Machine Learning applied to Go

Dmitry Kamenetsky

Supervisor: Nic Schraudolph

September 2006
1. Introduction

2. My Work

3. Future Work and Questions
Aim

- Create a clean and accessible database of Go games
- Use Machine Learning to learn from expert games
- Use the learned knowledge to build a powerful Go program
Aim

- Create a clean and accessible database of Go games
- Use Machine Learning to learn from expert games
- Use the learned knowledge to build a powerful Go program
Aim

- Create a clean and accessible database of Go games
- Use Machine Learning to learn from expert games
- Use the learned knowledge to build a powerful Go program
What is Go?

- Two-player zero-sum board game
- Originated in ancient China. Today very popular in China, Japan and Korea
- 19x19 grid
- Simple rules, but very complex strategy
Go example
Go example
Go example
Go example
Go example
Go example
Introduction
My Work
Future Work and Questions

Go example
Go example
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - \(10^{172}\) legal board positions
 - \(10^{360}\) game tree nodes
- Position evaluation is difficult
- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- **Large state space**
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes
 - Position evaluation is difficult

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

- Best programs are much weaker than humans
Why is Go interesting for Computer Research?

- Large state space
 - Branching factor of about 200
 - 10^{172} legal board positions
 - 10^{360} game tree nodes

- Position evaluation is difficult
 - Hard to judge strength of groups statically
 - Requires visual pattern recognition
 - Stones have local as well as long-distance effects

- Best programs are much weaker than humans
My Work

- Influence Function
- Database
- Game scorer
Influence Function

- Stones radiate influence to neighboring intersections
- Crude measure of group’s strength - useful if can be computed quickly
- Resistor Grid idea
 - Clamp stones: Black = +1V, White = -1V
 - Current (influence) spreads to neighbors via resistors (grid lines)
- Fast and accurate
Influence Function

- Stones radiate influence to neighboring intersections
- Crude measure of group’s strength - useful if can be computed quickly
- Resistor Grid idea
 - Clamp stones: Black = +1V, White = -1V
 - Current (influence) spreads to neighbors via resistors (grid lines)
- Fast and accurate
Stones radiate influence to neighboring intersections

Crude measure of group’s strength - useful if can be computed quickly

Resistor Grid idea

- Clamp stones: Black = +1V, White = -1V
- Current (influence) spreads to neighbors via resistors (grid lines)
- Fast and accurate
Influence Function

- Stones radiate influence to neighboring intersections
- Crude measure of group’s strength - useful if can be computed quickly
- Resistor Grid idea
 - Clamp stones: Black = +1V, White = -1V
 - Current (influence) spreads to neighbors via resistors (grid lines)
 - Fast and accurate
Influence Function

- Stones radiate influence to neighboring intersections.
- Crude measure of group’s strength - useful if can be computed quickly.
- Resistor Grid idea:
 - Clamp stones: Black = +1V, White = -1V.
 - Current (influence) spreads to neighbors via resistors (grid lines).
- Fast and accurate.
Influence Function

- Stones radiate influence to neighboring intersections

- Crude measure of group’s strength - useful if can be computed quickly

- Resistor Grid idea
 - Clamp stones: Black = +1V, White = -1V
 - Current (influence) spreads to neighbors via resistors (grid lines)

- Fast and accurate
Influence example
Database

- 9 million Go games from various sources
 - MySQL

Problems
 - 70GB of raw text
 - Illegal and duplicate games
 - Inconsistent game properties
 - MySQL not installed
Database

- 9 million Go games from various sources
- MySQL

Problems
- 70GB of raw text
- Illegal and duplicate games
- Inconsistent game properties
- MySQL not installed
Database

- 9 million Go games from various sources
- MySQL
- Problems
 - 70GB of raw text
 - Illegal and duplicate games
 - Inconsistent game properties
 - MySQL not installed
9 million Go games from various sources

MySQL

Problems
- 70GB of raw text
- Illegal and duplicate games
- Inconsistent game properties
- MySQL not installed
Database

- 9 million Go games from various sources
- MySQL
- Problems
 - 70GB of raw text
 - Illegal and duplicate games
 - Inconsistent game properties
 - MySQL not installed
9 million Go games from various sources

MySQL

Problems
- 70GB of raw text
- Illegal and duplicate games
- Inconsistent game properties
- MySQL not installed
Database

- 9 million Go games from various sources

- MySQL

- Problems
 - 70GB of raw text
 - Illegal and duplicate games
 - Inconsistent game properties
 - MySQL not installed
Cooperative Scorer

- Important to determine final territory

- Key ideas:
 - Sufficient to know the list of dead stones
 - Players cooperate. Make moves that do not affect score
 - Use simple heuristics - fast

- Result voted from 11 simulations. Compare to GnuGo's list and original Game Record
Important to determine final territory

Key ideas:
- Sufficient to know the list of dead stones
- Players cooperate. Make moves that do not affect score
- Use simple heuristics - fast!

Result voted from 11 simulations. Compare to GnuGo’s list and original Game Record
Cooperative Scorer

- Important to determine final territory

- Key ideas:
 - Sufficient to know the list of dead stones
 - Players cooperate. Make moves that do not affect score
 - Use simple heuristics - fast!

- Result voted from 11 simulations. Compare to GnuGo’s list and original Game Record
Cooperative Scorer

- Important to determine final territory

- Key ideas:
 - Sufficient to know the list of dead stones
 - Players cooperate. Make moves that do not affect score
 - Use simple heuristics - fast!

- Result voted from 11 simulations. Compare to GnuGo’s list and original Game Record
Cooperative Scorer

- Important to determine final territory

- Key ideas:
 - Sufficient to know the list of dead stones
 - Players cooperate. Make moves that do not affect score
 - Use simple heuristics - fast!

- Result voted from 11 simulations. Compare to GnuGo’s list and original Game Record
Cooperative Scorer

- Important to determine final territory

- Key ideas:
 - Sufficient to know the list of dead stones
 - Players cooperate. Make moves that do not affect score
 - Use simple heuristics - fast!

- Result voted from 11 simulations. Compare to GnuGo’s list and original Game Record
Scorer Results

- Verified on Martin Mueller’s 19x19 collection of 31 games
- Tested on Erik van der Werf’s 9x9 collection of 18K games
 - 96.23% agreement. Comparable to the best classifiers
- Our collection of games
 - 3,500,000 games with territory. Varying board sizes and level of completeness

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>GnuGo</th>
<th>Game Record</th>
<th>Coop.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>3.15%</td>
<td>4.12%</td>
<td>5.66%</td>
<td>10.84%</td>
<td>76.24%</td>
</tr>
</tbody>
</table>

- Cooperative: median time = 0.30 s, worst time = 5.12 s
- GnuGo: median time = 1.70 s, worst time = 446.69 s
Scorer Results

- Verified on Martin Mueller’s 19x19 collection of 31 games
- Tested on Erik van der Werf’s 9x9 collection of 18K games
 - 96.23% agreement. Comparable to the best classifiers

- Our collection of games
 - 3,500,000 games with territory. Varying board sizes and level of completeness

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>GnuGo</th>
<th>Game Record</th>
<th>Coop.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>3.15%</td>
<td>4.12%</td>
<td>5.66%</td>
<td>10.84%</td>
<td>76.24%</td>
</tr>
</tbody>
</table>

- Cooperative: median time = 0.30 s, worst time = 5.12 s
- GnuGo: median time = 1.70 s, worst time = 446.69 s
Scorer Results

- Verified on Martin Mueller’s 19x19 collection of 31 games
- Tested on Erik van der Werf’s 9x9 collection of 18K games
 - 96.23% agreement. Comparable to the best classifiers
- Our collection of games
 - 3,500,000 games with territory. Varying board sizes and level of completeness

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>GnuGo</th>
<th>Game Record</th>
<th>Coop.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>3.15%</td>
<td>4.12%</td>
<td>5.66%</td>
<td>10.84%</td>
<td>76.24%</td>
</tr>
</tbody>
</table>

- Cooperative: median time = 0.30 s, worst time = 5.12 s
- GnuGo: median time = 1.70 s, worst time = 446.69 s
Scorer Results

- Verified on Martin Mueller’s 19x19 collection of 31 games
- Tested on Erik van der Werf’s 9x9 collection of 18K games
 - 96.23% agreement. Comparable to the best classifiers
- Our collection of games
 - 3,500,000 games with territory. Varying board sizes and level of completeness

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>GnuGo</th>
<th>Game Record</th>
<th>Coop.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>3.15%</td>
<td>4.12%</td>
<td>5.66%</td>
<td>10.84%</td>
<td>76.24%</td>
</tr>
</tbody>
</table>

- Cooperative: median time = 0.30 s, worst time = 5.12 s
- GnuGo: median time = 1.70 s, worst time = 446.69 s
Future Work

- Conditional Random Fields (CRF)
 - Grid based model. General graph model
 - Predict: final territory, next move
- Cooperative Scorer
- Complete MySQL Database
Future Work

- Conditional Random Fields (CRF)
 - Grid based model. General graph model
 - Predict: final territory, next move

- Cooperative Scorer
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program

- Complete MySQL Database
Future Work

- **Conditional Random Fields (CRF)**
 - Grid based model. General graph model
 - Predict: final territory, next move

- **Cooperative Scorer**
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program

- Complete MySQL Database
Future Work

- Conditional Random Fields (CRF)
 - Grid based model. General graph model
 - Predict: final territory, next move

- Cooperative Scorer
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program
 - Complete MySQL Database
Future Work

- **Conditional Random Fields (CRF)**
 - Grid based model. General graph model
 - Predict: final territory, next move

- **Cooperative Scorer**
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program

- Complete MySQL Database
Future Work

- Conditional Random Fields (CRF)
 - Grid based model. General graph model
 - Predict: final territory, next move

- Cooperative Scorer
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program

- Complete MySQL Database
Future Work

- Conditional Random Fields (CRF)
 - Grid based model. General graph model
 - Predict: final territory, next move

- Cooperative Scorer
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program

- Complete MySQL Database
Future Work

- Conditional Random Fields (CRF)
 - Grid based model. General graph model
 - Predict: final territory, next move

- Cooperative Scorer
 - Improve accuracy
 - Compare to other methods
 - Incorporate into a Monte Carlo program

- Complete MySQL Database
Questions?

- Its time for me to GO!