmfor derivative updating of the onsistent pairs of linear and simple step fun-tions were presented in [11℄. However, the method results in an exponentialblow-up of the number of step funtions used in the approximation.In this paper, we derive a simpli�ed domain-theoreti version of Piard'stheorem for solving the lassial IVP, whih only uses the domain for C0 fun-tions, namely the funtion spae of Sott ontinuous interval-valued maps ofa real variable, with the pointwise partially ordering of maps. This new treat-ment is muh more similar to the lassial theorem and brings domain theoryloser to the branh of analysis ommonly alled di�erential inlusions [5, 7℄,as the Sott ontinuous maps are preisely the upper semi-ontinuous mapsin the well-established terminology of set-valued funtion theory. The majoronsequene of the simpli�ed framework is that it gives rise, in the Lipshitzase, to fast onvergene of the approximations to the solution, as is the asein the lassial theorem. Moreover, we show that by �attening the linearstep funtion into a simple step funtion, after eah iterate of the Piard op-erator, and by a suitable approximation of the vetor �eld, one an overomethe blow-up of the number of single-step funtions. We illustrate with a fewexamples of IVP based on a simple implementation of the tehnique. Asfor future work, the framework will be extended to higher dimensions and amore re�ned implementation will be ompared in sope of appliation andperformane with existing interval analysis pakages like AWA [1℄.2



2 Preliminaries and NotationFor the remainder of the paper, we �x a ontinuous vetor �eld
v : [−a, a] × [−K,K] → Rwhih is de�ned in a retangle ontaining the origin and onsider the IVPgiven by 1. In order to guarantee that the expression v(x, f(x)) is well-de�ned for x ∈ [−a, a] and any solution f : [−a, a] → R, we assume that

[−aM, aM ] ⊆ (−K,K). Geometrially, M will be a bound of the derivativeof a solution f . Sine f also satis�es the initial ondition f(0) = 0, wehave that |f(x)| ≤ Mx for all x ∈ [−a, a]. We an therefore guaranteethat the expression v(x, f(x)) is de�ned for all x ∈ [−a, a] if aM ≤ K. Werequire the stronger ondition [−aM, aM ] ⊆ (−K,K) sine we also needto aommodate approximations of the vetor �eld v; this extra amount ofspae is denoted by δ = K − aM .In the sequel, we are going to onsider interval-valued funtions. Thesefuntions take values and some of their arguments in the interval domain
IR = {[a, b] | a, b ∈ R, a ≤ b} ∪ {R}where the order is given by reverse inlusion; the way-below relation ≪ isgiven by [a, b] ≪ [c, d] i� [c, d] ⊆ (a, b)o. For a ompat interval [a, b], wedenote the sub-domain of intervals ontained in [a, b] by I[a, b].Every interval valued funtion f : X → IR is given by an upper anda lower funtion; we write f = [f+, f−] if f(x) = [f−(x), f+(x)] for all

x ∈ X for this representation. Interval valued funtions an be obtainedby extending ontinuous funtions f : [a, b] → R to the domain of intervals,yielding
f̂ : I[a, b] → IR, A 7→ [ inf

x∈A
f(x), sup

x∈A

f(x)],where A denotes a ompat interval A ⊆ [a, b]; we often all this the anonialextension of f . It is easy to see that f̂ is ontinuous wrt. the Sott topologyon I[a, b] and IR if f itself is ontinuous. In partiular, we an extend vanonially to an interval-valued funtion
v̂ : [−a, a] × I[−K,K] → IR, (x, Y ) 7→ [ inf

y∈Y
v(x, y), sup

y∈Y

v(x, y)].Note that [−a, a] × I[−K,K] → IR, the olletion of Sott ontinuous mapswith the pointwise ordering, is a ontinuous Sott domain. We often identify3



a funtion (resp. vetor �eld) with its anonial extension if it is lear fromthe ontext whih we mean.In the sequel, we will approximate both funtions and vetor �elds bymeans of step funtions. In order to measure the speed of onvergene, aswell as for tehnial onveniene in the formulation of some of our results,we introdue the following notation:1. If f : [−a, a] → IR with f(x) 6= R, we de�ne the width of f by w(f) =
sup{f+(x) − f−(x) | x ∈ [−a, a]}.2. For u : [−a, a] × I[−K,K] → IR with u ⊑ v, the width of u relative to
v is de�ned as wv(u) = supY ∈I[−K,K] w(u(·, Y )) − w(v(·, Y )).Considering u as approximation to v, the relative width wv(u) an be un-derstood as the quality of the approximation, or the distane between u and

v.3 The Piard Operator in Domain TheoryIn the lassial proof of Piard's theorem on the existene and uniqueness ofthe solution of the initial value problem (1) one de�nes an integral operatoron C0[−a, a] by
f 7→ λt.

∫ t

0
v(x, f(x))dxwhih an be shown to be a ontration for su�iently small a provided vsatis�es a Lipshitz ondition in the seond argument [16℄. An appliationof Banah's �xed point theorem then yields a solution of the initial valueproblem. We now de�ne the domain-theoreti Piard operator for arbitraryontinuous funtions u : [−a, a] × I[−K,K] → IR and fous on the speialase where u is the anonial extension of a lassial funtion later.De�nition 3.1. Suppose u : [−a, a] × I[−K,K] → IR is ontinuous. Wede�ne the Piard operator Pu : ([−a, a] → IR) → ([−a, a] → IR) for f =

[f−, f+] : [−a, a] → IR by
Pu(f)(t) = [

∫ t

0
u−(x, f(x))dx,

∫ t

0
u+(x, f(x))dx]in ase both integrals are de�ned; otherwise Pu(f)(t) = R.4



Sine u and f are Sott ontinuous, it follows that the funtions λx.u−(x, f(x))and λx.u+(x, f(x)) are, respetively lower and upper semi-ontinuous fun-tions and thus measurable. Hene Pu is well de�ned.Lemma 3.2. If u : [−a, a] × I[−K,K] → IR is Sott ontinuous, then so is
Pu.Proof. Monotoniity of Pu is straightforward. If (fi)i∈N is a inreasing se-quene of funtions fi : [−a, a] → IR, then by ontinuity of u we have:
λx.u(x,

⊔

i∈N
fi(x)) =

⊔

i∈N
λx.u(x, fi(x)) and the ontinuity of Pu followsfrom the monotone onvergene theorem.In the lassial proof of Piard's theorem, one an hoose an arbitraryfuntion as initial approximation of the solution. In domain theory, we beginthe approximation with the funtion that ontains the least possible amountof information: in our ase this is the funtion λt.[−K,K]. This gives riseto a sub-domain of [−a, a] → IR, in whih the solutions are approximated:Notation 3.3. In the following, f0 : [−a, a] → IR denotes the funtionde�ned by t 7→ [−K,K]. The assoiated upper set ↑ f0 = {f : [−a, a] → IR |

f0 ⊑ f} is denoted by D. Note that D is a sub-dpo of [−a, a] → IR withleast element f0. Finally, V denotes the set of Sott ontinuous funtions
u : [−a, a] × I[−K,K] → IR with wv(u) ≤ δ/a.The restrition on the relative width of u ∈ V is needed to show that thePiard operator is well de�ned, whih is the ontent of the following Lemma.Lemma 3.4. Suppose u ∈ V , f ∈ D.1. |u±(x, Y )| ≤ K/a for all (x, Y ) ∈ [−a, a] × I[−K,K].2. (Pu(f))± satis�es a Lipshitz ondition with Lipshitz onstant K/a.3. |(Pu(f))±(x)| ≤ K for all x ∈ [−a, a].Proof. Suppose x ∈ [−a, a] and Y ∈ I[−K,K]. Sine wv(u) ≤ δ/a, wehave u+(x, Y ) − u−(x, Y ) − v+(x, Y ) − v−(x, Y ) ≤ δ/a, hene |u±(x, Y ) −
v±(x, Y )| ≤ δ/a, whih implies the laim, sine |v±(x, Y )| ≤ M by onstru-tion and K/a = M + δ/a.For the Lipshitz ondition, we have

|Pu(f)±(t) − Pu(f)±(t′)| ≤

∫ t

t′
|u±(x)|dx

≤ (M + δ/a)|t − t′| = K/a|t − t′|.5



Finally, sine Pu(f)±(0) = 0, we obtain |Pu(f)±(t)| = |Pu(f)±(t) −
Pu(f)±(0)| ≤ K/a · t ≤ K for all t ∈ [−a, a].As a orollary, we obtain:Corollary 3.5. Suppose u ∈ V . Then Pu : D → D is well de�ned andontinuous.Proof. That Pu is well de�ned follows from |Pu(f)±(x)| ≤ K for all x ∈
[−a, a]. Continuity has been established in Lemma 3.2.The last lemma puts us in the position to replae Banah's theorem bythe Knaster-Tarski theorem in the proess of onstruting a solution of theinitial value problem (1); reall that f0 is the least element of D.Theorem 3.6. Suppose fn+1 = Pv(fn). Then f =

⊔

n∈N
fn satis�es Pv(f) =

f .Proof. Follows immediately from the Knaster Tarski Theorem, see e.g. [4,Theorem 2.1.19℄.The bridge between the solution of the domain theoreti �xpoint equationand the lassial initial value problem is established in the following lemma.Lemma 3.7. Suppose f = [f−, f+] : [−a, a] → I[−K,K] satis�es Pv(f) = fand f− = f+. Then f− = f+ solves (1).Proof. Sine f− = f+, we an identify both funtions with f . Sine f is Sottontinuous, we have that f is both upper and lower semi ontinuous, heneontinuous. Furthermore, f = Pv(f) implies that f(t) =
∫ t

0 v(x, f(x))dx,hene f is ontinuously di�erentiable and the laim follows from the funda-mental theorem of alulus.In order to obtain a solution of the lassial problem, we therefore needto �nd a �xpoint of Pv with width 0. This is the ontent of the followingsetion, where we onstrut a zero width �xpoint by imposing a Lipshitzondition on v.
6



4 The Lipshitz CaseIn order to obtain a solution to the lassial problem, we impose the followingLipshitz ondition on the de�ning vetor �eld v:Assumption 4.1. There is L > 0 and 0 < c < 1 suh that aL < c < 1 and
|v(x, y) − v(x, y′)| ≤ L|y − y′| for all (x, y) ∈ [−a, a] × [−K,K].The additional ondition aL < 1 an always be ensured by restritingthe domain of de�nition of v; this is as in the lassial proof. Assuming theLipshitz ondition, we have the following estimate, whih guarantees thatthe least �xed point of Pv is of width 0:Lemma 4.2. Suppose f0 ⊑ f . Then w(Pv(f)) ≤ aL · w(f).Proof. Using the Lipshitz ondition, we alulate
w(Pv(f)) = sup

t∈[−a,a]

∫ t

0
v+(x, f(x)) − v−(x, f(x))dx (Def'n of Pv)

= sup
t∈[−a,a]

∫ t

0
sup

y∈f(x)
v+(x, y) − inf

y∈f(x)
v−(x, y)dx (Def'n of anonial extension)

≤ sup
t∈[−a,a]

∫ t

0
L|f+(x) − f−(x)|dx (Lipshitz ondition on v)

≤ aL · w(f),whih proves the laim.The above estimate allows us to show that � in the Lipshitz ase � theleast �xed point of the domain theoreti Piard operator has width 0, i.e.solves the initial value problem, as shown in Lemma 3.7.Proposition 4.3. Let fn+1 = Pv(fn) for n ∈ N. Then w(fn) ≤ cnw(f0). Inpartiular, f =
⊔

n∈N
fn satis�es Pv(f) = f and w(f) = 0.Proof. Follows immediately from aL < c < 1 by indution.In order to atually be able to ompute the integrals, we now add approx-imations to v to the piture, the basi idea being that every ontinuous ve-tor �eld an be approximated by a sequene of step funtions (i.e. funtionstaking only �nitely many values), whih allows us to ompute the integralsinvolved in alulating the approximations to the solution e�etively. Thekey property whih enables us to use approximations also to the vetor �eldis the ontinuity of the mapping v 7→ Pv.7



Lemma 4.4. P : V → V, u 7→ Pu is ontinuous.Proof. Suppose u =
⊔

n∈N
un and f ∈ D. Then (λx.u−

n (x, f(x)))n∈N (resp.
(λx.u+

n (x, f(x)))n∈N is a dereasing (resp. inreasing) sequene of funtionswhih onverge to λx.u−(x, f(x)) (resp. λx.u+(x, f(x)) pointwise. The laimnow follows from the monotone onvergene theorem.This ontinuity property allows us to ompute solutions to the lassialinitial value problem by means of a onverging sequene of approximationsof v.Theorem 4.5. Suppose v =
⊔

n∈N
vn and fn+1 = Pvn

(fn) for n ∈ N. Then
f =

⊔

n∈N
fn satis�es f = Pv(f) and w(f) = 0.Proof. Follows from Theorem 3.6 and ontinuity of u 7→ Pu by the interhange-of-suprema law (see e.g. [4, Proposition 2.1.12℄).We have seen that the Lipshitz ondition on the vetor �eld v ensuresthat the approximations of the solution onverge exponentially fast (Proposi-tion 4.3). If we now approximate the vetor �eld, the speed of onvergene ofthe approximations to the solution will depend on the speed of onvergeneof the approximations of the vetor �eld.We use the following result to estimate the speed of onvergene whenthe vetor �eld is approximated:Lemma 4.6. Suppose u ∈ V and f ∈ D. Then w(Pu(f)) ≤ aL · w(f) + a ·

wv(u).Proof. This is just a matter of alulating
w(Pu(f)) = sup

t∈[−a,a]

∫ t

0
u+(x, f(x)) − u−(x, f(x))dx

≤ sup
t∈[−a,a]

∫ t

0
v+(x, f(x)) − v−(x, f(x)) + wv(u)dx (Def'n of wv(u))

≤ aL · w(f) + awv(u) (Lemma 4.2)As a orollary we dedue that the approximations onverge exponentiallyfast, if the approximations of the vetor �eld do so, too.Proposition 4.7. Suppose v =
⊔

n∈N
vn and fn+1 = Pvn

(fn). Then w(fn) ≤
cn · w(f0) provided wv(vn) ≤ cn · 2M(c − aL).8



Proof. We proeed by indution on n, where there is nothing to show for
n = 0. Given the estimate for n ≥ 0, we obtain
w(vn+1) = w(Pvn

(fn))

≤ aL · w(fn) + a · wv(vn)

≤ cn · aL · w(f0) + cn · 2M(c − aL) (Ind'n Hypothesis)
= cn · 2aLK + cn · 2aM(c − aL) (f0 = λt.[−K,K])
= cn · 2aLK + cn+1 · 2aM − cn · 2a2LM

= cn+1 · 2K − cn+1 · 2(K − aM) + cn · 2aL(K − aM)

≤ cn+1 · 2K − cn+1 · 2(K − aM) + cn+1 · 2(K − aM)

≤ cn+1 · 2K = cn+1 · w(f0),as required.Given a representation of v in terms of step funtions, Theorem 4.5 givesrise to an algorithm for omputing the solution of the initial value prob-lem. Our next goal is to give an estimate of the algebrai omplexity of thealgorithm.5 Algebrai ComplexityIn order to give an estimate for the algebrai omplexity of the algorithmindued by Theorem 4.5, we need to onsider the representations of the fun-tions involved in alulating the approximations. Here, we onsider approx-imations by pieewise onstant and pieewise linear funtions as in [12, 11℄.De�nition 5.1 (Step Funtions). Suppose A ⊆ [−a, a], B ∈ IR, C ∈
I[−K,K] and f−, f+ : A → R are linear. We onsider the following types ofstep funtions, where So is the interior of a set S:1. Linear single step funtions of type [−a, a] → IR:

A ց [f−, f+] : [−a, a] → IR, x 7→

{

[f−(x), f+(x)] x ∈ Ao

IR o/w2. Simple single step funtions of type [−a, a] → IR:
A ց B : [−a, a] → IR, x 7→

{

B x ∈ Ao

IR o/w9



3. Simple single step funtions of type [−a, a] × I[−K,K] → IR:
A×B ց C : [−a, a]×I[−K,K] → IR, (x, Y ) 7→

{

C x ∈ Ao and Y ≪ B

IR o/w4. A simple (resp. linear) step funtion is a �nite join of simple (resp.linear) single step funtions. The number of linear (resp. simple) singlestep funtions in a linear (resp. simple) step funtion is denoted by
N ( · ).Note that stritly speaking we should onsider representations of stepfuntions when onsidering N (f). Sine we never onsider two or moredi�erent representations of the same funtion, we do not make this distintionfor ease of presentation.If the vetor �eld u is a sup of simple step funtions and f is a linearstep funtion, the funtion λx.u(x, f(x)) is simple, hene its integral will belinear again, as in [11, Corollary 4.3℄.Proposition 5.2. Suppose u is a simple step funtion and f is a linearstep funtion. Then Pu(f) is a linear step funtion, and an be omputed in

O(N (u) · N (f)) steps.Proof. Clearly s = λx.u(x, f(x)) is a simple step funtion, if u is sim-ple. Computing s we need to math every simple single step funtion in uagainst every linear single step funtion in f , whih an be done in O(N (u) ·
N (f)) steps. Taking integrals, we obtain a linear step funtion Pu(f) =
λt.

∫ t

0 s(x)dx, whih an be omputed in O(N (s)) steps, hene the omplex-ity bound on Pu(f).Note that the previous lemma shows that it su�es to onsider datatypes for linear and simple step funtions in order to formulate the algorithmof Theorem 4.5. However, the number of single step funtions needed torepresent Pu(f) is also quadrati in general:Remark 5.3. If u is a linear step funtion and f is a simple step funtion,then N (Pu(f)) ∈ O(N (u) ·N (f)). In partiular, if v =
⊔

n∈N
vn and fn+1 =

Pvn
(fn), then

N (fn+1) ∈ O(N (v0) . . .N (vn)),provided eah vn is a simple step funtion.10



The blow-up of the number of single step funtions needed to represent
fn is due to fat that the partition of [−a, a], whih is indued by Pu(f) isin general �ner than the partition indued by u.The re�nement of partitions happens when omputing u(x, f(x)), sinethe linearity of f uts the partition indued by u, as illustrated for w =
[−a, a] × [a0, a1] ց C and f = [−a, a] ց [f−, f+]; we obtain λt.w(t, f(t)) =
[b0, b1] ց C where C ∈ IR is some interval.

f+

f−

a0

a1

b0 b10 aThe blow up in the number of single step funtions an be avoided if wework with simple step funtions only. The key idea is to transform the linearstep funtion Pu(f) into a simple step funtion before omputing the nextiterate: on every interval, replae the upper (linear) funtion by its maxi-mum and the lower funtion by its minimum. We now develop the tehnialapparatus whih is needed to show that the approximations so obtained stillonverge to the solution. This is ahieved by making the partitions of theinterval [−a, a] indued by step funtions approximating the solution andthose approximating the vetor �eld expliit.De�nition 5.4 (Partitions). 1. A partition of [−a, a] is a �nite sequene
(q0, . . . , qn) of real numbers suh that −a = q0 < · · · < qn = a; the setof partitions of [−a, a] is denoted by P.2. The norm |Q| of a partition Q = (q0, . . . , qn) is given by |Q| = max1≤i≤n qi−
qi−1.3. A partition Q = (q0, . . . , qn) re�nes a partition R = (r0, . . . , rk) if
{r0, . . . , rk} ⊆ {q0, . . . , qn}; this is denoted by R ≤ Q.4. If f =

⊔

i≤n[a−i , a+
i ] ց [f−

i , f+
i ] (resp. u =

⊔

i≤n[a−i , a+
i ] × [b−i , b+

i ] ց

[c−i , c+
i ]) is a step funtion, the partition indued by f (resp. w) is the11



unique partition (q0, . . . , qk) with {q0, . . . , qk} = {a−i , a+
i | i ≤ k}; thispartition is denoted by Q(f) (resp. Q(u)).Note that the partition indued by a step funtion depends on the rep-resentation of the step funtion; sine we never onsider di�erent represen-tations of the same funtion, we allow ourselves to blur this distintion.To a partition of [−a, a] we now assoiate a funtional, whih transformsontinuous funtions into simple step funtions.De�nition 5.5. Suppose Q = (q0, . . . , qn) ∈ P.1. If g : [−a, a] → IR is ontinuous, the envelope [10℄ of g is de�ned by

env(g) = [lim inf(g−), lim sup(g+)]2. The �attening funtional FQ : ([−a, a] → IR) → ([−a, a] → IR) assoi-ated with Q is de�ned by
FQ(f) = env(

⊔

1≤i≤n

[qi−1, qi] ց [ inf
x∈[qi−1,qi]

f−(x), sup
x∈[qi−1,qi]

f+(x)])for f = [f−, f+] : [−a, a] → IR.Note that a simple step funtions is in general unde�ned at the partitionpoints. Taking the envelope just ensures that the resulting funtion is de�nedon the losure of the domain of de�nition of the step funtion, i.e. at allpartition points, without a�eting ontinuity.Lemma 5.6. FQ(f) is ontinuous, if f is ontinuous.Proof. Immediate from the fat that step funtions are ontinuous.When onstruting a solution of a given initial value problem, we want toapply the �attening funtional at every stage of the onstrution to transforma linear step funtion (obtained by integration) into a simple step funtion.We still need to show that with the �attening operation the sequene stillonverges to the solution of the IVP; the following lemma helps us to establishthis fat.Lemma 5.7. Suppose (Qn)n∈N is a sequene in P with limn→∞ |Qn| = 0.Then ⊔

n∈N
FQn

= id.Proof. Let x ∈ [−a, a]. We onstrut a sequene ([q−n , q+
n ])n∈N of intervalssuh that 12



1. x ∈ [q−n , q+
n ] for all n ∈ N2. q−n , q+

n are onseutive partition points of Qn.We have q+
n − q−n → 0 as n → ∞ sine |Qn| → 0 as n → ∞. The laimfollows from lower (resp. upper) semi ontinuity of f− (resp. f+).The last lemma puts us in the position to show that the appliation ofthe �attening funtional at every stage of the onstrution does not a�etthe onvergene of the iterates to the solution.Theorem 5.8. Suppose v =

⊔

n∈N
vn where the vn's are simple step fun-tions with limn→∞ |Q(vn)| = 0. If fn+1 = FQ(vn)(Pvn

(fn)), then f =
⊔

n∈N
fn satis�es f = Pv(f).Proof. Follows from the interhange-of-suprema law (see e.g. [4, Proposition2.1.12℄), the previous lemma and Theorem 4.5.In the following, we investigate the speed of onvergene of the fn's on-struted in the previous lemma and investigate the algebrai omplexity ofomputing iterates. It turns out that the speed of onvergene is essen-tially not hanged by applying the �attening funtional at every step of theonstrution; this result hinges on the following estimate:Lemma 5.9. Suppose u ∈ V and Q ∈ P, f ∈ D. Then w(FQ(Pu(f))) ≤

aL · w(f) + a · wv(u) + 2K
a
|Q|.Proof. In view of Lemma 4.6 and Lemma 3.4, it su�es to show that w(FQ(g)) ≤

w(g)+2K
a
|Q| if g : [−a, a] → IR and both g+, g− satisfy a Lipshitz onditionwith Lipshitz onstant K/a. Suppose x ∈ [−a, a] and hoose two onseu-tive partition points q−, q+ of Q suh that x ∈ [q−, q+]. Sine upper (resp.lower) semi ontinuous funtions attain their suprema (resp. in�ma) on om-pat intervals, there are x−, x+ ∈ [q−, q+ suh that, for all x ∈ [q−, q+], wehave (FQ(g))−(x) = g−(x−) and (FQ(g))+(x) = g+(x+). Thus,
(FQ(g))+(x) − (FQ(g))−(x)

= |g+(x+) − g−(x−)|

= |g+(x+) − g+(x) + g+(x) − g−(x) + g−(x) − g−(x−)|

≤
K

a
|x+ − x| + |g+(x) − g−(x)| +

K

a
|x − x−|

≤ 2
K

a
|Q| + w(g),as required. 13



Using the last lemma, we an now estimate the speed of onvergene asfollows:Proposition 5.10. Suppose v =
⊔

n∈N
vn with wv(vn) ≤ cn ·M(c− aL) and

|Q(vn)| ≤ cn · a
2 (c − aL). Then w(fn) ≤ cnw(f0) if fn+1 = FQ(vn)(Pvn

(fn))for all n ≥ 0.Proof. We use indution. The estimate is evident for n = 0; for the indutivease one alulates
w(fn+1) ≤ aL · w(fn) + a · wv(vn) + 2

K

a
· |Q(vn)|

≤ cn · 2aLK + cn · aM(c − aL) + cn · K(c − aL) (Ind'n Hypothesis)
= cn · 2aLK + cn+1 · aM − cn · a2LM + cn+1 · K − cn · aLK

= cn+1 · 2K − cn+1 · (K − aM) + cn · aL(K − aM)

≤ cn+1 · 2K − cn+1 · (K − aM) + cn+1(K − aM) (aL < c)
= cn+1 · 2K = cn+1 · w(f0),as required.The last lemma shows, that �attening does not a�et the modulus ofonvergene. We now return to question of algebrai omplexity, and show,that omputing iterates is still quadrati, but the number of step funtionsneeded to represent the iterates only grows with the number of step funtionsneeded to represent the approximations of the vetor �eld.We begin with noting that iterates an still be omputed by a quadratialgorithm. Before stating the result, we need to extend the notation N ( · )to funtions, whih are envelopes of step funtions.Notation 5.11. If f = env(g) is the envelope of a simple step funtion g,we put N (f) = N (g).That is to say, the envelope of a join of n step funtions is representedby n step funtions. We an now dedue:Proposition 5.12. Suppose u is a simple step funtion and f is the envelopeof a step funtion. Then FQ(u)(Pu(f)) is the envelope of a simple stepfuntion, and an be omputed in O(N (f) · N (u)) steps.Proof. Follows from Proposition 5.2, sine �attening an be done in O(N (u))steps. 14



In order to give an estimate on the number of step funtions required torepresent the approximations, we need the following lemma:Lemma 5.13. Suppose Q(f) ≤ Q(u). Then Q(Pu(f)) = Q(u).Proof. Beause the partition of λx.Pu(x, f(x)) is the partition of u in ase
Q(u) re�nes Q(f).We onlude with an estimate on the number of step funtions neededto represent the iterates.Proposition 5.14. Suppose v =

⊔

n∈N
vn where Q(vn) ≤ Q(vn+1). Then

N (fn+1) = N (vn) for all n ∈ N, if fn+1 = FQ(vn)(Pvn
(fn)) for all n ∈ N.Proof. Follows immediately from the previous lemma using indution; notethat Q(v0) neessarily re�nes Q(f0) sine Q(f0) = (−a, a).6 Experimental ResultsThis setion brie�y reports some experimental results obtained by imple-menting the algorithm underlying Theorem 5.8. In the examples, we havehosen a = 1/2; the n-th iterate of the vetor �eld subdivides this intervalinto 2n partitions of the same length. It is immediate that the approxima-tions an be represented using intervals with rational endpoints, if this istrue of the vetor �eld. The task of omputing with rationals was delegatedto the GMP library [2℄. Using our �rst prototype, we onduted experimentswith the equations f ′(x) = 2f(x) + 1, f ′(x) = 2x and f ′(x) = 4xy + 1, allthree equations with the initial ondition f(0) = 0. It is routine to hekthat Assumption 4.1 is satis�ed in this setup. The experimental results aresummarised in the tables below; n denotes the number of iterates we haveomputed.

f ′(x) = 4xf(x) + 1, f(0) = 0

n Auray Time10 0.0134 0m0.518 s15 0.00043 0m2.573s20 1.35756e-05 2m22.067s
f ′(x) = 2f(x) + 1, f(0) = 0

n Auray Time10 0.00882 0m0.073s15 0.000281 0m2.157s20 8.79667e-06 2m28.899s

f ′(x) = 2x, f(0) = 0

n Auray Time10 0.000976086 0m0.038s15 3.05171e-05 0m0.990s20 9.53674e-07 1m54.007s
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